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Abstract
Purpose: Consolidation immunotherapy after completion of chemoradiother-
apy has become the standard of care for unresectable locally advanced non-
small cell lung cancer and can induce potentially severe and life-threatening
adverse events, including both immune checkpoint inhibitor-related pneumonitis
(CIP) and radiation pneumonitis (RP),which are very challenging for radiologists
to diagnose. Differentiating between CIP and RP has significant implications for
clinical management such as the treatments for pneumonitis and the decision to
continue or restart immunotherapy. The purpose of this study is to differentiate
between CIP and RP by a CT radiomics approach.
Methods: We retrospectively collected the CT images and clinical informa-
tion of patients with pneumonitis who received immune checkpoint inhibitor
(ICI) only (n = 28), radiotherapy (RT) only (n = 31), and ICI+RT (n = 14).
Three kinds of radiomic features (intensity histogram, gray-level co-occurrence
matrix [GLCM] based, and bag-of -words [BoW] features) were extracted from
CT images, which characterize tissue texture at different scales. Classification
models, including logistic regression, random forest, and linear SVM, were first
developed and tested in patients who received ICI or RT only with 10-fold cross-
validation and further tested in patients who received ICI+RT using clinicians’
diagnosis as a reference.
Results: Using 10-fold cross-validation, the classification models built on the
intensity histogram features,GLCM-based features,and BoW features achieved
an area under curve (AUC) of 0.765, 0.848, and 0.937, respectively. The best
model was then applied to the patients receiving combination treatment,achiev-
ing an AUC of 0.896.
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Conclusions: This study demonstrates the promising potential of radiomic
analysis of CT images for differentiating between CIP and RP in lung cancer,
which could be a useful tool to attribute the cause of pneumonitis in patients
who receive both ICI and RT.

KEYWORDS
CT radiomics, immune checkpoint inhibitor-related pneumonitis, lung cancer,machine learning, radi-
ation pneumonitis

1 INTRODUCTION

Consolidation immunotherapy of immune check-
point inhibitor (ICI) durvalumab following concurrent
chemoradiotherapy (CCRT) is the current standard of
care for patients with stage III unresectable non-small
cell lung cancer (NSCLC) as the phase 3 PACIFIC
trial has shown that administering ICI after CCRT
significantly improved progression-free survival and
overall survival compared with placebo.1,2 A number
of clinical trials are currently evaluating the role of
concurrent/induction ICI with chemoradiotherapy in
locally advanced NSCLC.3,4 While ICI in conjunction
with radiotherapy (RT) has shown promising prospects,
treatment-related pneumonitis including radiation pneu-
monitis (RP) and checkpoint inhibitor-related pneu-
monitis (CIP), one of the most frequent and clinically
challenging adverse events in the combination setting,
should raise concerns.

CIP is a rare but fatal side effect with incidence rang-
ing from 1% to 6% in any grade and <1% to ∼3%
in grade 3 or higher, as reported in clinical trials for
advanced NSCLC patients treated with PD-1/PD-L1
inhibitors.5–8 In addition to ICI, radiation also leads to
lung damage and induces pneumonitis. The incidence
of RP is 14% to 49% in grade 2 or higher9,10 and 4% to
9% in grade 3 or higher11 in NSCLC patients after rad-
ical RT within 6 months. Recent studies reported that
the incidence of CIP may be higher because of the
potential synergy with RT and lung injury caused by
RT.12,13 A second analysis of the KEYNOTE-001 study
demonstrated that pneumonitis of any grade was 63% in
patients who have received prior RT versus 40% in those
who did not (p = 0.052).12 In the PACIFIC study, the inci-
dence of pneumonitis of any grade was higher with con-
solidation ICI (33.9% vs. 24.8%).1 A recent multicenter
retrospective study reported a much higher incidence
(81.8%) of any grade pneumonitis in a real-world cohort
of patients treated with durvalumab after CCRT.14

