
nutrients

Article

Modulating Sterol Concentrations in Infant Formula
Influences Cholesterol Absorption and Synthesis in
the Neonatal Piglet

Elizabeth A Babawale 1, Peter JH Jones 1,2,*, Kelly E Mercer 3,4, Haixia Lin 3,4, Laxmi Yeruva 3,4,5,
Fabiana Bar Yoseph 6,* and Shane M Rutherfurd 7

1 Department of Food and Human Nutritional Science, University of Manitoba, Winnipeg, MB R3T 2N2,
Canada; abosedee@myumanitoba.ca

2 Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg,
MB R3T 6C5, Canada

3 Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; kmercer@uams.edu (K.E.M.);
HLin@uams.edu (H.L.); VLYeruva@uams.edu (L.Y.)

4 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
5 Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
6 Clinical Development, Enzymotec Ltd., Kfar Baruch 23106, Israel
7 Riddet Institute, Massey University, Palmerston North 4442, New Zealand; s.m.rutherfurd@kinect.co.nz
* Correspondence: Peter.Jones@umanitoba.ca (P.J.H.J.); fabiana@enzymotec.com (F.B.Y.);

Tel.: +204-474-9989 (F.B.Y.)

Received: 7 November 2018; Accepted: 22 November 2018; Published: 1 December 2018
����������
�������

Abstract: Formula-fed infants present higher cholesterol synthesis rates and lower circulating
cholesterol during the postnatal feeding period compared to breast-fed infants, though the
mechanisms underlying this phenotype are not fully understood. Typical infant formulas contain
vegetable-based fats, inherently including phytosterols (PS), which are structurally similar to
cholesterol and may interfere with their absorption. A seven-day old piglets model was used to test
the inhibitory effects of PS on cholesterol absorption during postnatal feeding. Following feeding for
21 days with milk-based formulas containing PS and cholesterol levels resembling those in formulas
or human-milk, apparent cholesterol digestibility was analyzed in ileal digesta, and cholesterol,
PS, and cholesterol synthesis markers were analyzed in plasma and liver samples. Ileal cholesterol
digestibility content was increased in the piglets fed low PS formulas and the rate of the hepatic
cholesterol synthesis, as determined by the lathosterol-to-cholesterol ratios (L:C), was decreased in
the piglets fed LP-formulas and corresponded to reduced nuclear expression of SREBP2 relative to
those fed HP-formulas. These results are consistent with the hypothesis that PS in formula can inhibit
cholesterol absorption and enhance cholesterol synthesis. Whether or not this leads to entrainment of
cholesterol synthesis later in life via early programming awaits further research.
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1. Introduction

Cholesterol is essential for life, especially during the rapid growth of infants, as it is a structural
element of the cell membrane lipid layer; a substrate for the production of steroid hormones, vitamin
D, and bile acids [1]; crucial for proper brain development and myelin formation; and plays a key role
in lipoprotein synthesis and metabolism [2]. Moreover, studies suggest an influence of early nutrition
on blood cholesterol levels and thus cardiovascular disease risk (CVD) during adulthood [3–5].

While human milk is a rich source of cholesterol, containing 90 to 150 mg/L cholesterol [6],
most infant formulas are vegetable oils based, containing a significantly lower level of cholesterol
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(15–50 mg/L), which originates mainly from dairy milk fat [2,7]. This difference in cholesterol content
results in about a three to five times higher intake of cholesterol in breast-fed infants compared
to formula-fed infants [2,8]. Interestingly, formula-fed infants have increased fractional cholesterol
synthesis rates relative to those infants that are breast-fed, suggesting endogenous cholesterol synthesis
as a reciprocal mechanism in response to the low dietary uptake [9–12].

Vegetable oils-based formulas not only provide low cholesterol levels, but they inherently
contain plant sterols, called phytosterols (PS), such as Campsterol, Brassicasterol, Stigmasterol,
and Sitosterol [13]. PS are known to inhibit cholesterol absorption by competing in micelle
formation, and are substrates for the intestinal sterol transporter Niemann-Pick C1-Like 1 (Npc1l1),
which mediates the extracellular cholesterol transport across the brush border membrane in the
ileum [14,15]. However, Npc1l1 preferentially absorbs cholesterol [16,17]. In adults, PS are barely
absorbed by the intestine (about 5%, for review see [14]), but little is known about the importance of PS
in infants’ diets. Given that plasma cholesterol concentrations are determined by the balance between
dietary sterol absorption from the gastrointestinal tract and whole body endogenous cholesterol
synthesis [18], it is possible that circulating PS concentrations during infancy could be important
for proper lipid programming and metabolism in later life [19]. However, the long-term effects of
consuming diets relatively high in PS during infancy are yet to be explored [6].

