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Abstract

Behavioral activation is a fundamental feature of motivation, and organisms frequently make effort-related decisions based
upon evaluations of reinforcement value and response costs. Furthermore, people with major depression and other
disorders often show anergia, psychomotor retardation, fatigue, and alterations in effort-related decision making. Tasks
measuring effort-based decision making can be used as animal models of the motivational symptoms of depression, and
the present studies characterized the effort-related effects of the vesicular monoamine transport (VMAT-2) inhibitor
tetrabenazine. Tetrabenazine induces depressive symptoms in humans, and also preferentially depletes dopamine (DA).
Rats were assessed using a concurrent progressive ratio (PROG)/chow feeding task, in which they can either lever press on a
PROG schedule for preferred high-carbohydrate food, or approach and consume a less-preferred lab chow that is freely
available in the chamber. Previous work has shown that the DA antagonist haloperidol reduced PROG work output on this
task, but did not reduce chow intake, effects that differed substantially from those of reinforcer devaluation or appetite
suppressant drugs. The present work demonstrated that tetrabenazine produced an effort-related shift in responding on
the PROG/chow procedure, reducing lever presses, highest ratio achieved and time spent responding, but not reducing
chow intake. Similar effects were produced by administration of the subtype selective DA antagonists ecopipam (D1) and
eticlopride (D2), but not by the cannabinoid CB1 receptor neutral antagonist and putative appetite suppressant AM 4413,
which suppressed both lever pressing and chow intake. The adenosine A2A antagonist MSX-3, the antidepressant and
catecholamine uptake inhibitor bupropion, and the MAO-B inhibitor deprenyl, all reversed the impairments induced by
tetrabenazine. This work demonstrates the potential utility of the PROG/chow procedure as a rodent model of the effort-
related deficits observed in depressed patients.
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Introduction

Motivation is a complex process that involves multiple

behavioral functions and neural circuits [1–4]. Organisms are

directed towards or away from stimuli, they can respond to

primary motivational stimuli and conditioned cues, and under

some conditions they can demonstrate high levels of behavioral

activation [2,5–8]. One of the manifestations of activational

aspects of motivation is that organisms can show robust activity in

the initiation and maintenance of motivated behavior, leading to

substantial and persistent work output in their instrumental (i.e.,

reinforcer-seeking) actions. Thus, organisms can overcome

response costs separating them from motivational stimuli, and

frequently they must make effort-related decisions based upon

cost/benefit analyses [1,2]. In the last few years, there has been

growing interest in the neural circuitry underlying effort-based

processes, both in animals [2,5,9–15] and humans [16–20].

Forebrain circuits regulating exertion of effort and effort-related

choice behavior involve several structures, including basolateral

amygdala and prefrontal/anterior cingulate cortex [10,14,21],

ventral pallidum [13,22], and nucleus accumbens [5,15,23–26].

Effort-based decision-making is generally studied using tasks

that offer a choice between high effort instrumental actions leading

to more highly valued reinforcers vs. low effort options leading to
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less valued reinforcers. In animal studies, such tasks include a T-

maze task that uses a vertical barrier to provide the effort-related

challenge [23,26,27,28], effort discounting tasks [9,12,29], and

operant behavior procedures that offer animals a choice between

responding on ratio schedules for preferred reinforcers vs.

approaching and consuming a less preferred food [1,30,32].

Several studies in this area have focused on the effort-related

effects of brain dopamine (DA) systems, particularly accumbens

DA. Across multiple tasks, low doses of DA antagonists and

accumbens DA depletions or antagonism shift choice behavior by

decreasing selection of the high effort/high reward option and

increasing selection of the low effort/low reward choice

[5,9,23,26,33]. The effects of DAergic manipulations on effort-

based allocation of responding are not explained by changes in

appetite, food consumption or preference, or discrimination of

reward magnitude [23,30–32,34,35]. Furthermore, the effort-

related effects of DA antagonism can be reversed by co-

administration of adenosine A2A antagonists such as istradefylline,

MSX-3 and MSX-4 [25,27,36–40].

It has been suggested that tasks measuring effort-based decision

making could be used to model the effort-related motivational

symptoms of depression and other disorders [5,15,41–43]. People

with depression and related disorders not only display alterations

in mood or affect, but also can show profound psychomotor/

motivational impairments (e.g. lassitude, anergia, fatigue, psycho-

motor retardation; [5,44–46]). Tests of effort-related decision

making have been developed in humans [47], and recent studies

have shown that people with major depression show reduced

selection of high effort alternatives [48]. The present work

investigated the effort-related effects of tetrabenazine (TBZ),

which is an inhibitor of VMAT-2 (vesicular monoamine trans-

porter- type 2). By inhibiting VMAT-2, TBZ blocks vesicular

storage and depletes monoamines, with its greatest impact being

upon striatal DA [49,50]. TBZ is used to treat Huntington’s

disease, but major side effects include depressive symptoms,

including fatigue [51–53]. TBZ has frequently been used in studies

involving animal models of depression [54–56], and the present

studies assessed the effects of TBZ on performance of a concurrent

progressive ratio (PROG)/chow feeding choice task [32]. With this

task, rats have the choice of lever pressing on a PROG schedule

reinforced by preferred high-carbohydrate pellets vs. approaching

and consuming a less preferred laboratory chow. This choice

procedure is useful because the PROG schedule requires that the

animal repeatedly makes within-session choices between lever

pressing and chow intake under conditions in which the ratio

requirement is gradually increasing. Previous work with this task

demonstrated that the DA D2 family antagonist haloperidol

suppressed PROG lever pressing, highest ratio achieved, and time

spent responding, but did not suppress chow intake [32]. These

effects of DA antagonism differed substantially from administra-

tion of the cannabinoid CB1 inverse agonist and putative appetite

suppressant AM251, and also differed from the effects of reinforcer

devaluation by pre-feeding, both of which substantially suppressed

chow intake under conditions that also reduced lever pressing [32].

As well as studying the effects of TBZ in the present work,

additional drugs were administered so their effects could be

compared with TBZ (the D1 antagonist ecopipam, the D2

antagonist eticlopride, and the CB1 receptor neutral antagonist

AM4113). Finally, several putative and established antidepressant

drugs (the adenosine A2A antagonist MSX-3, the catecholamine

uptake blocker bupropion, the MAO-B inhibitor deprenyl, and the

COMT inhibitor tolcapone) were assessed for their ability to

reverse the effects of TBZ. This work was conducted in order to

work towards the development of animal models of the effort-

related motivational symptoms of depression and other disorders

[5,41,43].

