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Adipose tissue-derived mesenchymal stem cells (ADSCs) have anti-inflammatory and immunomodulatory characteristics. Many
studies have suggested that the immunomodulation of ADSCs is largely mediated by secreted paracrine factors. Various factors
are secreted from ADSCs, among which extracellular vesicles are considered to play a major role in the communication between
ADSCs and target cells. Several studies have reported the function of canine ADSC-derived extracellular vesicles (cADSC-EVs),
but few studies have reported the immunomodulatory effects of cADSC-EVs on immune cells. The purpose of this study was to
investigate the effects of cADSC-EVs on in vitro-stimulated CD4+ T cells isolated from peripheral blood mononuclear cells
(PBMCs). cADSC-EVs were isolated from cADSCs under naive conditions or primed conditions by tumor necrosis factor-α
(TNFα) and interferon-γ (IFNγ). The expression levels of several microRNAs in cADSC-EVs were altered by priming with
TNFα and IFNγ. Culturing PBMCs stimulated with concanavalin A in the presence of naive or primed cADSC-EVs inhibited
the differentiation of PBMCs and CD4+ T cells and promoted apoptosis of PBMCs. CD4+, CD8+, and CD4+CD8+ T cells were
decreased, while CD3+CD4-CD8- T cells were increased. T helper (Th) 1, Th2, Th17, and regulatory T (Treg) cells were
analyzed by flow cytometry. cADSC-EVs inhibited the proliferation of Th1 and Th17 cells and enhanced Th2 and Treg cell
proliferation. However, CD4+ T cells that had incorporated labeled cADSC-EVs comprised only a few percent of all cells.
Therefore, these responses of stimulated CD4+ T cells may be due to not only direct effects of cADSC-EVs but also to indirect
effects through interactions between cADSC-EVs and other immune cells. In conclusion, cADSC-EVs exert immunosuppressive
effects on stimulated CD4+ T cells in vitro. These findings may be useful for further studies of immune diseases.

1. Introduction

Mesenchymal stem cells have various biological characteristics
that include an immunomodulatory capacity [1–3]. Many
studies have demonstrated that MSCs suppress the differenti-
ation, proliferation, secretions, and migration of immune cells
[4]. It has been documented that MSCs improve abnormal

immune responses in autoimmune diseases in vivo and it
has been thought that these benefits are partly due to secreted
factors fromMSCs [5–7]. Moreover, the MSC immunomodu-
latory ability is altered by inflammatory cytokine, such as
those present in the inflammatory microenvironment. Stimu-
lation with interferon-γ (IFNγ) enhances the immunosup-
pressive effects of MSCs. Priming MSCs with IFNγ
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upregulates indoleamine 2,3-dioxygenase (IDO), secretes
important immunomodulatory molecules, such as prostaglan-
din E2 (PGE2), hepatocyte growth factor (HGF), transforming
growth factor-β (TGFβ), and chemokine ligand 2, and
increases the expression of human leukocyte antigen class I
and II molecules and costimulatory molecules [8]. Priming
MSCs with tumor necrosis factor-α (TNFα) also promotes
upregulation of immunoregulatory factors, such as PGE2,
IDO, and HGF, but is much less pronounced compared with
IFNγ priming [9]. However, the combination of inflammatory
cytokines to stimulate MSCs may lead to additional effects.
Priming MSCs with TNFα and IFNγ increase factor H pro-
duction [10], which potently inhibits complement activation.
Factor H secreted by MSCs is significantly suppressed by the
inhibition of PGE2 and IDO. Therefore, priming MSCs with
inflammatory cytokines is more useful for the treatment of
immune-mediated diseases [11–13].

MSCs secrete large numbers of molecules, which include
cytokines and growth factors, as well as extracellular vesicles
(EVs), and these secretomes contribute to MSC abilities [14,
15]. Studies have focused on the immunomodulatory capac-
ity of MSC secretomes for various types of immune cells and
MSC-derived EVs (MSC-EVs) may have similar functions to
parent cells in terms of immunomodulatory effects [4]. EVs
transfer signaling molecules from one cell to another cell
through a paracrine mechanism, because EVs enclose various
active molecules, such as bioactive proteins, as well as lipids,
mRNAs, and microRNAs [16], which contribute to regulat-
ing the gene expression and phenotypic transformation of
target cells. MSC-EVs are incorporated by target cells
through direct membrane fusion, receptor-mediated phago-
cytosis, and several other internalization mechanisms,
which leads to subsequent activation of signal transduction
pathways and involvement in various physiological and
pathological processes that include immune responses
[17–19]. Therefore, MSC-EVs are attracting attention as
immunomodulators.

Similar to humans, immune-mediated diseases also exist
in veterinary medicine, such as atopic dermatitis, inflamma-
tory bowel disease, and immune-mediated arthritis. Almost
all of these diseases have unclear mechanisms and some cases
become intractable with current treatments. Therefore,
MSC-based therapy is also expected to be an alternative treat-
ment method for immune-mediated diseases [11–13]. How-
ever, few studies have documented the functions of canine
ADSC- (cADSC-) EVs [20–22]. Furthermore, studies that
focus on the effects of cADSV-EVs on T cells have not been
reported. In this study, we investigated the immunomodula-
tory properties of cADSC-EVs on in vitro-stimulated CD4+ T
cells isolated from peripheral blood mononuclear cells
(PBMCs). Moreover, we evaluated whether immunomodula-
tory effects of cADSC-EVs on stimulated CD4+ T cells were
enhanced by parent cells primed with inflammatory cyto-
kines such as TNFα and IFNγ.