It is very difficult and challenging for clinicians
to differentiate between CIP and RP as the clini-
cal and radiologic features of CIP are very similar
to those of RP, with nonproductive cough, unresolved
dyspnea, and nonspecific interstitial pneumonia in the
periphery or anywhere of the lungs.15,16 Differentiat-
ing between CIP and RP can have significant implica-
tions for clinical management such as the treatments

for pneumonitis and the decision to continue or restart
immunotherapy.17,18

Although a few studies discussed the typical radio-
logic appearance of CIP and RP,8,19 these radiologic
findings are only suggestive because pneumonitis has
a wide spectrum of radiologic appearance.For example,
RP is usually, but not always, limited to the radiation field
of the lung. Figure 1 shows some typical CT images of
CIP and RP and two images of RP resembling CIP. In
lung cancer, CT is routinely used for clinical manage-
ment, including diagnosis, radiation treatment planning,
and surveillance of treatment response. CT-based
radiomics approaches have been successfully applied
to various tasks such as differentiation between benign
and malignant lesions20,21; prediction of prognosis,22,23

treatment response,24–26 and distance metastasis27,28;
and associations between genotype and imaging
phenotype.29–31 There are very few studies focusing on
the differentiation between CIP and RP using radiomic
features,as ICI therapy has been used in lung cancer for
only a few years and the incidence of CIP is relatively
low.

In this study, we present a CT radiomics approach
to differentiate between CIP and RP in lung cancer
patients. We collected three cohorts of patients with
pneumonitis who received ICI only, RT only, and ICI+RT,
respectively. Three different kinds of radiomic features
were extracted from CT images. The utility of these
radiomic features for classifying CIP and RP was first
evaluated using the ICI and RT cohorts and further val-
idated using the ICI+RT cohort.

2 MATERIALS AND METHODS

2.1 Patients and CT image acquisition

This retrospective study was approved by the Ethics
Committee of Guangdong Provincial People’s Hospi-
tal. We collected three datasets (ICI, RT, and ICI+RT
datasets) which contained the CT images and clinical
information of patients who developed pneumonitis.The
ICI dataset consisted of 28 lung cancer patients who
developed CIP after ICI therapy. Patients were excluded
from the analysis if they received thoracic RT before
the occurrence of CIP. The RT dataset consisted of
31 patients randomly selected from locally advanced
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F IGURE 1 Examples of CT images in
patients with pneumonitis who received ICI
only or RT only. (a) CT images in two patients
with CIP demonstrated ground-glass and
reticular opacities involving both lungs with a
diffuse distribution, representing a cryptogenic
organizing pneumonia pattern. Left patient
also presented a nonspecific interstitial
pneumonia pattern. (b) CT images in two
patients with RP demonstrated reticular
opacities, consolidations, and bronchiectasis.
The inflammatory lesions were within radiation
field and had clear boundaries. (c) CT images
in two patients with RP demonstrated
radiologic features resembling those of CIP.
CIP, immune checkpoint inhibitor-related
pneumonitis; ICI, immune checkpoint inhibitor;
RP, radiation pneumonitis; RT, radiotherapy

NSCLC patients who were treated with radical thoracic
RT in a total dose of 60 to 66 Gy. These patients
developed RP within 6 months after RT. Patients were
excluded if they received ICI therapy before or after RT.
The ICI+RT dataset consisted of 14 patients who devel-
oped treatment-related pneumonitis after induction ICI
therapy followed by thoracic RT or consolidation ICI ther-
apy following thoracic RT.Note that we excluded patients
with clear alternative etiologies, such as proven active
pulmonary infection, tuberculosis, pulmonary embolism,
or tumor progression. A flowchart for preparing the
patient cohorts is shown in Figure 2, and a summary
of patient characteristics is provided in Table 1.

We defined CIP by (1) a treatment history of ICI
therapy; (2) symptoms of nonproductive cough, unre-
solving dyspnea, fever, and chest pain; and (3) varied
radiographic findings in a chest CT imaging, such as
cryptogenic organizing pneumonia, with ground-glass
or consolidative opacities in peripheral or peribronchial
distribution, or nonspecific interstitial pneumonia, with
ground-glass opacities and reticular opacities primar-

TABLE 1 Clinical characteristics of the patients in the immune
checkpoint inhibitor (ICI), radiation therapy (RT), and ICI+RT datasets

Characteristic ICI RT ICI+RT

Patient No. 28 31 14

Sex

Female 0 5 2

Male 28 26 12

Age (year)

Median 62 62 62

Range 39–75 44–70 41–78

Smoking (pack-year)