Materials and Methods

Animals
Ninety four adult male Sprague-Dawley rats (Harlan, India-

napolis, IN, USA) were housed in a colony at 23 uC with 12-h

light/dark cycles (lights on at 0:700 h). Rats weighed 300–350 g at

the beginning of the study, and were initially food deprived to 85%

of their free-feeding body weight for training. Rats were fed

supplemental chow to maintain weight throughout the study, with

water available ad libitum in the home cages. Despite food

restriction, rats were allowed modest weight gain (approximately

10%) throughout the experiment, to be consistent with the normal

growth of the animals. All animal protocols were approved by the

University of Connecticut Institutional Animal Care and Use

Committee, and followed NIH guidelines.

Pharmacological Agents and Dose Selection
The VMAT-2 inhibitor tetrabenazine (Tocris Bioscience) was

dissolved in a solution of 20% dimethylsulfoxide (DMSO) and

saline and then titrated with 1N HCl and sonicated until dissolved.

A pH matched vehicle solution of 20% DMSO and saline was

used for the vehicle control for TBZ. The DA D1 antagonist

ecopipam and the DA D2 antagonist eticlopride (Tocris Biosci-

ence) were dissolved in 0.9% saline, which also served as the

vehicle control for these studies. The adenosine A2A antagonist

MSX-3 was synthesized in the laboratory of Christa Müller

(University of Bonn, Bonn, Germany) and was dissolved in 0.9%

saline solution and then pH adjusted with 1N NaOH to a final pH

of 7.4. Saline served as the vehicle control for MSX-3. The

catecholamine uptake inhibitor bupropion hydrochloride (Alfa

Aesar, Ward Hill, MA) and the MAO-B inhibitor deprenyl

hydrochloride (Tocris Bioscience) were dissolved in 0.9% saline,

which also served as the vehicle control for these studies. The

catechol O-methyl transferase (COMT) inhibitor tolcapone

(Toronto Research Chemicals, Toronto Canada) was dissolved

in 0.9% saline solution and then titrated with Tween 80 and

sonicated until dissolved. Saline was used as the vehicle control for

tolcapone. AM4113 was synthesized in the laboratory of Alex

Makriyannis (Center for Drug Discovery, Northeastern University,

Boston, MA), and was dissolved in DMSO, Tween 80, and 0.9%

saline at a ratio of 1:1:8. All doses were selected based on previous

work [32,35,37,39,57] or from unpublished preliminary studies

from this lab. All drugs were administered intraperitoneally (IP).

Behavioral Procedures
Behavioral sessions were conducted in operant conditioning

chambers (28623623 cm3; Med Associates). Rats were initially

trained to lever press on a continuous reinforcement schedule (30-

min sessions; 45-mg pellets, Bioserve, Frenchtown, NJ, USA) for 1

week, and then were shifted to the PROG schedule (30-min

sessions, 5 days/week) for several additional weeks. For PROG

sessions, the ratio started at FR1 and was increased by one

additional response every time 15 reinforcers were obtained

(FR1615, FR2615, FR3615,…). This schedule included a ‘‘time-

out’’ feature that deactivated the response lever if 2 minutes

elapsed without a ratio being completed. Upon reaching stable

baseline responding (at least 9 weeks), chow was then introduced.

Weighed amounts of laboratory chow (Laboratory Diet, 5P00

Prolab RMH 3000, Purina Mills, St. Louis, MO, USA; typically

15–20 g) were concurrently available on the floor of the chamber

during the PROG sessions. At the end of the session, rats were

Tetrabenazine Progressive Ratio Effort Depression
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removed from the chamber, and food intake was determined by

weighing the remaining food (including spillage). Rats were trained

for an additional 5 weeks so that they could they attain relatively

consistent levels of baseline lever pressing and chow intake, after

which drug testing began. For most baseline days rats did not

receive supplemental feeding, however, over weekends and after

drug tests, rats received supplemental chow in the home cage. On

baseline and drug treatment days, rats normally consumed all the

operant pellets that were delivered during each session.

Experimental Procedures
For all experiments, animals received a vehicle injection 1 week

prior to beginning testing in order to habituate them to being

injected. All experiments used a within-group design in which each

rat received all drug or vehicle treatments (IP) in their particular

experiment in a randomly varied order (each treatment was

received only once, one treatment per week, either on a Thursday

or a Friday). Baseline training sessions (i.e., non-drug) were

conducted 4 days per week.

Experiments 1–4: Effort-related effects of TBZ:

Comparison with other drugs

Experiment 1: Effects of TBZ. On test days, rats (n = 14)

received injections of 0.25, 0.5, 0.75, 1.0 mg/kg TBZ or vehicle,

90 minutes prior to testing.

Experiment 2: Effects of the DA D1 antagonist

ecopipam. On test days, rats (n = 12) received injections of

0.05, 0.1, 0.2 mg/kg ecopipam or vehicle, 30 minutes prior to

testing.

Experiment 3: Effects of the DA D2 antagonist

eticlopride. On test days, rats (n = 16) received injections of

0.02, 0.04, 0.08 mg/kg eticlopride or vehicle, 30 minutes prior to

testing.

Experiment 4: Effects of the cannabinoid CB1 antagonist

and putative appetite suppressant AM4113. On test days,

rats (n = 16) received injections of 4.0, 8.0, 16.0 mg/kg AM4113

or vehicle, 30 minutes prior to testing.

Experiments 5–8: Effort-related effects of TBZ: Reversal

experiments

Experiment 5: Ability of the adenosine A2A antagonist

MSX-3 to reverse the effects of TBZ. On test days, rats

(n = 8) received an injection of 0.75 mg/kg TBZ or vehicle 90

minutes prior to testing and an injection of 0.5, 1.0, 2.0 mg/kg

MSX-3 or vehicle 30 minutes prior to testing.

Experiment 6: Ability of the catecholamine uptake

inhibitor bupropion to reverse the effects of TBZ. On test

days, rats (n = 10) received an injection of 0.75 mg/kg TBZ or

vehicle 90 minutes prior to testing and an injection of 5.0, 10.0,

15.0 mg/kg bupropion or vehicle 30 minutes prior to testing.

Experiment 7: Ability of the MAO-B inhibitor deprenyl to

reverse the effects of TBZ. On test days, rats (n = 10) received

an injection of 0.75 mg/kg TBZ or vehicle 90 minutes prior to

testing and an injection of 2.5, 5.0, 10.0 mg/kg deprenyl or vehicle

30 minutes prior to testing.

