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The aim of this work is to present numerical treatments to a complex order fractional nonlinear one-
dimensional problem of Burgers’ equations. A new parameter ¢, is presented in order to be consistent
with the physical model problem. This parameter characterizes the existence of fractional structures in
the equations. A relation between the parameter ¢, and the time derivative complex order is derived.
An unconditionally stable numerical scheme using a kind of weighted average nonstandard finite-
difference discretization is presented. Stability analysis of this method is studied. Numerical simulations
are given to confirm the reliability of the proposed method.
© 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

It is known that the complex order fractional derivative is a gen-
eralization of fractional order derivative and the integer order
derivative when the imaginary part of complex order is equal to

* Peer review under responsibility of Cairo University.
* Corresponding author.
E-mail addresses: nsweilam@sci.cu.edu.eg (N.H. Sweilam), smdk100@gmail.com
(S.M. AL-Mekhlafi), dumitru@cankaya.edu.tr (D. Baleanu).

https://doi.org/10.1016/j.jare.2020.04.007

zero [1]. In recent years, mathematical systems could be depicted
suitability and more accurately by employing the fractional order
derivative. There are several definitions for derivatives of fractional
order. The most common is Caputo its have several applications
[3]. More recently, Atangana-Baleanu Caputo sense (ABC) defined
a modified Caputo fractional derivative by introducing generalized
Mittag-Leffler function as the nonlocal and non-singular kernel
[18]. These new type of derivatives have been used in modeling
of real life applications in different fields ([4-7]). In order to a
better understanding of some mistakes and limitations of the
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fractional classical mathematical models can be seen in the com-
ment of Baleanu in [2]. Recently, in [20] Fernandez proposed the
complex analysis approach to Atangana-Baleanu fractional calcu-
lus. The integer-order derivatives cannot describe systems with
the effects of history memory and hereditary properties of materi-
als and processes as fractional order derivatives and complex order
fractional derivative [8-10]. In [10], Pinto and Carvalho presented a
new mathematical model for complex order fractional model for
HIV infection with drug resistance. They concluded that, the com-
plex order fractional system has many advantages such as its
dynamics are rich, moreover, the changes of the complex order
derivative value can sheds a new light on the modeling of the intra-
cellular delay. Also, in [22] the complex-order approximation to
the forced van der Pol oscillator is proposed.

Burgers' equations can describe the communication between
acoustic waves, reaction apparatuses, convection effects, heat con-
duction, diffusion transports, and modeling of dynamics, for more
details see [11-14,16,17]. Several authors have investigated stud-
ied Burgers’ model for various physical flow problem in fluid
dynamics. The structure of Burgers’ equation is roughly similar to
that of Navier-Stokes equations due to the presence of the non-
linear convection term and the occurrence of the diffusion term
with viscosity coefficient. So this equation can be considered as a
simplified form of the Navier-Stokes equations. The one dimen-
sional coupled Burgers’ equation can be taken as a simple model
of sedimentation and evolution of scaled volume of two kinds of
particles in fluid, suspensions and colloids under the effect of grav-
ity [15].

In this work, we present applications for the new definition of
complex fractional order which given in [20], these applications
are Burgers’ equation with proportional delays in one-
dimensional (1-D) and the coupled Burgers’ equations in 1-D. In
order to characterize the existence of complex fractional
structure in the model, a parameter g, is added to the model prob-
lem [2]. A relation between ¢, and the complex order derivative
(1 + 4i) is derived. Moreover, a numerical scheme is constructed
using weighted average nonstandard finite-difference method
(WANFDM) ([24-27]) to solve numerically the proposed equations.

To our knowledge the nonstandard finite difference method for
solving complex-order fractional Burgers’ equations was never
explored before.

This paper is organized as follows: In Section 2, we explain
some of the required mathematical concepts and preliminaries of
complex fractional order derivatives. In Section 3, two complex
order fractional Burgers’ equations models are introduced and
the construction of WANFDM to solve these equations. Moreover,
the stability of this scheme is studied in Section 4. Numerical sim-
ulations for the proposed equations are given in Section 5. Finally,
the conclusions are given in Section 6.