2. Materials and Methods

2.1. Stimulation of cADSCs with TNFα and IFNγ. cADSCs
were isolated and used as described previously [23]. In brief,

Adipose tissue was aseptically collected from falciform liga-
ment fat of three anaesthetized dogs. The tissue was washed
extensively in phosphate buffer solution (PBS), minced, and
digested with collagenase type I (Sigma-Aldrich, Tokyo,
Japan) at 37°C for 45min with intermittent shaking. After
washing with PBS and centrifuging, the pellets containing
the stromal vascular fraction were resuspended, filtered
through a 100-μm nylon mesh, and incubated overnight in
Dulbecco’s Modified Eagle’s medium (DMEM) supple-
mented with 10% fetal bovine serum (FBS) and a 1%
antibiotic-antimycotic solution (Thermo Fisher Scientific,
Tokyo, Japan) in a humidified atmosphere with 5% CO2 at
37°C. Unattached cells were removed by changing the
medium, and the attached cells were washed twice with
PBS. Thereafter, the medium was replaced every 3-4 days.
At 80-90% confluence, the cells were detached with trypsin-
EDTA solution (Sigma-Aldrich) and passaged repeatedly.
The expression of several markers, such as CD14-FITC,
CD29-PE, CD34-PE, CD44-PE, CD45-FITC, and CD90-PE,
on these cells was determined by flow cytometry using a
CytoFLEX (BECKMAN COULTER, Tokyo, Japan) [24].
cADSCs at passage 3 were seeded in 150-mm dishes
(4 × 106 cells/dish) and cultured in high glucose DMEM with
10% exosome-free FBS (Thermo Fisher Scientific) and a 1%
antibiotic-antimycotic solution in a humidified atmosphere
with 5% CO2 at 37°C. After 24h, unattached cells were
removed by changing the medium, and the attached cells
were stimulated for 24h with tumor necrosis factor-α (TNFα,
20 ng/ml) and interferon-γ (IFNγ, 20 ng/ml). Naive and
primed cADSCs were cultured for 72h.

2.2. cADSC-EV Isolation and Characterization. After 72 h of
culture, the medium was harvested, and then, EVs were iso-
lated by a MagCapture Exosome Isolation Kit PS (FUJIFILM
Wako Pure Chemical, Osaka, Japan). In brief, the medium
was centrifuged at 300 g for 5min and then 1,200 g for
20min at 4°C to remove cells and debris. The supernatant
was added to 1/100 volumes of EV-Save Extracellular Vesi-
cles Blocking Reagent (FUJIFILM Wako Pure Chemical,
Osaka, Japan) and concentrated using an ultrafiltration unit
(Vivaspin; SARTORIUS, Tokyo, Japan). After concentrating
the supernatant, extracellular vesicles including exosomes
were isolated in accordance with the manufacturer’s instruc-
tions. Finally, the EVs were suspended in PBS.

The concentration and size of EVs were determined by
nanoparticle tracking analysis (NTA) using a NanoSight
LM10 (Malvern Panalytical, Tokyo, Japan) with the follow-
ing parameters: camera level 12, threshold 8, 21.4°C, and five
videos per analyzed sample. Visualization of EVs was
assessed by transmission electron microscopy (H-7600;
Hitachi High-Tech, Tokyo, Japan).

The total protein concentration of naive and primed EVs
was measured by a BCA assay kit. Each 0.5μg protein sample
in 20μl with 2.5μl NuPAGE LDS sample buffer was electro-
phoresed in 4%-12% Bis-Tris Gels and then transferred to a
0.45-μm PVDF membrane. The membranes were blocked
for nonspecific binding with Tris-buffered saline with 0.1%
Tween-20 and 5% dry nonfat milk overnight at 4°C. After
blocking, the membranes were incubated with a primary
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antibody for 1 h, and then with a secondary antibody for 1 h
at room temperature. An anti-CD9 antibody (cloneMM2/57;
Bio-Rad, Tokyo, Japan) was used at a 1 : 200 dilution, an anti-
CD63 antibody (clone H5C6; Novus Biologicals, CO, USA)
was used at a 1 : 500 dilution, an anti-tumor susceptibility
gene (TSG) 101 antibody (sc-7964; Santa Cruz BIOTECH-
NOLOGY, TX, USA) was used at a 1 : 200 dilution, and an
HRP-conjugated anti-mouse IgG secondary antibody (sc-
516102; Santa Cruz BIOTECHNOLOGY) was used at a
1 : 5000 dilution. Protein bands were visualized using a
chemiluminescence detection kit. Images were captured
using a CCD camera (ImageQuant LAS 500; Cytiva, Tokyo,
Japan).