Experiment 8: Ability of the COMT inhibitor tolcapone to

reverse the effects of TBZ. On test days, rats (n = 8) received

an injection of 0.75 mg/kg TBZ or vehicle 90 minutes prior to

testing and an injection of 10.0, 20.0, 30.0 mg/kg tolcapone or

vehicle 60 minutes prior to testing.

Statistical Analyses
For each experiment, total number of lever presses, highest ratio

achieved, active lever time (in seconds) and gram quantity of chow

consumption were analyzed with repeated measures ANOVA of

data from the entire group (i.e., both high and low performers). To

determine differences between treatment conditions, non-orthog-

onal planned comparisons using the error term from the overall

ANOVA [58] was used (the number of comparisons was restricted

to the number of conditions minus one). In order to assess

differences between performance groups (high and low perform-

ers), each experimental group was divided in half using a median

split of vehicle lever pressing for that experiment. Using this split,

total number of lever presses, highest ratio achieved, active lever

time and gram quantity of chow consumed were analyzed with

repeated measures factorial ANOVA using performance group as

the between subjects variable (Tables 1 and 2). Interaction effects

and follow-up analyses are presented; a significant interaction

means that the drug treatment effect differed across the

performance groups.

Results

Experiment 1: The VMAT-2 inhibitor TBZ decreases
PROG/chow performance

Analyses of Total Group. Repeated measures ANOVA

revealed a significant effect of treatment on total lever presses

(F[4,52] = 4.204, p,0.05, Figure 1A). Planned comparisons

revealed that total lever presses were significantly decreased at

0.50, 0.75 and 1.0 mg/kg TBZ compared to vehicle (p,0.05).

Repeated measures ANOVA also revealed that there was a

significant effect of TBZ on highest ratio achieved

(F[4,52] = 8.135, p,0.05, Figure 1B). Planned comparisons

showed that highest ratio achieved was significantly decreased at

0.50, 0.75 and 1.0 mg/kg TBZ compared to vehicle (p,0.05).

There also was a significant overall effect of treatment on active

lever time (F[4,52] = 6.549, p,0.05, Figure 1C), with 0.50, 0.75

and 1.0 mg/kg TBZ significantly differing from vehicle (p,0.05).

Repeated measures ANOVA revealed no significant effect of TBZ

on chow consumption (F[4,52] = 2.603, n.s., Figure 1D).

Analyses Separating High and Low

Performers. Additional analyses were performed separating

high and low performers into two separate groups, and using

performance group as a factor in a factorial ANOVA. With these

analyses, a significant performance group x treatment interaction

indicates that the drug treatment effect was different for high vs.

low performers (Table 1). There was a significant performance

group interaction for total lever presses (F[4,48] = 4.242, p,0.05),

highest ratio achieved (F[4,48] = 7.378, p,0.05), active lever time

(F[4,48] = 6.458, p,0.05) and chow consumption

(F[4,48] = 4.296, p,0.05). As a result of these significant

interactions, separate repeated measures ANOVAs were conduct-

ed on each performance group. In high performers, these

additional analyses revealed a significant effect of TBZ on total

lever presses (F[4,24] = 4.247, p,0.05), highest ratio achieved

(F[4,24] = 10.425, p,0.05), active lever time (F[4,24] = 9.828, p,

0.05) and chow consumption(F[4,24] = 5.000, p,0.05). Planned

comparisons revealed that TBZ reduced total lever presses in high

performers at 0.5, 0.75 and 1.0 mg/kg compared to vehicle (p,

0.05), and also reduced highest ratio achieved and active lever

time in high performers at all doses tested compared to vehicle (p,

0.05), but increased chow consumption in high performers at 0.5,

0.75 and 1.0 mg/kg doses compared to vehicle (p,0.05). In

contrast, repeated measures ANOVA revealed that in low

performers, TBZ only affected total lever presses

(F[4,24] = 4.769, p,0.05), with planned comparisons showing

that total lever presses were decreased at 0.75 and 1.0 mg/kg TBZ

compared to vehicle (p,0.05). In addition, when there was a

significant interaction each measure was analyzed at each

treatment level for difference between the high and low

Tetrabenazine Progressive Ratio Effort Depression
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performance groups. These analyses revealed that high responders

lever pressed significantly more on vehicle compared to low

responders (p,0.05), but the performance groups did not differ

after any dose of TBZ. There also were significant performance

group differences for highest ratio achieved after injection of

vehicle and 0.25 mg/kg TBZ (p,0.05), but the performance

groups did not differ at higher doses of TBZ. In addition, there

were performance group differences in active lever time only after

vehicle injections (p,0.05). For chow intake, there were significant

performance group differences after injection of vehicle and

0.25 mg/kg TBZ (p,0.05), but not after higher doses of TBZ.

Experiment 2: The DA D1 antagonist ecopipam decreases
PROG/chow performance

Analyses of Total Group. Repeated measures ANOVA

revealed a significant effect of treatment on total lever presses

(F[3,33] = 6.610, p,0.05, Figure 2A). Planned comparisons

showed that ecopipam significantly decreased total lever presses

at 0.05, 0.1 and 0.2 mg/kg compared to vehicle (p,0.05). There

was a significant effect of treatment on highest ratio achieved

(F[3,33] = 16.134, p,0.05, Figure 2B), with planned comparisons

demonstrating that highest ratio achieved was significantly

decreased at 0.05, 0.1 and 0.2 mg/kg ecopipam compared to

vehicle (p,0.05). There also was a significant effect of treatment

on active lever time (F[3,33] = 5.667, p,0.05, Figure 2C). Active

lever time was significantly decreased at 0.1 and 0.2 mg/kg

ecopipam compared to vehicle (p,0.05, planned comparisons). In

addition, there was a significant effect of treatment on chow

consumption (F[3,33] = 5.426, p,0.05, Figure 2D). Planned

comparisons also revealed that chow consumption was signifi-

cantly increased at 0.1 and 0.2 mg/kg ecopipam compared to

vehicle (p,0.05).

Analyses Separating High and Low

Performers. Repeated measures factorial ANOVA (i.e., sepa-

rating animals by performance group; Table 1) revealed a

significant interaction effect in total lever presses

(F[3,30] = 6.250, p,0.05), and highest ratio achieved

(F[3,30] = 7.873, p,0.05), but not for active lever time

(F[3,30] = 1.442, n.s.) or chow intake (F[3,30] = 2.478, n.s.).