Although efforts have been made to mimic human breast milk composition by the
supplementation of infant formula with different cholesterol sources [19], the potential relationship
between dietary PS and cholesterol concentrations with regards to cholesterol absorption from
infant formulas has not been addressed. We hypothesized that a low PS modified vegetable oil
should facilitate increased cholesterol absorption and lead to lower endogenous cholesterol synthesis.
Therefore, the objective of this study was to investigate the effect of infant formulas containing
different levels of PS and cholesterol on circulating cholesterol concentrations, apparent ileal cholesterol
digestibility, and endogenous cholesterol synthesis by using a neonatal piglet as a model.

2. Materials and Methods

2.1. Animals Experiments

The impact of dietary PS and cholesterol concentration on cholesterol absorption and endogenous
cholesterol synthesis was determined in neonatal piglets given one of four dietary treatments, following
approval by Massey University’s Ethics Committee. Thirty-two seven-day old male piglets were
housed in purpose-built plastic metabolism crates in a temperature-controlled room maintained at
28 ± 2 ◦C with a 16:8 h light: dark cycle. Piglets were initially weighed and randomly allocated to
one of the four experimental diets such that there were eight piglets per treatment. Piglets were fed
345 g of prepared liquid formula per kg of body weight per day [20]. The piglets were trained to drink
using a bottle and teat and were acclimatized to their environment and diet over the first six days of
the study, during which time they were fed their daily ration over 17 meals given hourly from 06:00 h
to 10:00 h. For the remainder of the experimental period (16 days), the piglets received their daily food
rations as seven meals given every 2.5 h from 06:30 h to 21:30 h. From day 14 to 21, titanium dioxide
(an indigestible marker) was also added to the prepared formula at a concentration of 3 g per kg of dry
matter. The daily formula ration was readjusted weekly based on the body weights of the piglets. Any
formula that was not consumed was collected, dried, and weighed for each piglet in order to determine
dietary intake. The dietary treatments (Table 1), prepared at the Food Pilot Plant (Massey University),
contained different combinations of PS and cholesterol concentrations commensurate with those in
human milk or standard vegetable oil-based infant formulas.

On day 22 of the study, piglets were fed their respective formula at hourly intervals starting
at 06:30 h. Seven hours after the start of feeding, each piglet was anaesthetised using a cocktail
of Xylazine, Zolazepam, and Tiletamine. While under anaesthesia, blood was collected via cardia
puncture and aliquoted into EDTA-treated vacutainers. Then, piglets were euthanized using a lethal
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cardiac injection of sodium pentobarbitone, after which liver tissue and ileal digesta were collected and
stored at −80 ◦C for analysis. Circulating total-cholesterol and LDL-cholesterol levels were measured
in the plasma of all diet groups using commercially available assays and a Vitros 350 autoanalyzer.

Table 1. Diet composition of the four experimental infant formulas: F-HP, F-LP, FC-HP, and FC-LP.

Formula

F-HP F-LP FC-HP FC-LP

Energy, kCal 513 512 514 512
Protein, g 12 12 11.9 11.9

Fat, g 26.6 26.5 26.7 26.5
Carbohydrate, g 56.5 56.3 56.4 56.4

Sterols

Cholesterol, mg 22.5 24.2 85.6 84.2
PS, mg 79.2 9.5 79.1 9.9

Minerals

Calcium, mg 381 395 375 380
Phosphorus, mg 284 302 296 297
Potassium, mg 491 515 489 488

Sodium, mg 147 152 152 144
Chloride, mg 360 360 360 360

Iron, mg 5.87 6.31 5.76 5.7
Magnesium, mg 43.7 46.1 44.8 46
Manganese, µg 316 321 309 310

Zinc, mg 5.49 5.54 5.45 5.55
Copper, µg 438 399 412 439
Iodine, µg 130 126 124 116