2.3. EV RNA Isolation and miRNA PCR Array. RNAs in naive
and primed EVs were extracted using a Total Exosome RNA
& Protein Isolation Kit (Thermo Fisher Scientific) and then
concentrated using an RNA Clean-Up and Concentration
Micro-Elute Kit (NORGEN BIOTEK, ON, Canada) in accor-
dance with the manufacturers’ instructions. Extracted
miRNA quality and quantity were evaluated by a Qubit 4
fluorometer (Thermo Fisher Scientific). cDNA was synthe-
sized from 10ng miRNA in a 20μl reaction using a miScript
II RT Kit (Qiagen, Tokyo, Japan) and then diluted in 180μl
distilled water. The gene expression profile of canine miRNA
was obtained by quantitative real-time PCR using a miScript
miRNA PCR Array Dog miFinder (Qiagen). A PCR master
mix was prepared using a miScript SYBR Green PCR Kit
(Qiagen) in accordance with the manufacturers’ instructions
and added to a 96-well PCR array plate to be cycled as indi-
cated. Data analyses were performed with free data analysis
software (miScript miRNA PCR Array Data Analysis;
Qiagen) using the ΔΔCT method.

2.4. PBMC Isolation. Five healthy adult Beagles were used as
blood donors. The dogs were handled in accordance with the
animal care guidelines of the Institute of Laboratory Animal
Resources, Nippon Veterinary and Life Science University,
Japan. The Institutional Animal Care and Use Committee
of Nippon Veterinary and Life Science University approved
the experimental design (approval No. 2019-S58). Blood
was collected from the jugular vein of each dog into heparin-
ized tubes. PBMCs were immediately isolated by density gra-
dient centrifugation using Histopaque-1077 and SepMate-15
(VERITAS, Tokyo, Japan). After isolation, PBMCs were
resuspended in RPMI 1640 medium with 10% FBS, 1%
antibiotic-antimycotic solution, 1% nonessential amino acid,
1% GlutaMAX (Thermo Fisher Scientific), and 50μM 2-
mercaptoethanol.

2.5. Stimulation of PBMCs and Coculture with EVs. To deter-
mine the immunomodulatory effects of cADSC-derived EVs
on stimulated PBMCs, 1 × 106 PBMCs were seeded in a 12-
well culture plate (1ml per well). After 6 h culture, PBMCs
were stimulated with 5μg/ml concanavalin A (ConA;
Sigma-Aldrich) and cocultured with or without cADSC-
derived EVs at various concentrations.

2.6. Cell Proliferation Assay. PBMCs were prelabeled with a
5μM carboxyfluorescein succinimidyl ester (CFSE) solution

using a CFSE Cell Division Tracer Kit (BioLegend, Tokyo,
Japan) before seeding and stimulation with ConA. PBMCs
were cultured with naive or primed EVs at various concen-
trations (1, 5, and 10μg/ml). After 4 days, PBMCs were col-
lected and washed with FACS buffer (PBS with 2% FBS).
To inhibit nonspecific binding, canine Fc receptor binding
inhibitor (Thermo Fisher Scientific) was added to cells,
followed by incubation on ice for 20min. After blocking,
PBMCs were stained with anti-CD4-APC (clone: YKIX302.9,
eBioscience, Tokyo, Japan) or the isotype control. The prolif-
eration of PBMCs and CD4+ T cells among PBMCs was mea-
sured by flow cytometry.

2.7. Apoptosis Assay. PBMCs stimulated with ConA were
cocultured with naive or primed EVs at various concentra-
tions (1, 5, and 10μg/ml) for 3 days. Annexin V and propi-
dium iodide (PI) staining was performed using a FITC
Annexin V Apoptosis Detection Kit with PI (BioLegend) in
accordance with the manufacturers’ instructions. After stain-
ing, PBMC apoptosis was detected by flow cytometry.

2.8. CD3/CD4/CD8 T Cell Subset. To analyze the differentia-
tion behavior of stimulated T cells, PBMCs stimulated with
ConA were cocultured with naive or primed EVs at various
concentrations (1, 5, and 10μg/ml) for 3 days. After cocul-
ture, PBMCs were collected, washed with FACS buffer, and
incubated with canine Fc receptor binding inhibitor on ice
for 20min. Then, PBMCs were stained with anti-CD3-
FITC (Clone: CA17.2A12, Bio-Rad), anti-CD4-RPE (Clone:
YKIX302.9, Bio-Rad), and anti-CD8-Alexa Fluor 647 (Clone:
YCATE55.9, Bio-Rad) or their respective isotype controls.
Fluorescence was evaluated by flow cytometry.