Additional analyses to explore the source of the interactions were

conducted as in experiment 1. In high performers, these analyses

revealed a significant effect of ecopipam on total lever presses

Figure 1. Effects of the VMAT-2 inhibitor and DA depleting agent TBZ on PROG/chow performance. On measures of lever pressing,
mean (+SEM) total lever presses (A), highest ratio achieved (B), and active lever time (measured in seconds, C), TBZ produced significant decreases at
0.5, 0.75 and 1.0 mg/kg. Chow consumption (mean +SEM, in grams) during test sessions was unaffected by any dose tested (D). (* p,0.05, different
from vehicle).
doi:10.1371/journal.pone.0099320.g001
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(F[3,15] = 8.580, p,0.05) and highest ratio achieved

(F[3,15] = 26.690, p,0.05), and planned comparisons demon-

strated that ecopipam decreased total lever presses and highest

ratio achieved in high responders at all doses (p,0.05). In contrast,

for low responders ecopipam only produced effects on highest

ratio achieved (F[3,15] = 4.153, p,0.05), leaving total lever

presses not significantly affected (F[3,15] = 2.159, n.s.). Moreover,

planned comparisons revealed that ecopipam reduced highest

ratio achieved in low responders only at the highest dose (p,0.05).

Another source of the interaction in total lever presses was as

significant difference between performance groups after vehicle

treatment (p,0.05), but not at any dose of ecopipam. Moreover,

analyses of the highest ratio achieved data showed that there were

significant differences between high and low performers under all

treatment conditions (p,0.05).

Experiment 3: The DA D2 antagonist eticlopride
decreases PROG/chow performance

Analyses of Total Group. Repeated measures ANOVA

revealed a significant effect of treatment on total lever presses

(F[3,45] = 4.667, p,0.05, Figure 3A). Planned comparisons

revealed that eticlopride significantly decreased total lever presses

at 0.04 and 0.08 mg/kg compared to vehicle (p,0.05). There also

was a significant effect of treatment on highest ratio achieved

(F[3,45] = 9.973, p,0.05, Figure 3B). Planned comparisons

revealed that eticlopride significantly decreased highest ratio

achieved at 0.04 and 0.08 mg/kg compared to vehicle (p,0.05).

There was a significant overall treatment effect on active lever time

(F[3,45] = 6.947, p,0.05, Figure 3C). Planned comparisons also

showed that active lever time was significantly decreased by

eticlopride at 0.08 mg/kg compared to vehicle (p,0.05). Howev-

er, there was no effect of treatment on chow consumption

(F[3,45] = 1.947, n.s., Figure 3D).

Analyses Separating High and Low Performers. Factorial

ANOVA across performance groups (Table 1) revealed a

significant interaction effect for total lever presses

(F[3,42] = 5.819, p,0.05), highest ratio achieved

(F[3,42] = 7.931, p,0.05), and active lever time (F[3,42] = 8.640,

p,0.05), but not for chow intake (F[3,42] = 0.959, n.s.). Individual

ANOVAs revealed a significant effect of eticlopride on total lever

presses ([3,21] = 5.256, p,0.05), highest ratio achieved

(F[3,21] = 11.334, p,0.05), and active lever time

(F[3,21] = 7.204, p,0.05) in high responders. Planned compari-

sons showed that eticlopride reduced total lever presses, highest

Figure 2. Effects of the DA D1 antagonist ecopipam on PROG/chow performance. On measures of lever pressing, mean (+SEM) total lever
presses (A), highest ratio achieved (B), and active lever time (measured in seconds, C), ecopipam produced significant decreases at 0.1 and 0.2 mg/kg.
Chow consumption (mean +SEM, in grams) during test sessions was unaffected by any dose tested (D). (* p,0.05, different from vehicle).
doi:10.1371/journal.pone.0099320.g002
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ratio achieved and active lever time at both 0.04 and 0.08 mg/kg

doses in high responders (p,0.05). In low responders, there was a

significant effect of eticlopride on total lever presses

(F[3,21] = 6.547, p,0.05) and highest ratio achieved

(F[3,21] = 9.085, p,0.05) but not active lever time

(F[3,21] = 1.872, n.s.), and eticlopride significantly decreased total

lever presses and highest ratio achieved at all doses (planned

comparisons, p,0.05). ANOVAs at each treatment level revealed

that there were significant differences between performance

groups for total lever presses and highest ratio achieved after

injection of vehicle, and 0.02 and 0.4 mg/kg (p,0.05), but not

0.08 mg/kg eticlopride. Moreover, there were significant perfor-

mance group differences after injection of vehicle and 0.02 mg/kg

eticlopride (p,0.05), but not at the 0.04 or 0.08 mg/kg doses.

Experiment 4: The cannabinoid CB1 antagonist AM4113
decreases both lever pressing and chow consumption

Analyses of Total Group. Repeated measures ANOVA

revealed a significant effect of AM4113 on total lever presses

(F[3,45] = 3.496, p,0.05, Figure 4A). Non-orthogonal planned

comparisons demonstrated that AM4113 decreased total lever

presses at 8.0 and 16.0 mg/kg compared to vehicle (p,0.05).

There also was a significant effect of AM4113 on highest ratio

achieved (F[3,45] = 8.511, p,0.05, Figure 4B), and planned

comparisons demonstrated that AM4113 decreased highest ratio

achieved at 8.0 and 16.0 mg/kg compared to vehicle (p,0.05).

Active lever time was not affected by AM4113 (F[3,45] = 0.139,

n.s., Figure 4C), however, there was a significant effect of AM4113

on chow consumption (F[3,45] = 16.559, p,0.05, Figure 4D).

Planned comparisons revealed that AM4113 decreased chow

consumption at 8.0 and 16.0 mg/kg compared to vehicle (p,

0.05).

Analyses Separating High and Low Performers. Factorial

ANOVAs revealed significant performance group x treatment

interaction effects (Table 1) for total lever presses (F[3,42] = 3.487,

p,0.05), and highest ratio achieved (F[3,42] = 5.800, p,0.05), but

no significant interaction for chow consumption (F[3,42] = 0.458,

n.s.) or active lever time (F[3,42] = 0.200, n.s.). Repeated measures

ANOVA revealed a significant effect of AM4113 on total lever

presses (F[3,21] = 4.277, p,0.05) and highest ratio achieved

(F[3,21] = 14.008, p,0.05) in high responders, and planned

comparisons revealed that AM4113 significantly reduced total

lever presses at 4.0 and 8.0 mg.kg doses (p,0.05) while highest

ratio achieved was decreased at all doses (p,0.05) in high

performers. However, there were no significant effects of AM4113

Figure 3. Effects of the DA D2 antagonist eticlopride on PROG/chow performance. Mean (+SEM) total lever presses (A) and highest ratio
achieved (B) were significantly decreased by 0.04 and 0.08 mg/kg of eticlopride. Additionally, active lever time (measured in seconds, C) was
significantly reduced at 0.08 mg/kg eticlopride. Chow consumption (mean +SEM, in grams) during test sessions was unaffected by any dose tested
(D). (* p,0.05, different from vehicle).
doi:10.1371/journal.pone.0099320.g003
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on total lever presses (F[3,21] = 0.580, n.s.) or highest ratio

achieved (F[3,21] = 0.948, n.s.) in low responders, which appears

to be the major source of the interaction for these two variables.