Selenium, µg 25.4 26 26.2 23.4

Vitamins

Vitamin A, µg 699.4 708 743 685.5
Vitamin D, µg 8.1 8.8 8.3 8.4
Vitamin E, mg 12.4 17.2 13 16.5
Vitamin K, µg 38 33.4 39 41.3
Thiamine, µg 790 790 790 810

Vitamin B2, µg 1300 1300 1300 1300
Pyridoxine, µg 650 690 680 660

Vitamin B12, µg 1.9 1.9 1.9 1.9
Niacin, µg 5000 5000 5000 5000

Folic acid, µg 121 130 126 129
Pantothenic acid, µg 4800 4800 4000 4400

Biotin, µg 27.5 27.5 28.1 28.4
Vitamin C, mg 89.4 89.4 84.2 25.2

Choline, mg 145.6 147.6 144.9 143.1
Taurine, mg 49 49 49 50

Nutrient components are expressed as grams (g), milligrams (mg), or micrograms (µg) per 100 g of air dried
powder. Each formula was produced using skim milk powder (147 g/kg), demineralized whey powder
(300 mg/kg), whey protein concentrate 80% (37.3 g/kg), lactose (232 g/kg), and vegetable oil blend (263 g/kg).
F-HP, formula containing high PS concentrations; F-LP, formula containing low PS concentrations; FC-HP, formula
containing high cholesterol and PS concentrations; FC-LP, formula containing low cholesterol and PS concentrations.

2.2. Determination of Cholesterol and Other Sterols in Plasma, Ileal Digesta and Liver Tissues

All standards, potassium hydroxide (KOH) salt, and the internal standard were obtained from
Sigma Aldrich Canada Ltd (Oakville, ON, Canada). Solvents were obtained from Fischer Scientific.
Sample extraction was performed according to Jones et al. [21], with a few modifications. Sterols were
extracted twice and dried under N2 before being saponified with methanol-KOH, using 5α-cholestane
as an internal standard. The dried residue was re-suspended in hexane and 100 µL of HMDS +
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TMCS + Pyridine (3:1:9) was added for derivatization. Extracted samples were then transferred to
Gas chromatography (GC) vials for analysis using a GC with Flame Ionization Detector (GC-FID)
with an SAC-5 fused silica capillary column with a 30 m × 0.25 mm × 0.25 µm film thickness. An
initial run temperature of 130 ◦C was used for 2 min, before increasing the temperature to 270 ◦C
at 30 ◦C per min, holding it at 270 ◦C for 10 min, increasing the temperature to 290 ◦C at 10 ◦C per
min, holding it for 9 min, and then finally ramping it up to 320 ◦C at 40 ◦C per min and holding it
for 5 min. Helium was used as the carrier gas at a flow rate of 1.0 mL per min. Injector and detector
temperatures were 280 ◦C and 300 ◦C, respectively. Sterols were identified by comparing the retention
time of the peaks in the sample with the retention time of known sterols (cholesterol, campesterol,
sitosterol, sitostanol, lathosterol, and desmosterol) in an external standard.

2.3. Determining the Titanium Dioxide Concentration in Diets and Ileal Digesta

The titanium content of the diets and digesta were determined based on the method of
Short et al. [22]. Briefly, samples were ashed before being digested in 60% (v/v) sulphuric acid.
The mixture was then incubated with 30% H2O2 and the absorbance read at 405 nm. Cholesterol
flow rate at the terminal ileum was calculated as follows (units are mg·kg−1 DM (dry matter)):
Ileal cholesterol flow (mg·kg−1 dry matter intake (DMI)) = Digesta cholesterol × Formula titanium
dioxide/Digesta titanium dioxide. The apparent ileal cholesterol digestibility value was calculated
using the following equation (units are mg/kg DMI): Apparent ileal cholesterol digestibility
(%) = (Formula cholesterol − Ileal cholesterol flow)/Formula cholesterol × 100.

2.4. Determination of Cholesterol in Ileum

The total cholesterol, free cholesterol, and cholesteryl esters were extracted from the ileum
(100 mg) by chloroform/isopropanol/NP-40 (7:11:0.1) and concentrations were determined using a
commercially available fluorometric cholesterol/cholesteryl ester quantitative assay (Abcam, Ab65359)
as per the manufacturer’s instructions.