2.9. Intracellular Cytokine Assay. To determine the prolifera-
tion behavior of T helper (Th) cells, PBMCs stimulated with
ConA were cocultured with naive or primed EVs at various
concentrations (1 or 3μg/ml) for 3 days. Then, PBMCs were
stimulated with phorbol 12-myristate 13-acetate (PMA;
50 ng/ml, Sigma-Aldrich), and ionomycin (1μg/ml, Sigma-
Aldrich) for 6 h and brefeldin A (10μg/ml, Sigma-Aldrich)
for 4 h. After stimulation, PBMCs were collected, washed
with FACS buffer, and incubated with canine Fc receptor
binding inhibitor on ice for 20min. PBMCs were stained
with anti-CD3-FITC (Clone: CA17.2A12, Bio-Rad) and
anti-CD4-APC (Clone: YKIX302.9, eBioscience, Tokyo,
Japan) or their respective isotype controls. Then, PBMCs
were fixed and permeabilized using Cyto-Fast Fix/Perm
Buffer Set (BioLegend). Finally, PBMCs were stained with
anti-IFNγ-RPE (clone: CC302, Bio-Rad), anti-IL-4-RPE
(clone: CC303, Bio-Rad), and anti-IL-17A-RPE (clone:
eBio64DEC17, Thermo Fisher Scientific) or their respective
isotype controls. Analysis by flow cytometry was performed
by measuring the frequency of IFNγ, IL-4, and IL-17A
expression on gated CD3+CD4+ cells.

2.10. Regulatory T Cells. To analyze Treg cells, PBMCs stim-
ulated with ConA were cocultured with naive or primed EVs
at various concentrations (1 or 3μg/ml) for 3 days. After
coculture, PBMCs were collected, washed with FACS buffer,
and incubated with canine Fc receptor binding inhibitor on
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ice for 20min. PBMCs were stained with anti-CD3-FITC
(Clone: CA17.2A12, Bio-Rad), anti-CD4-APC (Clone:
YKIX302.9, eBioscience), and anti-CD25-RPE (clone:
P4A10, Thermo Fisher Scientific) or their respective isotype
controls. Then, PBMCs were fixed and permeabilized using
True-Nuclear Transcription Factor Buffer Set (BioLegend).
Finally, PBMCs were stained with anti-Foxp3-eFluor450
(clone: FJK-16 s, Thermo Fisher Scientific) or that of isotype
controls. Analysis by flow cytometry was performed by
measuring the frequency of Foxp3 expression on gated
CD3+CD4+CD25+ cells.

2.11. Uptake of EVs by CD4+ T Cells. cADSC-derived naive
and primed EVs were stained with Vybrant DiI Cell-
labeling Solution (Thermo Fisher Scientific), and then,
unincorporated dye was removed from labeled EVs using
an Exosome Spin Column (Thermo Fisher Scientific) in
accordance with the manufacturers’ instructions. PBMCs
were stimulated with ConA (5μg/ml) for 3 days and then col-
lected, washed with PBS, and resuspended in RPMI-1640
medium with 10% FBS, 1% antibiotic-antimycotic solution,
1% nonessential amino acid, 1% GlutaMAX, and 50μM 2-
mercaptoethanol. One million stimulated PBMCs were cul-
tured in a 12-well plate with 1μg/ml naive or primed
labeled-EVs for 3 or 12 hours. Cells were fixed with 2% para-
formaldehyde and then covered with a mounting medium
with DAPI (VECTASHIELD: H-1200: VECTOR LABORA-
TORIES, CA, USA). Immunofluorescence images were

captured under a BZ-X700 multi-purpose microscope (KEY-
ENCE, Osaka, Japan). The same samples without fixation
were incubated with a canine Fc receptor binding inhibitor
on ice for 20min. Then, the cells were stained with anti-
CD3-FITC (Clone: CA17.2A12, Bio-Rad) and anti-CD4-
APC (Clone: YKIX302.9, eBioscience) or their respective iso-
type controls. Fluorescence was evaluated by flow cytometry.

2.12. Statistical Analysis. All data are presented as the mean
± standard deviation. Differences among multiple groups
were assessed by one- or two-way analysis of variance and
differences were compared using the Tukey-Kramer post
hoc test. P < 0:05 was considered statistically significant. Sta-
tistical analyses were performed using Excel 2019 with add-in
software Statcel 3.

3. Results

3.1. Characterization of cADSC-Derived EVs. cADSCs were
pretreated with or without TNFα and IFNγ, and then, an
enriched fraction of EVs was collected from the supernatant
using the PS affinity method. The size of isolated naive EVs
was 166 ± 7:7 nm and that of primed EVs was 145 ± 1:5 nm.
The concentrations of EVs were 34:4 ± 3:1 and 42:8 ± 1:9 ×
109 particles/ml for naive and primed EVs, respectively
(Figure 1(a)). Both naive and primed EVs expressed specific
exosomal markers CD9, CD63, and TSG101 [25]. The size
of collected vesicles and marker expression indicated that
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Figure 1: Characterization of cADSC-EVs. (a) Representative graph of nanoparticle tracking analysis and transmission electron microscopic
images. Bar = 200 nm. (b) Immunoblots of cADSC-EVs for CD63 and CD9.
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cADSC-derived EVs isolated from the supernatant were an
enriched fraction of exosomes (Figure 1(b)).

Expression of exosome-associated microRNAs was
investigated by a miRNA PCR array. Seventy microRNAs
were detected in both naive and primed EVs, and expression
levels of 14 microRNAs in primed EVs were significantly dif-
ferent compared with that in naive EVs (Figure 2). All data of
fold regulation and P values of each microRNA are shown in
Supplemental Material 1.