Preliminaries and notations

Let us consider the complex order fractional differentiation
equation as follows:

ADEY(E) = f(EY(E), 0<t<T, (u+4i)eC, (1)

¥(0) =¥

The Atangana-Baleanu fractional order derivative in Caputo
sense (ABC) given is defined as follows [18]:

M(p) /f ( (t- q)“) :
E.(— dq, 2
- Jo " M(l—,u) y(q)dq (2)
M(u) = 1 — p+ ¢ is normalization function,
E, is Mittag-Leffler functlon, where, E;(Z) = ZeC.

DLy (E) =

where, 0 < u <1,

z"
Zn:O T(un+1)

The Atangana-Baleanu complex order fractional derivative in
Caputo sense is defined as follows [20]:

M(p+ )
2mi(1 — (u+ X))

' Lt
X/OE(wi:‘)(‘(ﬂ‘*‘“)m)ﬂ@)dq, 3)

M(u+ i) =1 — (p+ ) +4445  Re(u+4)>0 and
T'(u+ /i) is the Stirling asymptotic formula of gamma function

[21].

ABCDEHJr/Zi)y(t) _

where,

Numerical discretization for the ABC complex order derivatives

In this section we aim to construct WANFDM with ABC complex
order fractional derivative to obtain the discretization of complex
order fractional derivative numerically. Using (3) let oo = (i + 4i)
€C. Then the discretization of complex order fractional derivative
is given numerically as follows:

ABC py M(ar) b (—ot — )™\ du(s)
Deu ~2mi(l — o) / E\—7—% R (4)
=1t _ Y j+1-p j-p
ABCpyry) — M(“)) / E1< ot —s) >u’ — U s,
27i(1 — o) =/ 1-o P(AL)
apcpyn,, . M(%) P P e —o(tjq —S)*
Diu=sria—% 25" p(At) /tp E\—1 g )8
i1 u’“ PP
ABC i )
Diu 7H27(p(&t) Oy, (5)
where
_ M@
T 2mi(1 - )’

[-tpn < t,+1 —s) >ds

= (tjs1 — tpa1)Ey (W) — (tjs1 — t,)Ey (*’“Jfflyfv))

Complex order fractional Burgers’ equations

In the following, two nonlinear complex order fractional Burg-
ers’ models in 1-D are presented as follows:

1-D Burgers’ equation

Consider the Burgers’ equation in 1-D as follows ([12,23]):
PUxx(f7 X) = 0? (6)

with the initial and the boundary conditions given as follows:

Ue(£,X) 4+ Aqu(t, X)uy(t,x) + pu(t,x) —

u(to,x) =g(x), Lo <x <L,

u(t,Lo) = u(L,t) = f(t),

where, 11, p > 0 and p, are constants, u,(t,x) is the variation term,
u(t,x) is the velocity component, p is diffusion coefficient,
u(t, x)u,(t, x) is the nonlinear convective term and iy, is the diffusion
term, g(x) and f(t) are known functions. t, is the initial time.

In the following, the ordinary time derivative will be replaced
by the complex order derivative.

t>0,
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d dll+2i

dt 7

It can be seen that (7) is not quite right, from a physical point of
view, because the time derivative operator 4 has dimension of

inverse time T~', while the fractional complex tlme derivative oper-

ator d:m " has, T+, Now we introduce o in the following way:

1 du+/‘.i .
62—(;&/.1‘) dt‘uHi = (T) . (8)
In the case the expression (7) becomes an ordinary derivative oper-
ator 4 in case = 1,7 = 0. In this way (7) is dimensionally consis-
tent 1f and only if the new parameter o, , has dimension of time

+20) P
0] = T. Put AFCDY) — 4o,

plex differential equation corresponding to the fractional complex
order Burgers’ equation in the following way:

Now, we can write a fractional com-

1 ABC .
e D Du(t, X) + 4 u(t, X)ux (X, £) + pyu(t,X) — Pl(t,X) = 0,
t
9)
put o = (u + 4i), then we can write (9) as follows:
ABC
R Dfu(t,x) + Aju(t, X)ux(t,X) + pyu(t,X) — py(t,x) = 0.
t
(10)

Using Eq. (10), the particular case can be obtained when p = 4; =0,

ABC

D*u(t,x) + ptu(t,x) = 0. (11)

P

By using the same steps in [28], the numerical solution of (11) when
u=1, 1=0,ie,a=1is given as follows:

U = Uger". (12)
In this case the relation between o and o, is given by [28]:

o
a==-, 0<or<—
1 1

1-D coupled Burgers’ equations

Consider the complex order coupled Burgers’ equations in 1-D
as follows:

] ABC

e Dfu(t,x) + Au(t, x)ux(t,X) + 1 2 (u(t, x) v(t, X)) = puux(t,X),
7+ fBCD‘ V(t, %) + L0, X) V(t,X) + By 2 (U(E,X)V(E, X)) = prw(t,X),
aecC,

(13)
with the initial conditions:
U(to,X) =& (X), U(to,X) :gZ(x)7 LO <X< L’
and the boundary conditions:
u(t,Ly) = u(t,L) =f(t), v(t,Ly) = v(t,L)=f,(t), t>0.

Where /4, 45, ; and 3, are constants, u(t, x) and v(t, x) are the veloc-
ity components, g;(x), g,(x),

f1(t,x) and f,(t,x) are known functions and ¢, is the initial time.
This coupled equation found in [15] when / = 0.

Construction of WANFDM

In the following, we aim to construct WANFDM in order to
obtain the discretization of the model problems.

1-D complex fractional order Burgers’ equation
The discretization of 1-D complex fractional order Burgers’

Eq. (6) and the nonstandard finite differences approximation can
be claimed as follows:

W o
(71 o HZ o0 J
wt ]—2u‘”+u‘”:|

+(1 _ 0) |:;L]ui:+] u:ﬂ +'u1ul+1 -p i1

]
+0{}~1”§ V(X + _'DW} =R

(14)

Where (j=0,1,2,..., N, i=0,1,2,..., M)and R is the
truncation error. Neglecting the truncation error, the resulting
computable difference scheme takes the form:

u’“ P u”’
617HZ 'j

w\172w>1+w\1
j+1 i+1
+”1ul y(ox? }

Y e S
+9{}-1”§ St *PHT =0.

(15)
1-D complex fractional order coupled Burgers’ equation

The discretization form of 1-D complex fractional order coupled
Burgers’ Eqgs. (13) given as follows:

g o
1
1*7 HZ @(At)

v]\l 1/“1
j+1 f
+hu T S — o
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where (j=0, 1, 2,..., N, i=0,1, 2,..., M).

j+1

O+ (1= 0)| ol + ™) B

=

PP

j-1
1
FHZ P(AL)
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1l 1}—}724+1+01:::| 9[ A
%
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B
Y
s
I
=

(16)

Where R, ; and R;; are the truncation errors. Neglecting the trunca-
tion errors, the resulting computable difference scheme takes the
form:

+1 u)ﬂ

ump u,,, ‘
al ’HZ To(hh p] + (1 — 9) |:( +ﬁ] Z/H]) HIAX’)

+54 uJH 1+1 ”{:H ”‘;}

—2u’j+1+u‘j+1
yax P W(Ox)?

*1} + 0[(),114*‘ +pUTh

wol! i1V -v! w20
i+1 i it+1 i _ i+1 —
e L T il T, } =0,
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AL Y i1, Pt
1 i i +1 +1\ Y i
AHY O+ (1) (ol pal ) B
p=0
i u{q 74-1 1/{ 20, H}H i1 1
v - TR + 9[()‘27’2 + By )
syt iU ! J-207 0]
i1 i i1 i _ i1 —
J]/(Ax) + b, ”i \‘MAX) p= w(Ax)Z } =0.