2.5. Quantitative Real-Time RT-PCR

Total RNA was extracted from 50–100 mg of sample tissue, i.e., liver and ileum, using the
miRNeasy Mini kit (Qiagen, Valencia, CA, USA), in accordance with the manufacture’s protocol.
A total of 1 µg of RNA from each sample was reverse transcribed in a 20 µL reaction using the
TaqMan High Capacity cDNA Reverse Transcription Kit (Life Technologies, Foster City, CA, USA),
following the manufacturer’s instruction. Before cDNA synthesis, the RNA concentration and integrity
were measured in the LVis Plate using a microplate reader (BMG LABTECH, Cary, NC, USA) and
the Experion RNA StdSens Analysis Kit (Bio-Rad, Hercules, CA, USA). RNA with an integrity score
>7.5 integrity was used for cDNA synthesis. cDNA was amplified using Fast Sybr Green Master Mix,
according to the manufacturer’s protocol. The 15 µL reaction was conducted on a 7500 Fast Applied
Biosystems Real-Time PCR System (Life Technologies, Foster City, CA, USA). Sample cycle threshold
(Ct) values for each sample were determined using the Applied Biosystems software. Relative gene
expression was determined by calculating the 2−∆Ct method relative to B2M gene amplification
(B2M, Genebank NM_213978, 70 bp primers, Qiagen, Valencia, CA USA). Primer sequences used have
been previously published [23].

2.6. Western Blot Analysis

Nuclear and membrane protein fractions were obtained using NE-PER Nuclear and Cytoplasmic
Extraction Reagents (Thermo Scientific, Waltham, MA, USA), following the manufacturers’
instructions. Gel electrophoresis was performed, and proteins were transferred to a PVDF membrane.
Membranes were first incubated for 1 h in Tris-buffered saline (TBS) containing 0.05% Tween-20 and
5% non-fat dry milk to reduce non-specific antibody binding, and then incubated overnight at 4 ◦C with
either anti-SREBP2 (1:5000) or anti-LDLR (1:5000) rabbit polyclonal antibodies from Lifespan Biosciences
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(Seattle, WA, USA), diluted in TBS containing 0.1% Tween-20 and 5% Bovine serum albumin (BSA).
After incubation with horseradish peroxidase-conjugated secondary antibodies (1:10,000 mouse anti-rabbit;
Santa Cruz Technology, Santa Cruz, CA, USA), membranes were covered in ECL Plus Western Blotting
Detection Reagent (Thermo Scientific) and developed and imaged using an Amersham® Imager 600
(GE Healthcare, Hammersmith, UK). The density of protein bands was determined using Quantity
One software (Bio-Rad, Hercules, CA, USA) and expressed relative to total protein.

2.7. Statistical Analysis

Results are presented as means and standard error of the means. For most analyses the effect of
PS, cholesterol, and the interaction of these two components were determined by two-way ANOVA
followed by Student Newman-Keuls post hoc analysis. Other analyses, i.e., food intake, weight gain,
and cholesterol digestibility, were analyzed statistically by one-way ANOVA using GLM procedures
(PROC UNIVARIATE (SAS, 2009) SAS, 2009, Cary, NC, USA). Where statistically significant (p < 0.05)
effects were observed, individual means were compared using the Tukey test.

3. Results

3.1. Food Intake and Body Weight of Piglets Receiving Different Infant Formulas

Male, seven-day old piglets (n = 8 per diet group) were fed different infant formulas containing
high or low PS concentrations (HP and LP, respectively), plus or minus added cholesterol (FC and
F respectively) for 16 days. During this study, piglets readily adapted to bottle feeding, gained weight,
and remained healthy throughout the trial. There was no occurrence of diarrhoea in any of the piglets
throughout the study. The percentage of the weekly ration consumed and body weights of the piglets
across treatment groups are presented in Table 2. No statistically significant differences were observed
for either percentage of the weekly ration consumed or piglet’s body weight across treatment groups
throughout the trial.

Table 2. Mean daily dry matter intake and daily body weight gain for the piglets receiving the test
infant formulas.