3.2. cADSC-Derived EVs Inhibit Proliferation of PBMCs and
CD4+ T Cells. ConA (5μg/ml) stimulation for 4 days

enhanced the proliferation of PBMCs and CD4+ T cells
(unstimulated PBMCs: 40:0% ± 1:5%; ConA-stimulated
PBMCs: 46:8% ± 1:5%; unstimulated CD4+ T cells: 43:8% ±
1:7%; ConA-stimulated CD4+ T cells: 57:0% ± 1:6%). The
proliferation rate decreased gradually in both PBMCs
(Figure 3) and CD4+ T cells (Figure 4) when PBMCs were
cocultured in the presence of EVs. The inhibitive effects on
PBMCs and CD4+ T cells were not different between naive
and primed EVs at same concentrations.

3.3. cADSC-Derived EVs Induce Apoptosis of PBMCs. When
PBMCs were stimulated with ConA and cultured without
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Figure 2: Differential expression of microRNAs in naive and primed cADSC-EVs. (a) Layout for Qiagen’s canine miScript miRNA PCR
Array. (b) Heatmap of microRNA expression between naive and primed cADSC-EVs. Red an increase and green/black indicate a decrease
in relative expression in primed cADSC-EVs (n = 3 per group). Gray microRNAs represent not detected. (c) Significant differences
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Figure 3: Proliferative ability of PBMCs cocultured with cADSC-EVs. (a) Proliferation of PBMCs was assayed using the CFSE method by
flow cytometry. Segments represent the percentages of PBMC proliferation. (b) Comparison of proliferative PBMCs treated with various
concentrations (1, 5, and 10 μg/ml) of naive or primed cADSC-EVs. The inhibitive effects on PBMCs were not different between naive
and primed EVs at the same concentrations. The solid line indicates the average. ##P < 0:01 vs. PBMCs stimulated with ConA. ∗∗P < 0:01,
between groups.
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cADSC-derived EVs, the apoptosis ratio was 20:0% ± 2:4%.
However, PBMCs cocultured with various concentrations
of naive and primed EVs had increased apoptosis
(Figure 5). The induced ratio of PBMC apoptosis was not
significantly different between naive and primed EVs at the
same concentrations.

3.4. cADSC-Derived EVs Affect the T Cell Subset Distribution.
After stimulating PBMCs with ConA for 3 days, the ratios
of CD4+ T, CD8+ T, CD4+CD8+ T, and CD4-CD8- T cells
were 35:9% ± 2:4%, 29:1% ± 1:6%, 3:2% ± 0:5%, and 31:8%
± 4:0%, respectively. When PBMCs cocultured with EVs
at various concentrations, the ratios of CD4+ T, CD8+ T,
and CD4+CD8+ T cells were decreased proportionately,
but that of CD4-CD8- T cells was increased (Figure 6).
The ratio of CD4-CD8- T cells cultured with 5 and
10μg/ml primed EVs was significantly decrease compared
with naive EVs (Table 1), but the T cell subset distribution
was not different between naive and primed EVs at the
same concentrations.

3.5. cADSC-Derived EVs Alter Differentiation into T Helper
Cells. To examine Th1, Th2, and Th17 cells, intracellular
cytokines IFNr, IL-4, and IL-17 were detected by flow cytom-
etry. When PBMCs were stimulated with PMA and ionomy-
cin for 6 h, intracellular expression of IFNr, IL-4, and IL-17
was increased compared with the unstimulated control. In
the presence of EVs, the ratio of Th1 cells (CD4+IFNr+)
among CD3+ T cells was decreased (3μg/ml naive EVs: 6:7
% ± 1:6%; 3μg/ml primed EVs: 5:9% ± 1:5%) compared with
no EVs (11:2% ± 2:0%) (Figure 7). Th2 cells (CD4+IL-4+)
among CD3+ T cells were increased when PBMCs cocultured
with EVs (3μg/ml naive EVs: 10:4% ± 1:3%; 3μg/ml primed
EVs: 11:6% ± 1:6%) compared with no EVs (5:8% ± 1:0%)
(Figure 8). Th17 cells (CD4+IL-17+) among CD3+ T cells
after coculture with EVs were also suppressed (1μg/ml naive
EVs: 5:5% ± 1:1%; 3μg/ml naive EVs: 4:4% ± 0:9%; 3μg/ml
primed EVs: 3:3% ± 0:8%) compared with culture without

EVs (7:2% ± 1:3%) (Figure 9). The ratio of Th1, Th2, and
Th17 cells was not different between naive and primed EVs
at the same concentrations.

3.6. cADSC-Derived EVs Enhance Treg Cells. The ratio of
Treg (CD3+CD4+CD25+Foxp3+) cells among PBMCs stimu-
lated with ConA was 18:2% ± 1:7%. When PBMCs were cul-
tured with EVs, the ratio of Treg cells in CD4+ T cells was
elevated significantly (1μg/ml naive EVs: 23:0% ± 2:4%;
3μg/ml naive EVs: 30:1% ± 2:1%; 1μg/ml primed EVs: 26:0
% ± 2:2%; 3μg/ml primed EVs: 31:3% ± 3:5%) (Figure 10).
The ratio of Treg cells was not different between naive and
primed EVs at the same concentrations.