Experiment 5: MSX-3 reverses the effects of TBZ on
PROG/chow performance

Analyses of Total Group. Repeated measures ANOVA

revealed a significant effect of treatment on total lever presses

(F[4,28] = 4.586, p,0.05, Figure 5A). Non-orthogonal planned

comparisons revealed that TBZ significantly decreased total lever

presses compared to vehicle (p,0.05), and that 1.0 and 2.0 mg/kg

MSX-3 plus TBZ significantly increased total lever presses

compared to TBZ alone (p,0.05). There also was a significant

effect of treatment on highest ratio achieved (F[4,28] = 6.867, p,

0.05, Figure 5B). Planned comparisons revealed that TBZ

significantly decreased highest ratio achieved compared to vehicle

(p,0.05), and 1.0 and 2.0 mg/kg MSX-3 plus TBZ significantly

increased highest ratio achieved compared to TBZ alone (p,

0.05). ANOVA showed there was a significant effect of treatment

on active lever time (F[4,28] = 3.862, p,0.05, Figure 5C). TBZ

significantly decreased active lever time compared to vehicle (p,

0.05), and 1.0 and 2.0 mg/kg MSX-3 plus TBZ significantly

differed from TBZ alone (p,0.05). There was no significant

treatment effect for chow consumption (F[4,28] = 0.102, n.s.,

Figure 5D).

Analyses Separating High and Low Performers. There

were significant performance group x treatment interactions for

total lever presses (F[4,24] = 2.769, p = 0.05; Table 2), but not for

highest ratio achieved (F[4,24] = 1.765, n.s.), active lever time

(F[4,24] = 0.655, n.s.), chow consumption (F[4,24] = 0.787, n.s.).

Repeated measures ANOVA revealed a significant effect of

treatment on total lever presses (F[4,12] = 4.950, p,0.05) in high

responders, and planned comparisons revealed that both 1.0 and

2.0 mg/kg doses of MSX-3 were significantly higher than TBZ

alone. In contrast, repeated measures ANOVA revealed no

significant effect of treatment on total lever presses

(F[4,12] = 1.051, n.s.) in low responders. High performers lever

pressed at higher levels compared to low performers under all

treatment conditions.

Experiment 6: Bupropion reverses the effects of TBZ on
PROG/chow performance

Analyses of Total Group. Repeated measures ANOVA

demonstrated a significant effect of treatment on total lever presses

Figure 4. Effects of the cannabinoid CB1 antagonist and putative appetite suppressant AM4113 on PROG/chow performance. Mean
(+SEM) total lever presses (A) and highest ratio achieved (B) were significantly decreased by 16.0 mg/kg of AM4113. Active lever time (measured in
seconds, C) was not affected by AM4113 at any dose tested. Chow consumption (mean +SEM, in grams) was significantly reduced at 4.0, 8.0 and
16.0 mg/kg of AM4113 (D). (* p,0.05, different from vehicle).
doi:10.1371/journal.pone.0099320.g004

Tetrabenazine Progressive Ratio Effort Depression

PLOS ONE | www.plosone.org 9 June 2014 | Volume 9 | Issue 6 | e99320



(F[4,40] = 7.683, p,0.05, Figure 6A). Planned comparisons

revealed that total lever presses were significantly decreased by

TBZ compared to vehicle (p,0.05), and that total lever presses

were significantly increased at 15.0 mg/kg bupropion plus TBZ

compared to TBZ alone (p,0.05). There also was a significant

effect of treatment on highest ratio achieved (F[4,40] = 14.364, p,

0.05, Figure 6B). Planned comparisons showed that highest ratio

achieved was significantly decreased by TBZ compared to vehicle

(p,0.05), and that 15.0 mg/kg bupropion plus vehicle signifi-

cantly differed from TBZ alone (p,0.05). Active lever time also

showed a significant overall effect of treatment (F[4,40] = 5.416,

p,0.05, Figure 6C); this measure was significantly decreased by

TBZ compared to vehicle (p,0.05), and 15.0 mg/kg bupropion

plus TBZ differed from TBZ alone (p,0.05). There was a

significant effect of treatment on chow consumption

(F[4,40] = 9.041, p,0.05, Figure 6D), but the only significant

planned comparison was that chow intake was significantly

decreased by 15.0 mg/kg bupropion compared to TBZ alone

(p,0.05).

Analyses Separating High and Low Performers. There

were significant treatment by performance group interactions

(Table 2) for total lever presses (F[4,32] = 5.730, p,0.05), and

highest ratio achieved (F[4,32] = 4.524, p,0.05), but no significant

interaction for active lever time (F[4,32] = 0.877, n.s.). Further-

more, there was a significant treatment by group interaction in

chow consumption (F[4,32] = 5.334, p,0.05). Repeated measures

ANOVA revealed a significant effect of treatment on total lever

presses (F[4,16] = 7.825, p,0.05), highest ratio achieved

(F[4,16] = 10.989, p,0.05) and chow consumption

(F[4,16] = 12.029, p,0.05) in high performers, with bupropion

significantly increasing total lever presses and highest ratio

achieved and decreasing chow consumption at 15.0 mg/kg

compared to TBZ alone (p,0.05). In low responders, there also

were significant effects of treatment on total lever presses

(F[4,16] = 6.339, p,0.05), highest ratio achieved

Figure 5. The adenosine A2A antagonist MSX-3 reverses the effects of TBZ on the PROG/Chow procedure. On measures of lever
pressing, mean (+SEM) total lever presses (A), highest ratio achieved (B), and active lever time (measured in seconds, C), TBZ produced significant
decreases at 0.75 mg/kg. Chow consumption (mean +SEM, in grams) during test sessions was unaffected by TBZ (D). MSX-3 reversed the effects on
total lever presses, highest ratio achieved and active lever time at both 1.0 and 2.0 mg/kg. (# p,0.05, different from vehicle; * p,0.05, different from
TBZ alone).
doi:10.1371/journal.pone.0099320.g005
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(F[4,16] = 7.111, p,0.05) and chow consumption

(F[4,16] = 2.940, p = 0.05), and planned comparisons with this

group demonstrated that bupropion significantly increased total

lever presses and decreased chow consumption at 15.0 mg/kg (p,

0.05), and increased highest ratio achieved at both 10.0 and

15.0 mg/kg compared to TBZ alone (p,0.05). For total lever

presses, highest ratio achieved and chow intake, there were

significant differences between the high and low performance

groups under all treatment conditions (p,0.05).