Formula F-HP F-LP FC-HP FC-LP Overall Overall Overall

SE p-Value Significance

Daily dry matter consumption (g)

Week 1 129 133 129 133 8.2 0.962 NS
Week 2 155 162 152 161 9.6 0.864 NS
Week 3 191 201 188 198 11.8 0.857 NS

% consumed 97 98 96 98 0.8 0.229 NS

Daily body weight gain (g)

Week 1 85 96 78 91 5.3 0.141 NS
Week 2 120 128 118 122 8.2 0.839 NS
Week 3 145 150 128 149 9.2 0.371 NS

Weeks 1–3 117 124 108 121 7.2 0.439 NS

Data are means, n = 8/diet. The % diet consumed was calculated as the amount of infant formula dry matter
consumed divided by the amount of infant formula dry matter given to each piglet during the three-week feeding
period. Statistical significance was determined by One-way ANOVA, followed by Tukey post hoc analysis. SE,
overall standard error of the mean; NS, no overall significance, p ≥ 0.05. F-HP, formula containing high PS
concentrations; F-LP, formula containing low PS concentrations; FC-HP, formula containing high cholesterol and PS
concentrations; FC-LP, formula containing low cholesterol and PS concentrations.

3.2. Plasma and Liver PS Levels

In all diet groups, individual PS (campesterol, sitosterol, and sitostanol) were detected in plasma
and liver samples (Supplementary Table S1). Total PS concentrations in the plasma and liver samples
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are shown in Figure 1. Piglets fed the low PS formulas (F-LP and FC-LP) exhibited significantly
lower PS concentrations in plasma and liver samples compared to the high PS formulas (F-HP and
FC-HP formulas).
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Figure 1. Total PS concentrations in plasma (A) and liver (B) of piglets fed different infant formulas
containing high (F-HP) or low (F-LP) PS concentrations, supplemented with cholesterol (FC-HP, FC-LP)
to achieve concentrations similar to human milk. Data are means ± Standard error of the mean (SEM),
n = 8/diet group. Statistical differences were determined by two-way ANOVA; for total plasma PS,
p < 0.001 for PS, p = 0.360 for cholesterol, and p = 0.427 for interaction; for total hepatic PS, p < 0.001 for
PS, p = 0.305 for cholesterol, and p = 0.407 for interaction; Student Newman-Keuls post hoc analysis.
Bars without a common letter significantly differ from each other, p < 0.05.

3.3. Plasma Total-Cholesterol and LDL-Cholesterol Levels

Total-cholesterol concentrations were 2.71 ± 0.18, 2.70 ± 0.08, 3.00 ± 0.07, and 3.05 ± 0.09 mM
for F-HP, F-LP, FC-HP, and FC-LP fed piglets, respectively; no statistical differences were observed
(two-way ANOVA followed by Student Newman-Keuls post hoc analysis, p = 0.899 for PS, p = 0.021,
for cholesterol, p = 0.774, interaction). However, we did observe an increase in plasma LDL-cholesterol
in the cholesterol supplemented groups (0.98 ± 0.07 and 1.01 ± 0.05 mM) for FC-HP and FC-LP
fed piglets, respectively, relative to the F-HP and F-LP fed piglets (0.71 ± 0.08 and 0.71 ±0.09 mM),
respectively (two-way ANOVA, followed by Student Newman-Keuls post hoc analysis, p = 0.858 for
PS, p = 0.001 for cholesterol, p = 0.896, interaction).

3.4. Apparent Ileal Cholesterol Digestibility and Apparent Ileal Digestible Cholesterol Content

The apparent ileal digestibility of cholesterol was determined by comparing the sterol
concentration in the formula with the unabsorbed cholesterol present at the end of the small intestine.
The apparent ileal cholesterol digestibility and the apparent ileal digested cholesterol content of the
four test formulas determined in the neonatal piglet are shown in Table 3. Relative to the control diet
(F-HP), the apparent ileal cholesterol digestibility was significantly higher (≥2-fold) in the other diet
groups. As expected, the apparent ileal digestible cholesterol content in the cholesterol supplemented
diets (FC-HP, FC-LP) was 3.9- to 10-fold higher relative to F-HP and F-LP diets, p < 0.01. Interestingly,
we did observe a two-fold increase in apparent ileal digestible cholesterol content in the F-LP diet
relative to the F-HP, yet this difference was not significant, p > 0.05.
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Table 3. Apparent ileal digestibility and ileal digestibility content.