3.7. cADSC-Derived EV Uptake by CD4+ T Cells. T cell-
enriched PBMCs were coculture with cADSC-derived EVs
for 3 or 12 hours. Both naive and primed EVs were incor-
porated into T cells and CD4+ T cells treated with EVs
were observed by flow cytometry (Figure 11). The ratio of
CD4+ T cells with cADSC-derived EVs at 12 h was signifi-
cantly elevated in both naive and primed EVs compared
to those at 3 h.

4. Discussion

Mesenchymal stem cells (MSCs) have immunomodulatory
and anti-inflammatory abilities by secreting numerous fac-
tors such as extracellular vesicles, cytokines, chemokines,
and growth factors. As research on MSC-based therapies
has proceeded, exosomes have been focused on as important
factors that exert immunomodulatory effects. Exosomes are
typically small membrane vesicles (30-150nm) that include
extracellular vesicles (30-1000 nm) secreted by various cell
types. The classically used protocol to isolate exosomes is
ultracentrifugation, but there are currently several exosome
isolation methods based on different principles [26, 27]. The
ultracentrifugation method is based on the principles of pre-
cipitation and sedimentation. Therefore, ultracentrifugation
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also concentrates nonspecifically sedimentable particles,
which include non-EV proteins, and is associated with low
reproducibility because of the loss of unstable and invisible
pellets after centrifugation. Conversely, the PS affinity method
is based on the high affinity of T cell immunoglobulin domain
andmucin domain-containing protein 4 that strongly binds to
phosphatidylserine expressed on the surface of EVs. The PS
affinity method only requires general laboratory equipment.
Moreover, this method isolates EVs with higher quality and
reproducibility compared with ultracentrifugation [28]. In this
study, we collected cADSC-EVs using the PS affinity method.
The results of NTA and analyses of exosome markers (CD9,
CD63, and TSG101) suggested that the cADSC-EVs isolated
from culture supernatants were an enriched exosome fraction.

In this study, we examined the microRNA expression
profile of naive and TNFα/IFNγ-primed cADSC-EVs. micro-
RNAs, which are a class of noncoding RNAs of 20-22 base
pairs, regulate the expression of multiple RNAs and play an
important role in various biological processes that include
the immune response. Several microRNAs affect the immune
response in T cell development, proliferation, differentiation,
and function [29, 30]. The microRNA profiles showed that
several microRNAs in cADSC-EVs varied after stimulation
with TNFα and IFNγ. For example, miR-146a, which was
overexpressed in primed cADSC-EVs, acts as a negative reg-
ulator of T cells and promotes Treg cell functions [30]. MiR-
34a, which was downregulated in primed cADSC-EVs, plays
an important role in T cell activation by targeting >30 genes
across different cellular pathways that control the immune
response [31].

Several studies have reported that primed EVs increase
immunomodulatory functions compared with naive EVs
[32, 33], whereas other reports have indicated that primed
EVs do not enhance the immunomodulatory effects of
MSC-EVs [34, 35]. In our study, primed cADSC-EVs did
not enhance any functions of PBMCs or stimulated CD4+ T
cells. The reason that the immunomodulatory functions of
primed cADSC-EVs were not enhanced remains unclear,
but several hypotheses were proposed. First, packaged solu-
ble factors inside EVs may be related [34]. The properties
of factors secreted from MSCs change depending on MSC
culture conditions [5]. There is evidence suggesting that
immunomodulatory effects of MSCs are enhanced in
response to inflammatory stimulation [5]. Inflammatory
stimuli by TNFα and IFNγ have been commonly used to
research the immune and regenerative functions of MSCs

and are known to enhance the immunosuppressive proper-
ties of MSCs [6]. For example, immunomodulatory effects
of T cells are attributed to the upregulation of IDO. MSC-
EVs also packaged various active proteins, which included
IDO, but previous studies have demonstrated no significant
change of IDO in PBMCs cocultured with or without MSC-
EVs and thus suggested that the mechanism that underlies
the immunomodulatory capacities of MSC-EVs is different
from that of MSC soluble factors [36]. Second, stimulation
methods of T cells may be related [35]. In this study, PBMCs
were stimulated with ConA. ConA is an antigen-independent
mitogen and is widely used as a T cell stimulus. However, T
cell activation by an anti-CD3/28 antibody can be used in
humans and mice as an antigen-dependent method.
Antigen-presenting cells partially mediate T cell suppression
induced byMSCs [37]. Therefore, another explanation might
be a lack or small number of antigen-presenting cells in our
experimental setting. In our study, we analyzed characteristic
features by only comparing the expression of microRNAs
between naive and primed cADSC-EVs, but there are many
other components such as proteins and mRNAs. Further-
more, several cytokines and growth factors have been
reported in MSCs, such as TGFβ, TNFα, IFNγ, IL-4, and
IL-10 [6]. Further studies are required to clarify the alteration
of components in cADSC-EVs with or without priming and
using other stimulation methods.