Median 40 40 26

Range 0–120 0–150 0–60

Pneumonitis grade

Grade 1 4 19 5

Grade 2 12 3 8

Grade 3 11 9 1

Grade 4 1 0 0
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F IGURE 2 Flowchart for preparing the ICI dataset (a), RT dataset (b), and ICI+RT dataset (c). ICI, immune checkpoint inhibitor; RT,
radiotherapy

ily in the peripheral and lower lungs, or pneumonitis
presenting as acute interstitial pneumonia and acute
respiratory distress syndrome.18,32 We defined RP by
(1) a treatment history of RT;(2) symptoms of shortness
of breath, low-grade fever, and nonproductive cough;
and (3) radiographic findings in a chest CT imaging
with patchy consolidation roughly within the area of
the high-dose radiation field and does not conform to
normal lobar anatomy.33 The grade of CIP and RP was
scored by treating physicians according to the Common
Terminology Criteria for Adverse Events v5.0.

The CT examinations were performed using CT scan-
ners from different manufacturers, including Siemens
(Somatom Definition Flash; Erlangen, Germany), Gen-
eral Electric (Lightspeed VCT 99; Waukesha, WI, USA),
and Philips (iCT 256 and Ingenuity; Cleveland, Ohio,
USA).Thoracic CT scans containing the entire lung were
analyzed utilizing a multi-slice helical technique at 120
kVp, mean exposure of 158 mA, mean pixel spacing of
0.78 mm, and slice thickness of 5 mm.

2.2 Analysis workflow

The analysis workflow of our study is shown in Figure 3,
which consists of three steps. In the first step, we col-
lected CT images and manually segmented regions of
interests (ROIs), that is, inflammatory lesions.Next, three
kinds of radiomic features that characterize lung tissue
texture at different scales were extracted from the ROIs.

At last, we built classification models on the ICI and RT
datasets. The models were first validated on the ICI and
RT datasets with 10-fold cross-validation and were then
tested on the ICI+RT dataset.

2.3 CT image feature extraction

We extracted radiomic features from the ROIs (inflam-
matory lesions), which were annotated by an experi-
enced radiation oncologist (PT) and further reviewed
by a senior radiation oncologist (YP). Specifically, three
feature extraction methods were employed to quantify
the texture of ROIs: intensity histogram features, gray-
level co-occurrence matrix (GLCM)-based features,34

and bag-of -words (BoW) features.35 The three kinds
of features describe tissue texture at increasing scales.
Intensity histogram is based on individual pixels, GLCM
is based on the co-occurrence of two pixels, and BoW
is based on small patches (e.g., 5 × 5 image patch) (see
the illustration in Figure 3). Essentially, all three kinds
of features are based on the counts of different-scale
patterns, so we can simply calculate these features
slice-by-slice and aggregate them across the whole CT
volume.

2.3.1 Intensity histogram features

To extract intensity histogram features, we first parti-
tioned the pixel values into a specific number of equally
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F IGURE 3 Workflow scheme. Three kinds of radiomic features (intensity histogram, GLCM-based features, and bag-of-words features)
were extracted from the CT images of patients who received ICI only, RT only, and ICI+RT. After feature selection, classification models were
built on the selected features to classify patients into CIP or RP. CIP, checkpoint inhibitor-related pneumonitis; GLCM, gray-level co-occurrence
matrix; ICI, immune checkpoint inhibitor; RP, radiation pneumonitis; RT, radiotherapy

spaced bins (i.e., pixel values were quantized to a
specific number of gray levels) and then calculated the
bin counts using the pixels within the ROI. The bin
counts were L1-normalized (i.e., the sum is equal to 1)
to remove the effect of ROIs having different sizes. The
normalized bin counts were used as the final intensity
histogram features.

2.3.2 GLCM-based features

GLCM is commonly used to characterize the texture
in images. A GLCM is a 2D histogram of co-occurring
intensities (gray levels) at a given offset. There are two
parameters involved in the construction of GLCM. One
is the number of gray levels, and the other is the off-
set between the pixel of interest and its neighbor. For a
given number of gray levels and the distance between
two pixels, four GLCMs in four directions (0, 45, 90, and
135 degrees) were constructed. Based on each GLCM,
four second-order statistical features (contrast, correla-
tion,energy,and homogeneity) were calculated,34 result-
ing in 16 texture features per image.