Formula F-HP F-LP FC-HP FC-LP Overall Overall Overall

SE p-Value Significance

Apparent ileal digestibility
(% from formula) 31.8 66.3 73.0 85.0 4.87 <0.001 S

Apparent ileal digestibility
content (g/kg formula) 69.8 160.4 625.0 710.0 26.2 <0.001 S

Data are means, n = 8/diet. Apparent ileal digestibility and digestibility content were determined as described in
the Materials and Methods section. Statistical significance was determined by one-way ANOVA, followed by Tukey
post hoc analysis. SE, overall standard error of the mean; S, significant, p ≤ 0.05. F-HP, formula containing high PS
concentrations; F-LP, formula containing low PS concentrations; FC-HP, formula containing high cholesterol and PS
concentrations; FC-LP, formula containing low cholesterol and PS concentrations.

3.5. Cholesterol Synthesis and Transport in the Ileum

As shown in Figure 2, cholesterol concentrations were measured in the ileal tissue of piglets fed
infant formulas containing different PS and cholesterol concentrations. In comparison to the high
PS low cholesterol control group (F-HP), ileal free cholesterol concentrations were slightly increased
by 7% and 12% in the F-LP and FC-HP fed groups (p < 0.05). More importantly, free cholesterol
concentrations were significantly lower in the FC-LP fed group compared to the F-HP, F-LP, and FC-HP
fed groups by 25%, 39%, and 34%, respectively. Surprisingly, in the FC-HP fed group, cholesterol esters
were significantly lower in comparison to the F-HP, F-LP, and FC-LP fed piglets, with the greatest
decrease observed in the FC-HP compared to the FC-LP fed group. Overall, we observed a trend
for decreased total cholesterol concentrations in the FC-HP fed group relative to the F-LP group and
F-HP control (p = 0.071). We did observe a significant difference in total cholesterol content between
FC-HP vs. FC-LP (Figure 2).
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Figure 2. Free cholesterol, cholesterol esters, and total cholesterol (free + esters) concentrations
in the ileal tissue of piglets fed different infant formulas containing high (F-HP) or low (F-LP) PS
concentrations, supplemented with cholesterol (FC-HP, FC-LP) to achieve concentrations similar to
human milk. Data are means± SEM, n = 8/diet group. Statistical differences were determined by Two-way
ANOVA; for free cholesterol, p = 0.371 for PS, p = 0.183 for cholesterol, and p < 0.05 for interaction; for
cholesterol esters, p = 0.074 for PS, p = 0.701 for cholesterol, and p < 0.05 for interaction; for total cholesterol,
p = 0.470 for PS, p = 0.098 for cholesterol, and p = 0.289 for interaction, Student Newman-Keuls post hoc
analysis. Bars without a common letter significantly differ from each other, p < 0.05.

In the ileum, mRNA expression of transporters involved in intestinal cholesterol uptake
(Niemann-Pick C1-like 1, Npc1l1) and efflux (Adenosine Triphosphate (ATP) binding cassette subfamily
A, member 1, Abca1; ATP binding cassette subfamily G, members 5 and 8, Abcg5/8) were also measured
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by real-time RT-PCR. For Npc1l1, mRNA expression increased in the F-LP and FC-HP groups relative
to the F-HP control group (Figure 3A). Npc1l1 gene expression was decreased (20%) in the FC-LP group,
relative to the FC-HP group, yet this difference was not significant (p < 0.100). For Abca1, we observed
a trend for increased mRNA expression in the low PS diet groups (F-LP, FC-LP) relative to the high PS
groups, F-HP and FC-HP, p = 0.058 (Figure 3B). Gene expression of Abcg5/8 did not differ between diet
groups (data not shown).
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Figure 3. Npc1l1 (A) and Abca1 (B) mRNA fold change in ileal tissue of piglets fed different infant
formulas containing high (F-HP) or low (F-LP) PS concentrations, supplemented with cholesterol
(FC-HP, FC-LP) to achieve concentrations similar to human breast milk. Data are means ± SEM,
n = 8/diet group. Statistical differences were determined by two-way ANOVA; for Npc1l1 mRNA,
p = 0.653 for PS, p = 0.693 for cholesterol, and p = 0.037 for interaction; for Abca1 mRNA, p = 0.058 for
PS, p = 0.512 for cholesterol, and p = 0.407 for interaction; Student Newman-Keuls post hoc analysis.
Bars without a common letter significantly differ from each other, p < 0.05.