Experiment 7: Deprenyl reverses the effects of TBZ on
PROG/chow performance

Analyses of Total Group. Repeated measures ANOVA

showed there was a significant effect of treatment on total lever

presses (F[4,36] = 6.172, p,0.05, Figure 7A). Planned compari-

sons demonstrated that total lever presses were decreased by TBZ

compared to vehicle (p,0.05), and 5.0 mg/kg deprenyl plus TBZ

significantly differed from TBZ alone (p,0.05). There also was a

significant effect of treatment highest ratio achieved

(F[4,36] = 5.176, p,0.05, Figure 7B), with planned comparisons

demonstrating that highest ratio achieved was significantly

decreased by TBZ compared to vehicle (p,0.05), while 5.0 mg/

kg deprenyl plus TBZ significantly differed from TBZ alone (p,

0.05). Active lever time also was significantly affected by drug

treatment (F[4,36] = 3.073, p,0.05, Figure 7C). TBZ significantly

suppressed active lever time compared to vehicle (p,0.05), and all

doses of deprenyl plus TBZ increased active lever time compared

to TBZ alone. In addition, there was a significant effect of

treatment on chow consumption (F[4,36] = 3.039, p,0.05,

Figure 7D), with chow consumption being significantly lower in

the 10.0 mg/kg deprenyl plus TBZ condition compared to TBZ

alone (p,0.05).

Analyses Separating High and Low Performers. Factorial

ANOVAs of each measure revealed a significant treatment x

performance group interaction (Table 2) for total lever presses

(F[4,32] = 9.028, p,0.05), highest ratio achieved (F[4,32] = 5.979,

p,0.05), but not for active lever time (F[4,32] = 1.557, n.s.). In

addition, there was a significant treatment by group interaction in

chow consumption (F[4,32] = 2.911, p,0.05). In high responders,

there were significant treatment effects for total lever presses

(F[4,16] = 11.097, p,0.05) and highest ratio achieved

(F[4,16] = 8.704, p,0.05), but no effect on chow consumption

(F[4,16] = 2.729, n.s.) in high responders. Planned comparisons

revealed that deprenyl significantly increased total lever presses

Figure 6. The DA uptake inhibitor and common antidepressant bupropion reverses the effects of TBZ on the PROG/Chow
procedure. On measures of lever pressing, mean (+SEM) total lever presses (A), highest ratio achieved (B), and active lever time (measured in
seconds, C), TBZ produced significant decreases at 0.75 mg/kg. Chow consumption (mean +SEM, in grams) during test sessions was unaffected by
TBZ (D). Bupropion reversed the effects on total lever presses, highest ratio achieved and active lever time at 15.0 mg/kg. (# p,0.05, different from
vehicle; * p,0.05, different from TBZ alone).
doi:10.1371/journal.pone.0099320.g006
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and highest ratio achieved in high responders at a dose of 5.0 mg/

kg compared to TBZ alone. In the low responders, there were

significant treatment effects for total lever presses (F[4,16] = 4.677,

p,0.05) and chow consumption (F[4,16] = 7.491, p,0.05) but no

effect on highest ratio achieved (F[4,16] = 1.586, n.s.). In the low

responders, planned comparisons revealed that total lever presses

was significantly increased compared to TBZ alone at the 5.0 mg/

kg dose of deprenyl (p,0.05), and that chow consumption was

significant decreased in low responders at the dose of 10.0 mg/kg

compared to TBZ alone (p,0.05). For total lever presses and

highest ratio achieved, there were significant performance group

differences under the vehicle condition (p,0.05), while for chow

intake the performance groups differed under both the vehicle

condition and the combined treatment of TBZ with 5.0 mg/kg

deprenyl (p,0.05).

Experiment 8: Tolcapone fails to reverse the effects of

TBZ on PROG/chow performanceAnalyses of Total

Group. Repeated measures ANOVA revealed a significant

effect of treatment on total lever presses (F[4,28] = 3.435, p,

0.05, Figure 8A) and highest ratio achieved (F[4,28] = 7.229, p,

0.05, Figure 8B), but no significant effect of treatment on active

lever time (F[4,28] = 2.565, n.s., Figure 8C), or chow consumption

(F[4,28] = 0.458, n.s., Figure 8D). TBZ significantly differed from

vehicle for total lever presses and highest ratio achieved, but

tolcapone failed to significantly reverse any of the effects of TBZ.
Analyses Separating High and Low

Performers. Repeated measures factorial ANOVA revealed

there was a significant treatment by performance group interac-

tion for total lever presses (F[4,24] = 3.023, p,0.05), highest ratio

achieved (F[4,24] = 3.932, p,0.05), and active lever time

(F[4,24] = 2.904, p,0.05), but not chow consumption

(F[4,24] = 0.503, n.s.). There were no significant differences

between TBZ/tolcapone and TBZ/vehicle for any of the

performance groups on any measure.

Discussion

The current studies examined the effects of the VMAT-2

inhibitor and catecholamine depleting agent TBZ on performance

of the PROG/chow feeding choice task in rats. TBZ significantly

decreased total lever presses, highest ratio achieved and active

lever time. In addition, TBZ did not produce an overall significant

effect on chow intake, indicating that appetite for chow

consumption was not suppressed at the doses tested. These effects

of TBZ are consistent with those recently demonstrated in rats

Figure 7. The MAO-B inhibitor and putative antidepressant deprenyl reverses the effects of TBZ on the PROG/Chow procedure. On
measures of lever pressing, mean (+SEM) total lever presses (A), highest ratio achieved (B), and active lever time (measured in seconds, C), TBZ
produced significant decreases at 0.75 mg/kg. Chow consumption (mean +SEM, in grams) during test sessions was unaffected by TBZ (D). Deprenyl
reversed the effects on total lever presses, highest ratio achieved at 5.0 mg/kg. In addition, active lever time was increased at 2.5, 5.0 and 10.0 mg/kg.
Chow consumption was significantly decreased at 10 mg/kg. (# p,0.05, different from vehicle; * p,0.05, different from TBZ alone).
doi:10.1371/journal.pone.0099320.g007
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assessed on a concurrent fixed ratio 5 (FR5)/chow feeding choice