MSCs suppress T cell proliferation [38], B cell activity
[39], and NK cell proliferation [40] and interfere with the dif-
ferentiation, maturation, and function of dendritic cells [41].
The purpose of this study was to investigate the immuno-
modulatory capacity of cADSC-EVs for T cells. In this study,
PBMCs were stimulated with ConA. The immunomodula-
tory effects exerted by MSC-EVs on activated T cells remain
a widely discussed topic. Primed and naive humanMSC-EVs
cocultured with PBMCs suppress the proliferation of T cells
but do not affect that of B and NK cells [42]. Other studies
have shown that MSC-EVs inhibit the proliferation of NK
and B cells, but their effects on the proliferation of T cells
remain unclear [32, 43]. Our results demonstrated that
cADSC-EVs suppressed the proliferation of PBMCs and
CD4+ T cells and enhanced apoptosis of PBMCs. It has been
demonstrated that MSC-EVs carry various active molecules
that may contribute to the MSC-EV capacity to inhibit T cell
proliferation and activation and induce T cell apoptosis [4].
However, the mechanisms of suppressive proliferation and
induced apoptosis in T cells by MSC-EVs remain unclear.

Table 1: Comparison of CD4+, CD8+, CD4+CD8+, and CD4-CD8- T cell populations after coculture of PBMCs with cADSC-EVs.

Control
Naive EVs Primed EVs

1μg/ml 5 μg/ml 10μg/ml 1μg/ml 5 μg/ml 10μg/ml

CD4+ 35:9 ± 2:4 29:4 ± 1:9∗∗ 26:1 ± 1:7∗∗ 15:3 ± 1:9∗∗ 25:7 ± 2:2∗∗ 21:7 ± 1:7∗∗ 15:5 ± 2:0∗∗

CD8+ 29:1 ± 1:6 29:3 ± 2:0 11:8 ± 1:8∗∗ 5:7 ± 1:3∗∗ 27:1 ± 1:8 8:3 ± 1:6∗∗ 5:4 ± 1:6∗∗

CD4+CD8+ 3:2 ± 0:5 3:0 ± 0:8 1:0 ± 0:5∗∗ 0:2 ± 0:1∗∗ 1:4 ± 0:5∗∗ 0:3 ± 0:1∗∗ 0:2 ± 0:1∗∗

CD4-CD8- 31:8 ± 4:0 38:3 ± 2:2∗ 61:1 ± 3:2∗∗ 78:8 ± 1:3∗∗ 45:7 ± 3:2∗ 69:7 ± 1:7∗∗ 78:9 ± 2:8∗∗

Data are shown as the mean ± S:D. The ratio of T cell subset was not significantly different between naive and primed EVs at the same concentrations. ∗∗P
< 0:01 vs. control (PBMCs that were not cocultured with cADSC-EVs). ∗P < 0:05 vs. control.
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Figure 7: Differentiation into Th1 cells after coculture of PBMCs with cADSC-EVs. (a) Flow cytometric detection of CD4+IFNγ+ cells among
CD3+ T cells (gated in red square). Non-stim control: PBMCs that were not stimulated with PMA and ionomycin. Stimulated control: PBMCs
after coculture with cADSC-EVs and stimulated by PMA and ionomycin. (b) Comparison of CD4+IFNγ+ cells among CD3+ T cells after
coculture of PBMCs with various concentrations (1 or 3μg/ml) of naive or primed cADSC-EVs. The ratio of Th1 cells was not
significantly different between naive and primed EVs at the same concentrations. The solid line indicates the average. ##P < 0:01 vs.
stimulated control. ∗∗P < 0:01, between groups.
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Figure 8: Differentiation into Th2 cells after coculture of PBMCs with cADSC-EVs. (a) Flow cytometric detection of CD4+IL-4+ cells among
CD3+ T cells (gated in red square). Non-stim control: PBMCs that were not stimulated with PMA and ionomycin. Stimulated control: PBMCs
after coculture with cADSC-EVs and stimulated by PMA and ionomycin. (b) Comparison of CD4+IL-4+ cells among CD3+ T cells after
coculture of PBMCs with various concentrations (1 or 3μg/ml) of naive or primed cADSC-EVs. The ratio of Th2 cells was not different
between naive and primed EVs at the same concentrations. The solid line indicates the average. ##P < 0:01 vs. stimulated control.
∗∗P < 0:01, between groups.
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Figure 9: Differentiation into Th17 cells after coculture of PBMCs with cADSC-EVs. (a) Flow cytometric detection of CD4+IL-17+ cells
among CD3+ T cells (gated in red square). Non-stim control: PBMCs that were not stimulated with PMA and ionomycin Stimulated
control: PBMCs after coculture with cADSC-EVs and stimulated by PMA and ionomycin. (b) Comparison of CD4+IL-17+ cells among
CD3+ T cells after coculture of PBMCs with various concentrations (1 or 3μg/ml) of naive or primed cADSC-EVs. The ratio of Th17 cells
was not significantly different between naive and primed EVs at the same concentrations. The solid line indicates the average. ##P < 0:01
vs. stimulated control. ∗∗P < 0:01, between groups.
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Figure 10: Continued.
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One report has demonstrated that TNFα/NF-κB signaling in
MSCs is required to inhibit T cell proliferation [44]. There-
fore, MSC-EVs effects may also be related to activation of
NF-κB. Another recent study has demonstrated that MSC-
EVs suppress the proliferation of T cells by inducing cell
cycle arrest through p27kip1/Cdk2 signaling [45]. P27kip1
is a representative factor that induces cell cycle arrest by
downregulating Cdks, and MSC-EVs were associated with
upregulation of p27kip1 and downregulation of Cdk2. It
has been demonstrated that MSCs induce apoptosis of acti-
vated T cells through the FAS ligand-dependent FAS signal-
ing pathway but do not induce naive T cell apoptosis in vitro
[46]. However, there are no reports of a correlation between
MSC-EVs and the FAS signaling pathway. The only report of
the mechanism of T cell apoptosis induction by MSC-EVs
assumed that MSC-EVs induce T cell apoptosis possibly
through an MSC-EV mediated mechanism via the adenosine
A2A receptor pathway [47]. After coculture of PBMCs stim-
ulated with ConA in the presence of cADSC-EVs, CD4+,
CD8+, and CD4+CD8+ T cells were decreased, whereas
CD3+CD4-CD8- T cells were increased. A study has
evaluated the status of CD4+ and CD8+ T cells by
categorizing in accordance with CD45RA and CCR7 expres-
sion, such as naive (CD45RA+CCR7+), central memory
(CD45RA-CCR7+), effector memory (CD45RA-CCR7-), and
terminally differentiated effector memory cells (CD45RA+-