(17)

Stability analysis for the WANSFDM for solving Burgers’ models

Stability analysis for the WANSFDM for solving 1-D Burgers’ equation
In the following, we used the idea of Jon von Neumann tech-
nique to claim the stability of (15), ([25,26]). This idea will be

applied after linearizing (10). Assume that u} = def9*, where

y = v—1, the requirement is |£(q)| < 1, then (15) will be written
as follows:

1 JH1-PelgAx_ gi-Peivgix )
ol HZ (AL Oy,

+(1-0) [/vh gHleiadx __p_ (g1 gli+1yygox

(LX)
£J+1el}qAx + le )}qAx)]

(18)

_26jfleiqux + éj—le(fl)quX)] =0.

Diving by &e"1%%, put n = ”kl and using the Euler formula we have:

=1
HZ;SUZEZ;)” Opi (1= 0)|p — 525 (cos(q %)~ 1)
p=!
+1710[py = 525 (cos(q £ %)~ 1)] = 0.
(19)
Assume
j-1 i 1
(EP5)/p(At) = S (11778)/p(AL) = Ao,
p=0 p:O
1
—HAy — ——HA, + By + C”! (20)
where, B=(1-0) [,u - w(i‘;)z (cos(q A x) — 1)] and C=
0y = 5257 (cos(q £ %) = 1).

1 1
(FHAOJrB)r/ZfFHAOF/JrC:O,W\ <1, (21)
t t

oo — [k HAY ~ 4(cJsHA, + BIC ‘

[171] = <1,
|21 HA, + B)
then,
1 1 2 1

——HA, — {/ (= HAo) — 4(—— HA, + B)C| < |2(HA, + B)|.
Gt Gt O-t

o= HAo + \/(01 _L_HA,) —4(#HAG+B)C’
12| = ‘ <1,

|2(HA, + B)|

where,
1 1 2 HA,
E ——HA, + FHAo -4 O_}fﬁB C

Stability analysis for the WANSFDM for solving 1-D coupled Burgers’
equation

We consider the stability analysis for the WANFDM for solving
system (17), we used the kind of Jon von Neumann technique. We
will apply this technique after linearized the system (13), we write
this system in matrix form as follows:

82
a2 ¢

1
<2(gr=H08)|

ABCDIX (%) = Y — (X), (22)

where,

B u(t,x)> 7<p O>

= and Y =

( v(t,x) 0 p

Then we can write system (22) using WANFDM as follows [24]:

i- +1P X]P

O—gxz

0

| 2K Xy
PJ W(AX)Z
(23)

X -2 X
S B R Y )

— i+l
+0[ P

As in the Jon von Neumann stability we assume that:
X = drenanr,

where y = vV—1,7 € R*! and ¢ € R*? is the amplification matrix.
By substituting into (23) and using the Euler formula, we have:

1 22
(A1 fFH&)g +

where,
I is the unit

1=0, (24)

matrix, A; =(1- 9)

=30 4(E78)/@(Al), and.
Ci=0y i’ly (cos(q A X) —1).
The system will be stable as long as |£(q)| < 1.

(cos(q AXx)—1),

‘ < HB, +\/((,1 (HB,)" — 4C,(Ar — 1 HB,)

&1 = <1,
204 - )
where,
_%HB1 + \/ (0;4 Y aca - G;ﬂ )
< \Z(Al ~ sy
O-[
‘—%H& - \/(#HBQZ —4C1 (A — 1= HBy)
&) = ‘2( J”HB])’ <1,
where,
1 1 2 1
~ B - \/( 5 HB1) — 4Ci (A — 5 HB1)

1
< ‘Z(Al —FHBl) .
t
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Application of WNFDM for complex order derivative 1 4 (uyaayABC

-0, DI iu(t, x) — u(ct, ax)ux(ct, x) + lu(t, X) — U (t,x) = 0.