task (i.e., decreased lever pressing and increased chow intake after

TBZ administration; [43]). In addition, Nunes et al. [43] reported

that doses of TBZ up to 1.0 mg/kg had no effect on consumption

of operant pellets or lab chow, and did not alter preference of

pellets over chow, in free feeding preference tests. Thus, it seems

unlikely that the present results with TBZ occurred because of a

change in appetite or food preference. Importantly, these effects

were more pronounced in high performers. High performers

showed decreases in total lever presses at 0.5 mg/kg TBZ whereas

low performers required 0.75 mg/kg in order to show decreases in

total lever presses. Moreover, high performers showed decreases in

highest ratio achieved and active lever time at all doses of TBZ

tested, whereas low performers showed no changes in highest ratio

achieved or active lever time under any dose of TBZ. Finally, high

performers showed increases in chow consumption at 0.5, 0.75

and 1.0 mg/kg TBZ, where low performers showed no change in

chow consumption, presumably because they were already

consuming chow at or near ceiling levels.

Recent research has shown that 0.75 mg/kg TBZ significantly

decreased extracellular DA in nucleus accumbens as measured by

microdialysis [43]. In addition, TBZ affected expression of

phosphorylated DARPP-32 in a manner consistent with reduction

of DA transmission at both D1 and D2 family receptors (43). Thus,

the present experiments also studied the effects of highly selective

D1 and D2 family antagonists. Selective antagonism of D1 or D2

family receptors (via administration of ecopipam or eticlopride,

respectively) produced similar effects to TBZ on the PROG/chow

feeding task, decreasing total lever presses, highest ratio achieved

and active lever time. Neither ecopipam nor eticlopride reduced

chow intake in the dose range tested, and in fact, ecopipam

significantly increased chow intake, which illustrates that there was

a strong shift in effort-related choice from lever pressing to chow

intake. Thus, it appears that reductions in DA transmission at both

D1 and D2 receptors contribute to the effects induced by TBZ.

Taking the present results together with previous studies, it

appears that blockade of either D1 or D2 receptors, or

pharmacological depletion of DA, can reduce PROG lever

pressing and lower break points in a manner that does resemble

the effects of appetite suppression or reinforcer devaluation

[32,43]. Instead of providing a simple measure of ‘‘reward’’,

PROG breakpoints represent the outcome of a cost/benefit

analysis based partially upon characteristics of the reinforcer itself,

but importantly, also on the work-related response costs and time

Figure 8. The COMT inhibitor Tolcapone fails to reverse the effects of TBZ on the PROG/Chow procedure. On measures of lever
pressing, mean (+SEM) total lever presses (A), highest ratio achieved (B), and active lever time (measured in seconds, C), TBZ produced significant
decreases at 0.75 mg/kg. Chow consumption (mean +SEM, in grams) during test sessions was unaffected by TBZ (D). Tolcapone did not reverse the
effects on total lever presses, highest ratio achieved or active lever time at any dose tested (# p,0.05, different from vehicle).
doi:10.1371/journal.pone.0099320.g008
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constraints imposed by the increasing ratio requirements [32].

Together with earlier studies, the results of experiments 1–3

demonstrate that it is exceedingly unlikely that TBZ, ecopipam,

eticlopride and haloperidol are decreasing PROG lever pressing

because of a reduction in primary food motivation, appetite, or the

unconditioned reinforcing properties of food [26,32,43]. Further-

more, these results are consistent with studies showing that

increasing DA transmission by knockdown of the DA transporter

[11] or overexpression of DA D2 receptors in nucleus accumbens

[59] can increase instrumental response output in mice responding

on fixed ratio/chow feeding choice procedures or a PROG

schedule, in a manner that is inconsistent with an alteration of

primary food motivation or the representation of the value of the

food reinforcer.

The effects observed with TBZ or DA receptor blockade

differed substantially from those induced by appetite manipula-

tion, as demonstrated by the effects of the cannabinoid CB1

neutral antagonist and putative appetite suppressant AM4113

[35]. The effects of AM4113 described above were similar to those

observed for the CB1 inverse agonist AM251 [32]; CB1

antagonism decreased chow intake as well as total lever presses

and highest ratio achieved, consistent with previous studies

demonstrating the appetite suppressant effects of these drugs

[32,35]. In the present studies, AM4113 produced greater effects

on lever pressing in high performers compared to low performers.

Specifically, high performers showed decreases in total lever

presses and highest ratio achieved, whereas low performers

showed no change in total lever presses. This pattern of effects

in low performers is likely due to the fact that the low performing

animals get the vast majority of their food from chow intake. The

overall similarity between the actions of a CB1 neutral antagonist

(AM4113) and a CB1 inverse agonist (AM251) suggests that there

is endogenous cannabinoid tone regulating food motivated

behavior, which is attenuated by occupation of CB1 receptors

by the neutral antagonist [35]. Moreover, the present results

highly the utility of choice procedures as compared to conven-

tional PROG schedules, because having chow concurrently

available enables one to differentiate between the effects of low

doses of DA antagonists or TBZ, which leave chow consumption

intact, vs. the appetite suppression induced by interference with

CB1 transmission, which reduces both food reinforced lever

pressing and chow intake.

In recent years, there has been increasing interest in the use of

adenosine A2A antagonists for their potential antidepressant effects

[43,59]. This is supported by studies using traditional animal

models of depression including the forced swim and the tail

suspension tests, in which adenosine A2A antagonists have been

shown to increase swim and struggle time [60,61,62]. Moreover,

several studies have demonstrated the ability of A2A antagonists to

reverse the effects of selective DA antagonism on a variety of

effort-related tasks including the FR5/chow feeding choice task

and the T-maze barrier task [27,25,28,39]. In the present studies,

the adenosine A2A antagonist MSX-3 was capable of reversing the

effects of TBZ, increasing total lever presses, highest ratio achieved

and active lever time. These effects are consistent with TBZ/

MSX-3 reversal studies conducted in rats tested on the FR5/chow

feeding choice procedure [43]. Moreover, these results are

consistent with studies demonstrating the minor-stimulant prop-

erties of adenosine A2A antagonists such as MSX-3, which

increases operant response rates on some schedules of reinforce-

ment [32,57]. In the present studies, the reversal effects produced

by MSX-3 were more pronounced in high performers; in these

animals MSX-3 plus TBZ increased total lever presses, highest

ratio achieved and active lever time relative to TBZ alone. Low

performers on the other hand showed no effect of drug treatments.