CCR7-) [48]. This study demonstrated that human ADSC-
EVs inhibited the differentiation of CD4+ and CD8+ T cells
into terminally differentiated effector memory cells. It is
unclear how cADSC-EVs inhibited the differentiation of
CD4+ and CD8+ T cells, but we hypothesize that cADSC-
EVs may suppress T cell differentiation toward immature
phenotypes. A study has examined the effects of MSC-EVs
on acute graft-versus-host disease and found that MSC-EVs
are associated with the preservation of circulating naive T

cells because of the unique microRNA profiles of MSC-EVs
[49]. microRNAs are also thought to be related to changes
in the proliferation, apoptosis, and distribution of T cells
induced by cADSC-EVs.

To clarify the alteration of the immune response of Th
cells induced by cADSC-EVs, intracellular cytokines were
detected by flow cytometry. Both naive and primed
cADSC-EVs increased the ratio of Th2 cells but decreased
Th1 cells. Some studies of autoimmune diseases have
reported that MSC-EVs drive a shift from Th1 toward
Th2 cells and rebalances Th1/Th2 cells by downregulating
proinflammatory cytokines TNFα and IFNγ and upregulat-
ing anti-inflammatory cytokines IL-10 or IL-4 [36, 50].
Moreover, cADSC-EVs inhibited activated T cell differenti-
ation into Th17 cells and promoted differentiation into
Treg cells. Such regulation has also been observed in
human MSC-EVs [4], but the mechanism is unclear. On
the basis of the immune balance effect exerted by
cADSC-EVs on Th and Treg cells, our results indicate that
cADSC-EVs may act as an ameliorating agent for autoim-
mune diseases.

In this study, we examined the effects of cADSC-EVs on
T cells and focused on CD4+ T cells isolated from PBMCs.
cADSC-EVs affected CD4+ T cell proliferation, apoptosis,
and differentiation, but CD4+ T cells that took up cADSC-
EVs were only a few percent of all cells. This result was sim-
ilar to previous studies of unfractionated PBMCs or purified
T cells, and MSC-EVs were almost entirely incorporated by
monocytes [32, 51]. MSC-EVs also act on monocytes/macro-
phages [4]. Thus, the influence of T cells was not only a direct
effect of cADSC-EVs but also included indirect effects of
monocytes affected by cADSC-EVs. Further studies of the
interactions between cADSC-EVs, T cells, and monocytes
are needed to clarify the effects of cADSC-EVs on the
immune response.
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Figure 10: Treg cells after coculture of PBMCs with cADSC-EVs. (a) Flow cytometric detection of CD3+CD4+CD25+Foxp3+ cells (gated in
red square). Control: PBMCs cultured without cADSC-EVs. (b) Comparison of the population of CD3+CD4+CD25+Foxp3+ cells after
coculture of PBMCs with various concentrations (1 or 3 μg/ml) of naive or primed cADSC-EVs. The ratio of Treg cells was not
significantly different between naive and primed EVs at the same concentrations. The solid line indicates the average. ##P < 0:01 vs.
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5. Conclusions

Our study shows that cADSC-EVs have an immunoregula-
tory function by inducing PBMC apoptosis, suppressing the
proliferation of PBMCs and stimulated CD4+ T cells as well
as the differentiation of CD4+ and CD8+ T cells, and chang-
ing Th1/Th2/Treg cell populations in vitro. To evaluate
whether cADSC-EVs have beneficial effects on immune dis-
eases and are practical for use in treatments of immune dis-
eases, further study is needed to analyze which components
of cADSC-EVs exert the individual immunosuppressive
effect and the pathways by which these immunosuppressive
effects occur.
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