2
This section deals with the effectiveness and validity of the pro- (25)
posed method for solving the test problem of complex fractional Xe[0,1], te(0,1], ac el 1]

order Burgers’ models. The initial and boundary conditions are given as follows:

Example 1. The complex order fractional Burgers’ equation with u(0,x) = x.
proportional delay a,c [19]:

Approximate
2 T T T T
—o— (0.9999+0i
— % 0.9999+0.3i
1.5F | —#— 0.9999+0.5i
—P— 0.9999+0.6i

0.5

0e
0 0.2 04 06 08 1
X
Approximate
0.1 ' r ' '

0.08 J' '
S 0067 I
o
@ —&— (.9999+0i
E D 04 L ' -
- 0 —%— 0.9999+0.3i

—#— 0.9999+0.5i
002t —#— 0.9999+0.8 .

0 0.2 04 0.6 0.8 1
X

Fig. 1. Numerical simulations for the Example 1 at different values of imaginary part, 0 = 0.
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u(t,0) = u(t,L) = 0.

The exact solution is u(t,x) = xe* whena=c=0.5 and Re(x)~ 1.
Taking y(h)=q(e"—1) and @(At) =pe* —1), where
0<q<1,0<p<landO< o, <2.

The proposed numerical scheme (15), together with the
boundary conditions and the initial condition yield a nonlinear

algebraic system of (N + 1)(M + 1) equation with the unknown u{

(j=0,1,2,...,N, i=0,1, 2,..., M). This system will be
solved in this work using Newton’s iteration methods. The
following are noted:

Fig. 1 shows that the behavior for the solution at different
values of imaginary part and the value of real part equal 0.999. We
compare the obtained solutions with the solution in the case
1 =0.999 and 1 = 0. Fig. 2 illustrates the behavior of the numerical
solution at different values of the real part and the value of

18 T T T T T T
181 —&— 0.9999+0) ]
—5— 0.8+0.6i
L —#— 0.740.6i i
14 ~
—b—06+06i

Approximate
T

Approximate

09 1

0.06 . . . . = , . ,
: —— 0.9999+0i
—F— 0.8+0.6i
e 0.7+0.6i
0.05

0.04

0.03

Imag u

0.02

0.01

—— 06+0.6i | |

Fig. 2. Numerical simulations for the Example 1 at different values of the real part, 6 = 0.
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imaginary part equal 0.6. We compare the obtained solutions with mABCD{““u(t,x) -+ 2u(t, X) Uy (£, %) + 2 (U(t,X) (t,X)) — Un (£, X) =0,

the a solution in case p =0.999 and 2 = 0. We noted that a new % P

behavior appears that are not seeing in case of integer and Jl,},w,,,-) DI o (t,X) + 20(x, t) vy (£,X) + 2 (u(t,X) V(t,X)) — Ve (t,X) =0,
t

fractional order models. (26)

with the initial conditions:
Example 2. Consider the following fractional complex order cou-

=i =i <
pled Burgers’ equations in 1-D as follows: U(to,X) = sin(x), v(to,x) =sin(x), 0 <x

N

TC7

T —&— 0.90+0i
—— 0.8+0.4i
—&—0.75¢041| T
—&— 0.50+0.4i

3
_01 1 1 1 1 1 1 1 1 1
0 02 04 06 08 1 12 14 16 18 2
t
DB T T T T T T T T T
—&— 0.99+0i
0.7r —5—08+0.4i | ]
—&— 0.75+0.4i
0.6 —8— 0.59+0.4i
0.5
> 04

| 1 1 1 1 1 1 1 1

0 0.2 04 06 0.8 1 12 14 16 18 2
t

Fig. 3. Numerical simulations for Example 2 at different values of Real part, 6 = 0.5.
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and the boundary conditions:

u(t,0) = u(t,m) =0, v(0,t) = v(t,m) =0, t>0.