2.3.3 BoW features

The BoW model is a feature representation method
originally used in natural language processing and
information retrieval. As its name implies, this model
can represent a text or document by converting it into
a bag of words, which is the occurrence counts of the
most frequently used words. The BoW model has also
been used in computer vision. In computer vision, the
BoW model, sometimes called the bag-of -visual-words
model, represents an image as a vector of occur-
rence counts of a vocabulary of local image features.

The vocabulary of local image features, equivalent to
frequently used words in document classification, is
usually generated by clustering local image features.
The BoW representations can be obtained into three
steps: extraction of local image features, construction
of the visual vocabulary, and representation of images
as the occurrence counts of visual words. In our work,
we first used raw image patches as the local features.
2D image patches were densely sampled from the ROI
and vectorized. Next, to create the visual vocabulary,
we performed the k-means algorithm on the extracted
local features. The words in the visual vocabulary were
then defined as the learned cluster centers. Finally,
for each patient, all its local features were assigned
to one of the visual words via vector quantization
based on Euclidean distance. The BoW feature rep-
resentation of a patient is the L1-normalized counts
of words.

2.4 Machine-learning methods for
classification

We first trained and tested different classifiers, including
logistic regression, random forest, and linear SVM, on
the ICI and RT datasets with 10-fold cross-validation. In
each of the 10 rounds, we first performed feature selec-
tion and then trained the classification model based on
the selected features using the training set. The learned
classification model was then applied to the held-out
test set to make predictions. After 10 rounds were com-
pleted, each sample was predicted with a label and
a probability. We then applied the model trained on
the ICI and RT datasets to the patients in the ICI+RT
dataset.

For feature selection, we performed a two-sided
Mann–Whitney U-test on each feature and selected
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those with a p-value less than 0.05. We adopted the R
package glmnet for logistic regression. Note that in all
experiments, feature selection and model training were
performed only using the training set, with the test set
untouched.

2.5 Evaluation metrics

The receiver operating characteristic (ROC) analysis
was performed. The area under the ROC curve (AUC)
and its 95% confidence interval were calculated using
the R package pROC. We computed the Youden’s index
(defined as sensitivity + specificity - 1) for each of the
points on the ROC curve and used the maximum value
of this index as a criterion for selecting the optimal cut-
off point.Then the accuracy,sensitivity,and specificity at
the optimal cut-off point were reported. The accuracy is
the proportion of samples being correctly classified. In
our classification model, we considered RP as the pos-
itive class. Therefore, the sensitivity measures the pro-
portion of RP cases that are correctly classified, and
the specificity is the proportion of CIP cases that are
correctly classified.

3 RESULTS

3.1 Experimental settings

Intensity histogram, GLCM based, and BoW features
were extracted with different parameter settings. For the
intensity histogram features, we tested different values
for the gray level from 20, 40, 60, 80, and 100. For the
GLCM-based features,we tested different values for the
gray level from {20, 40, 60, 80, 100} and distance from
{1, 2, 3, 4}. For the BoW features, we tested different val-
ues for the patch size from {3, 5, 7, 9, 11} and vocab-
ulary size from {16, 32, 64, 128, 256}. For each kind of
feature, we reported the results of the highest AUC. In
addition, we also investigated whether including more
boundary area would affect classification performance.
To this end, we dilated the annotated ROI mask using a
disk-shaped structure element with a radius of 5 and 10
pixels, respectively.

3.2 Classification performance on the
ICI and RT datasets

Based on each of the three kinds of radiomic features,
classification models (logistic regression, random forest,
and linear SVM) were trained and evaluated with 10-
fold cross-validation on the ICI and RT datasets.Table 2
shows the classification performance of different fea-
tures and ROI sizes. Using the originally annotated ROI,
GLCM-based features outperformed intensity histogram

TABLE 2 Classification performance of different kinds of
features on the immune checkpoint inhibitor and radiation therapy
datasets