It is likely that this pattern of effects is due to the fact that the TBZ

effects on PROG performance are greater in high performers,

which could render those animals more susceptible to reversal.

In addition to testing novel compounds that are putative

antidepressants, it is critical for the development and validation of

the present model that the effects of well characterized antide-

pressants on the PROG/chow feeding choice paradigm should be

assessed. Because TBZ depletes DA, a logical point of focus was on

an antidepressant that works on DA, such as the catecholamine

uptake inhibitor bupropion (Wellbutrin). Bupropion is one of the

most widely prescribed antidepressants [63], and it is one of the

few antidepressants that has shown efficacy in treating the effort-

related symptoms such as fatigue, anergia and psychomotor

retardation in patients with depression and related disorders

[44,46,64–66]. In the current experiments, bupropion was capable

of reversing the effects of TBZ on the PROG/chow procedure,

increasing total lever presses, highest ratio achieved and active

lever time. Moreover, at the highest dose (15.0 mg/kg) it

decreased chow consumption compared to TBZ treated animals.

For both high performers and low performers, bupropion

increased total lever presses, highest ratio achieved and active

lever time compared to TBZ/vehicle, and there also was a

decrease in chow consumption in high performers. These results

are consistent with previous findings on the FR5/chow choice

procedure [43] and the T-maze barrier task (Yohn et al., in

preparation), which also demonstrated the ability of bupropion to

reverse the effects of TBZ administration.

In addition to compounds that block DA uptake such as

bupropion, there has been interest in compounds that block the

enzymatic breakdown of DA for their antidepressant effects. MAO

inhibitors are one group of compounds that have been assessed for

their antidepressant effects. Originally developed as an antipar-

kinsonian drug [67], the MAO-B inhibitor deprenyl has been

shown to have antidepressant effects in humans [68,69], as well as

rodents tested on traditional animal models of depression,

including the forced swim test and inescapable shock paradigm

[70,71]. In view of the fact that nonselective MAO inhibitors have

been used as antidepressants, and deprenyl and related drugs are

recommended for treating akinesia and psychomotor slowing seen

in Parkinson’s disease, it is reasonable to hypothesize that an

MAO-B inhibitor could be useful for the treatment of psychomo-

tor/motivational symptoms. The current studies assessed the

ability of deprenyl to reverse the effects of TBZ on the PROG/

chow feeding choice procedure. Deprenyl was capable of reversing

these effects, increasing total lever presses, highest ratio achieved

and active lever time. In addition, deprenyl decreased chow intake

at the highest dose (10.0 mg/kg) compared to TBZ alone. In

analyzing these results by performance level, it was revealed that

these effects were greater in high performers, who demonstrated

significant deprenyl-induced reversal of the effects of TBZ on total

lever presses, highest ratio achieved and active lever time; low

performers showed little to no effect of deprenyl. As discussed

above, this could be due in part to the fact that TBZ produces

greater effects in high performers, and therefore effects in these

animals are easier to reverse.

COMT inhibitors are another group of drugs that act to block

the enzymatic breakdown of DA, and thus could have effects on

effort-related decision making. There is some clinical evidence of

increased COMT levels in depressed patients [72]. Moreover,

there is evidence for genetic variations in the COMT gene that

could lead to abnormal COMT function [73]. The COMT

inhibitor tolcapone has been used clinically in Parkinson’s patients

to effectively treat their effort-related depressive symptoms [45].
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The current studies sought to assess tolcapone for its ability to

reverse the effort-related impairments induced by TBZ on the

PROG/chow task. As described above, tolcapone failed to reverse

the effects of TBZ on any measure of PROG/chow performance

in the dose range tested. One explanation for this lack of effect

comes from clinical studies demonstrating that improvements in

energy-related symptoms following tolcapone treatment in Par-

kinson’s patients were in the presence of L-DOPA/carbidopa

treatment [74]. This suggests that tolcapone may be more effective

at reversing the effects of TBZ if it is co-administered with other

drugs that stimulate DA transmission, such as L-DOPA or

bupropion. In addition, it has been suggested that COMT plays

a more important role in prefrontal cortex, where the DA

transporter is sparse, compared to striatum, where the DA

transporter is abundant; such a pattern has been interpreted to

mean that COMT exerts a greater effect on prefrontal cortex DA

metabolism, while MAO exerts a greater effects on striatal DA

metabolism [75,76]. Furthermore, there is evidence from COMT

knockout mice showing that COMT has little effect, if any, on

striatal DA levels [77]. When you consider these findings in the

context of clinical studies demonstrating that entacapone, a

peripherally restricted COMT inhibitor, also has been shown to

be effective at treating depressive symptoms when co-administered

with L-DOPA [78,79], it seems possible that the antidepressant

effects of COMT inhibition are due to blockade of peripheral

breakdown of L-DOPA, increasing the amount that reaches the

CNS. In fact, L-DOPA has been shown to improve effort-related

symptoms in depressed patients [80].

In conclusion, TBZ alters effort-related choice behavior,

reducing various indices of PROG lever pressing at doses that

did not suppress chow intake. In fact, TBZ increased chow intake

in rats with high levels of lever pressing performance. The ability

of TBZ to affect effort-based decision making is consistent with

research showing that other manipulations associated with

depression, including stress [81], and administration of pro-

inflammatory cytokines [42], which can induce fatigue-related

symptoms in animals and humans [42,82,83], also can alter effort-

based choice. The effects of TBZ on PROG output were reversed

by co-administration of the adenosine A2A antagonist MSX-3, as

well as two drugs that have been used as antidepressants in

humans (i.e., bupropion and deprenyl). Additional studies should

investigate the effort-related effects of antidepressant drugs with

different pharmacological profiles. However, it also should be

emphasized that tests of effort-related decision making in rodents

are not designed to serve as animal models of depression, in the

broadest sense of the term. Rather, they are being investigated as

potential models of a group of symptoms (i.e., effort-related

psychomotor/motivational symptoms) that is characteristic of

depression [44–47,84,85], but also is seen across multiple

disorders, including conditions associated with high levels of pro-

inflammatory cytokines [42,82,83], schizophrenia [86–90], and

Parkinson’s disease [91]. This suggestion is consistent with recent

approaches in mental health research and theory that place less

emphasis on traditional diagnostic categories or disorders, and

instead focus on the neural circuits mediating specific pathological

symptoms (i.e., the Research Domain Criteria or RDoC approach;

[42,92]).
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