The exact solutions of velocity components are u(x,t) = e~'sin(x)
and v(x,t) = e 'sin(x), when Re(x) ~ 1. Taking y/(Ax) = q sinh(AX)
and @(At) = psinh(At), where 0 < g <1 and 0 < p < 1. The pro-
posed numerical scheme (17), together with the boundary condi-
tions and the initial condition construct a nonlinear algebraic

system of (N+1)(M+1) equation with the unknown u, 1/]'
(j=0,1,2,...,N, i=0,1,2,..., M). This system will be
solved in this work using Newton’s iteration methods. We have
the following observations:

Fig. 3 illustrates the behavior of the numerical solution u and vat
different values of the real part and the value of imaginary part is
equal to 0.4. We compared the obtained solutions with the
approximated integer order solution. Fig. 4 shows that the behavior

0.18 T T T T

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0t

T T T T T

—— 0.99+0i |

— —4-0.99+0.3i
T B ¢ 0.99+0.5i

4 0.9940.8i

_002 1 1 1 1

0.16 T T T T

0141

0.12

0.1

0.08

0.06

—- 0.99+0i
—E-0.99+0.3i | 1
—&— 0.99+0.5i
—&- 0.99+0.8i

1 1

0 0.2 04 0.6 0.8

1 12 14 16 18 2
t

Fig. 4. Numerical simulations for Example 2 at different values of imaginary part, 6 = 0.5.
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for the solutions u and » at different values of imaginary part and
the value of real part equal 0.999. We compared the obtained
solutions with the solution in case p=0.999 and 1=0. Fig. 5
illustrates the behavior of the numerical solution for imaginary part
of u and v at different values of real part and the value of imaginary
part equal 0.4. We compare the obtained solutions with the

solution in case it = 0.999 and 4 = 0. Fig. 6 illustrates the behavior
of the numerical solution for imaginary part of u and v at different
values of imaginary part and the value of the real part equal to
0.999. We compare the obtained solutions with the solution in the
case i = 0.999 and /4 = 0. We noted that the complex order is more
general than integer and fractional order.

4
%10
16 T T T T * T T T T
— 0.99+0i
L W W _
14 W 08+0.4i
o 0.75+0 4i
127 —&  0.59+0.4i| T
W W
10r 1
imagu
8 b ud
6 W ¥ _
4r ~ 1
ey 2 {iL
ot e _ ) 1 ) e |
0B—% W o
_2 1 1 1 1 1 1 1 1 1
0 02 04 06 08 1 12 14 16 18 2
t
4
%10
16 T T T T ‘R T T T T
—E— 0.99+0i
L W w -
14 o 0.8+0.4i
T 0.75+0 40
12 + —&— 0.59+0.4i| 7
W W
101 .
8 - -
imagV 6l & g ]
4 = ~
9t W e E
06— H—0
_2 1 1 1 1 1 1 1 1 1

Fig. 5. Numerical simulations for Example 2 at different values of real part, 6 = 0.5.
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403
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Fig. 6. Numerical simulations for Example 2 at different values of imaginary part, 0 = 0.5.

Conclusions

In this work, the numerical treatments for a complex order frac-
tional nonlinear one-dimensional Burgers’ equations are pre-
sented. It is more suitable and more general to describe these
problems than the integer order and fractional order derivatives
as we can see from Figs. 1-4. A novel parameter ¢, is given in order
to be consistent with the physical equation. A relation between the

complex order and o; depending on the model is derived for the
propose model problem. The numerical simulations for the solu-
tions of complex fractional order Burgers’ equations are performed.
WANFDM is constructed to study the nonlinear complex order
fractional Burgers’ equations numerically. This method is based
on choosing the weight factor theta. The main advantage of this
method is it can be explicit or implicit with large stability regions
using the idea of the weighed step introduced by the nonstandard
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finite difference method. Finally, we suggest that the complex
order fractional derivative provides best results and could be more
useful for the researchers and scientists. All results in this work
were obtained by using MATLAB (R2013a), on a computer machine
with intel(R) core i5.
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