Intensity histogram GLCM BoW
Index LR RF SVM LR RF SVM LR RF SVM

R = 0, Acc 0.644 0.729 0.661 0.797 0.746 0.797 0.746 0.797 0.797

R = 0, Sen 0.645 0.774 0.839 0.968 0.710 0.871 0.548 0.871 0.742

R = 0, Spe 0.643 0.679 0.464 0.607 0.786 0.714 0.964 0.714 0.857

R = 0, AUC 0.608 0.677 0.634 0.848 0.758 0.817 0.815 0.813 0.834

R = 5, Acc 0.644 0.780 0.593 0.797 0.729 0.814 0.915 0.780 0.881

R = 5, Sen 0.968 0.839 0.968 0.806 0.581 0.871 0.903 0.710 0.839

R = 5, Spe 0.286 0.714 0.179 0.786 0.893 0.750 0.929 0.857 0.929

R = 5, AUC 0.560 0.763 0.517 0.821 0.764 0.829 0.937 0.865 0.926

R = 10, Acc 0.610 0.780 0.661 0.797 0.763 0.831 0.814 0.814 0.831

R = 10, Sen 0.871 0.774 0.839 0.774 0.710 0.903 0.742 0.710 0.871

R = 10, Spe 0.321 0.786 0.464 0.821 0.821 0.75 0.893 0.929 0.786

R = 10, AUC 0.505 0.765 0.563 0.789 0.784 0.825 0.894 0.866 0.884

Note:We enlarged the ROI mask by image dilation using a disk-shaped structure
element with a radius (R) of 0, 5, and 10 pixels. R = 0 means no image dilation
was performed. We tested different classifiers including logistic regression (LR),
random forest (RF), and linear SVM, and reported different metrics including
accuracy (Acc), sensitivity (Sen), specificity (Spe), and area under ROC curve
(AUC).
Abbreviations: ROC, receiver operating characteristic; ROI, region of interest.

and BoW features (AUC: 0.848 vs. 0.677 and 0.834). As
the size of ROI increased, the performance of BoW fea-
tures generally improved and then declined. The best
performance (AUC = 0.937) was achieved when we
used BoW features, logistic regression, and ROI dilation
with five pixels.

Figure 4a shows the ROC curves which correspond
to the best performance achieved by the three kinds of
features. Using the cut-off of the classifier’s output that
maximized the Youden’s index (sensitivity + specificity
− 1), the corresponding accuracy, sensitivity, and speci-
ficity of the classifier built on BoW features were 0.915,
0.903, and 0.929, respectively. This means that 2 out of
28 patients with CIP (negative class) were misclassified
into RP (positive class) while 3 out of 31 patients with
RP were misclassified into CIP.

We further investigated the impact of the parame-
ters of feature extraction methods on classification per-
formance. The parameters of the three feature extrac-
tion methods are described in the previous section.
Tables S1–S3 show the impact of different parame-
ters for intensity histogram, GLCM based, and BoW fea-
tures, respectively, when logistic regression was used.
The intensity histogram features achieved the highest
AUC when the number of gray levels was set to 60.
The GLCM-based features achieved the best perfor-
mance when the number of gray levels and the dis-
tance between two pixels were set to 60 and 3. The
BoW features achieved the best performance when the
patch size and vocabulary size were set to 9 and 128.
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F IGURE 4 Performance of differentiating CIP and RP. (a) ROC curves for the models with the best performance on the ICI and RT
datasets, using intensity histogram features, GLCM based features, and BoW features, respectively. The 95% confidence intervals are
0.638–0.892 for intensity, 0.750–0.946 for GLCM, and 0.873–1 for BoW. (b) ROC curve for classifying CIP and RP in the ICI+RT dataset. The
model with the highest AUC in (a) was used. The 95% confidence interval for AUC is 0.714–1. AUC, area under curve; BoW, bag-of-words; CIP,
checkpoint inhibitor-related pneumonitis; GLCM, gray-level co-occurrence matrix; ICI, immune checkpoint inhibitor; ROC, receiver operating
characteristic; RP, radiation pneumonitis; RT, radiotherapy

A general observation from those tables was that per-
formance got better when relatively larger values of
the parameters were used and that, however, the per-
formance began to decline if the parameters were too
large.

3.3 Assessing importance of features

The best performance was achieved using the BoW fea-
tures, logistic regression, and ROI dilation with five pix-
els. The patch size and vocabulary size for the BoW
features were set to 9 and 128. This means the BoW
features are 128-dimensional (see Section 2.3 for the
details of this method). To identify the features that
robustly and significantly contributed to the model, we
recorded the selected features and their coefficients in
each round of the 10-fold cross-validation and com-
puted their counts of selection and mean coefficients.
We selected the top nine features with the largest mean
coefficients (regardless of the sign) from the features
that were selected at least eight times.

The visualization of the image patches (9 × 9 pixels)
that belong to each of the nine visual words is shown
in Figure 5a. As we can see, the 400 (20 × 20) image
patches in each of the nine panels present a very sim-
ilar pattern. Along with each panel, the index and mean
coefficient of each feature are also provided. A positive
coefficient means that the corresponding image patch
pattern is more likely to appear in the RP class (RP was
regarded as the positive class when training classifiers),
whereas a negative coefficient means that the corre-

sponding image patch pattern tends to appear more fre-
quently in the CIP class. Figure 5b shows the average
occurrence frequency of the nine visual words of three
CIP patients and three RP patients that were most con-
fidently predicted by our model. We can see clearly that
for the top three most significant visual words, the 19th
and 113th visual words have a much higher frequency in
RP than in CIP, while the 123rd visual word is the oppo-
site.

3.4 Evaluation in patients receiving
both ICI and RT

To further validate our method, we applied the clas-
sification model with the highest AUC on the ICI and
RT datasets to the patients in the ICI+RT dataset, in
which patients received both treatments. Performance
on the ICI+RT dataset was evaluated using clinicians’
diagnosis as a reference, and the cause of pneumonitis
was diagnosed on the basis of radiologic features, clin-
ical symptoms, and onset time of pneumonitis. Three
radiation oncologists participated in the diagnosis
independently, and the final class label of each patient
was determined by majority voting. Table 3 provides a
summary of each oncologist’s diagnosis, final voting
result, and our model’s prediction. The three oncologists
made the exact same diagnosis for 8 out of 14 patients
(Fleiss’s kappa = 0.417). Our model generalized well
on the ICI+RT dataset, achieving an accuracy of 0.857
and AUC of 0.896. The corresponding ROC curve is
provided in Figure 4b.
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F IGURE 5 Visualization of the nine visual words that most robustly and significantly contributed to our classification model. (a) Example
image patches showing different patterns for each visual word. The index and mean coefficient of each visual word are shown in the white box.
(b) Bar graph of the average occurrence frequency of the nine visual words of three CIP patients and three RP patients that were most
confidently predicted by our model. The visual words with positive coefficients are more likely to appear in the positive class (i.e., RP) such as
visual words 19, 113, and 120. CIP, checkpoint inhibitor-related pneumonitis; RP, radiation pneumonitis

4 DISCUSSION

In the setting of concomitant ICIs with RT, the distinction
between CIP and RP is crucial to subsequent treatment
decisions because it is much safer for a patient to restart

ICI therapy after experiencing RP. Prior work has docu-
mented the radiologic patterns and clinical symptoms of
CIP36–38 and RP,39,40 but the characteristics of these two
kinds of pneumonitis can mimic each other. Currently,
distinguishing CIP from RP poses a great challenge
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TABLE 3 Summary of radiation oncologists’ diagnosis, majority voting result, and model’s prediction for each patient in the ICI+RT dataset

Patient index Oncologist 1 Oncologist 2 Oncologist 3 Majority voting
Model-predicted
probability of being RP

1 CIP CIP RP CIP 0.255

3 CIP CIP CIP CIP 0.954

7 CIP CIP CIP CIP 0.393

9 RP CIP CIP CIP 0.761

13 RP CIP CIP CIP 0.504

14 CIP CIP CIP CIP 0.144

2 CIP RP RP RP 0.892

4 RP RP RP RP 0.972

5 RP RP RP RP 1.000

6 RP RP CIP RP 0.708

8 RP RP RP RP 0.995

10 RP RP RP RP 0.789

11 CIP RP RP RP 0.913

12 RP RP RP RP 1.000

Abbreviations: CIP, checkpoint inhibitor-related pneumonitis; ICI, immune checkpoint inhibitor; RP, radiation pneumonitis; RT, radiotherapy.

for clinicians. In this study, we investigated whether CT
radiomic features can help differentiate between these
two kinds of pneumonitis. We developed a workflow for
the generation of a rich set of quantitative features to
characterize the texture of inflammatory lesions in CT
images. Based on these features, we trained a classifi-
cation model using the ICI and RT datasets and applied
this model to the patients in the ICI+RT dataset. Ten-
fold cross validation on the training set and evaluation
on the independent test set demonstrated the efficacy
of our method with AUCs of 0.937 and 0.896, respec-
tively.

Three kinds of features were tested: intensity his-
togram features, GLCM-based features, and BoW fea-
tures. We found that the BoW features yielded the best
cross-validation performance with an AUC of 0.937,
followed by the GLCM-based features (AUC = 0.848)
and the intensity histogram features (AUC = 0.765).
The distinction of performance is expected as the three
kinds of features characterize the texture of image con-
tent at different scales. Intensity histogram features are
based on individual pixels and completely ignore the
information of surrounding pixels, thereby leading to the
worst results. GLCM-based features describe the pair-
wise relationships between two pixels and thus provide
better results. BoW features deal with a group of adja-
cent pixels. Therefore, the BoW features are more infor-
mative and discriminative.

To further show the effectiveness of the radiomic fea-
tures, we compared the diagnostic performance of our
model and a radiation oncologist on the ICI and RT
datasets. The ICI and RT datasets were used because
there is no ambiguity of the cause of pneumonitis since

the patients received either ICI or RT. For a fair compari-
son, the oncologist made a diagnosis only based on the
CT images without referring to other clinical information,
which is the same as our method. The classification by
the oncologist achieved an AUC of 0.777, which is infe-
rior to our BoW feature-based model (AUC = 0.937).
These results provide compelling evidence that our
radiomics approach can discover quantitative and dis-
criminative features to effectively distinguish CIP from
RP, which are difficult for humans to notice.

Attributing the cause of the pneumonitis in patients
receiving both ICI and RT can be a very difficult task,
which can be seen from the diagnoses by the three radi-
ation oncologists. As shown in Table 3, the oncologists
made the same diagnosis for only 8 out of 14 patients
(57.14%,Fleiss’s kappa = 0.417).The patients with con-
sensus among oncologists can be easily diagnosed by
some clear evidence. For example, clear evidence sug-
gesting RP includes that pneumonitis is only seen in the
high-dose area and that the onset time of pneumoni-
tis is close to the completion of RT and is far from the
administration of ICI, and vice versa for the evidence
suggesting CIP. However, not all patients exhibit clear
evidence;findings of RP and CIP are varied,overlapped,
and sometimes non-specific. This means that clinician’s
diagnosis for some patients in the ICI+RT dataset may
not be accurate. For this reason, we train our classifica-
tion model using the ICI and RT datasets, in which each
patient has a definite diagnosis and solicit the diagno-
sis from multiple clinicians to reduce potential diagnostic
bias.

To the best of our knowledge, there are very few
studies focusing on this topic. We only found a rele-
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vant abstract published in 2020 that used CT radiomics
and machine learning for distinguishing between CIP
and RP. Chen et al.41 used a general package (PyRa-
diomics) to extract radiomic features, trained a random
forest classifier in patients who received ICI (n= 23) and
RT (n = 29) only, and tested the classifier in patients
who received ICI+RT (n = 30). The random classifier
achieved an AUC of 0.79 on the training set and an AUC
of 0.84 on the test set. Our method achieved better per-
formance with AUCs of 0.937 and 0.896 on our train-
ing and test sets, respectively, which can be attributed
to the more powerful radiomic features used in our
method.

A limitation of the present study is that although our
method was rigorously validated using 10-fold cross-
validation on the training set and further tested using
an independent dataset, this study was conducted using
data from a single institution. Future work will focus on
collecting more in-house samples and samples from
different institutions as an external validation set. A
prospective study is being designed to rechallenge ICI
in the patients who are classified as RP cases by our
model.

5 CONCLUSIONS

In summary, the wide spectrum of radiologic manifes-
tations of CIP and RP poses great diagnostic and
management challenges in clinical practice. Our results
demonstrated that using CT radiomics and machine
learning can successfully distinguish CIP from RP with
a high accuracy (AUC of 0.896 on an independent test
set). This indicates that our method has the potential to
be a useful tool for identifying the RP patients from the
patients with pneumonitis who receive both ICI therapy
and RT, which has significant implications in improving
patient management.
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