3.6. Hepatic Cholesterol Synthesis

Concentrations of cholesterol synthesis precursors present in the plasma and liver of piglets
receiving the four test formulas are shown in Table 4. Interestingly, the desmosterol-to-cholesterol ratio
(D:C ratio) and lathosterol-to-cholesterol ratio (L:C ratio) were significantly lower in the FC-LP group,
suggesting reduced cholesterol synthesis rates in this diet group relative to the other diets. In the liver,
the D:C ratios were lower in both the F-LP and FC-LP groups, relative to the high PS formula fed groups,
F-HP and FC-HP. In contrast, the L:C ratios were significantly lower in the cholesterol supplemented
groups (FC-HP, FC-LP) relative to the non-supplemented formulas (F-HP, F-LP), with a trend for the
lowest L:C ratio in the FC-LP group relative to the FC-HP group, p = 0.062 (Table 4).

Table 4. Cholesterol precursor concentrations in plasma and liver samples of piglets fed formulas with
varying PS and cholesterol content.

Formula Plasma Liver

D:C ratio L:C ratio D:C ratio L:C ratio
F-HP 0.25 ± 0.03 a 0.14 ± 0.02 a 0.42 ± 0.03 a 0.42 ± 0.03 a

F-LP 0.19 ± 0.02 a 0.12 ± 0.01 a 0.18 ± 0.01 b 0.37 ± 0.04 a,b

FC-HP 0.22 ± 0.02 a 0.10 ± 0.01 a 0.37 ± 0.02 a 0.24 ± 0.02 b

FC-LP 0.14 ± 0.01 b 0.07 ± 0.01 b 0.19 ± 0.01 b 0.20 ± 0.01 b,c

p Values

PS 0.010 0.199 <0.001 0.057
Cholesterol 0.106 0.031 0.568 <0.001
Interaction 0.682 0.241 0.434 0.499

Data are means ± SEM for piglets fed infant formulas containing either high PS and low cholesterol concentrations
(F-HP), low PS and low cholesterol concentrations (F-LP), high PS and high cholesterol concentrations (FC-HP),
and low PS and high cholesterol concentrations (FC-LP); n = 8/diet. Abbreviations: desmosterol-to-cholesterol ratio (D:C
ratio), lathosterol-to-cholesterol ratio (L:C ratio). Significant differences were determined by two-way ANOVA, followed
by Student Newman-Keuls post hoc analysis; labeled means in a column without a common letter differ, p < 0.05.
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These findings suggest that hepatic cholesterol synthesis is reduced in piglets fed low PS formula
supplemented with cholesterol, relative to the other diet groups. Consistent with these findings,
we observed a trend for decreased mRNA expression (~35%) of the transcription factor controlling
hepatic cholesterol synthesis, sterol regulatory element-binding protein-2 (Srebp2) in the low PS groups,
p = 0.056, (Figure 4A); nuclear SREBP2 expression was also significantly lower in the low PS groups
(F-LP, FC-HP) relative to the high PS formula fed groups (F-HP, FC-HP), with the lowest expression
observed in the FC-LP fed piglets relative to all other diet groups (Figure 4B). The membrane expression
of the low density lipoprotein receptor (LDLR), a target for SREBP2 regulation, was also decreased in
groups receiving the low PS formulas (F-LP, FC-LP) relative to the high PS formulas (Figure 4C).

Nutrients 2018, 10, x FOR PEER REVIEW  9 of 14 

 

These findings suggest that hepatic cholesterol synthesis is reduced in piglets fed low PS formula 

supplemented with cholesterol, relative to the other diet groups. Consistent with these findings, we 

observed a trend for decreased mRNA expression (~35%) of the transcription factor controlling 

hepatic cholesterol synthesis, sterol regulatory element-binding protein-2 (Srebp2) in the low PS 

groups, p = 0.056, (Figure 4A); nuclear SREBP2 expression was also significantly lower in the low PS 

groups (F-LP, FC-HP) relative to the high PS formula fed groups (F-HP, FC-HP), with the lowest 

expression observed in the FC-LP fed piglets relative to all other diet groups (Figure 4B). The 

membrane expression of the low density lipoprotein receptor (LDLR), a target for SREBP2 regulation, 

was also decreased in groups receiving the low PS formulas (F-LP, FC-LP) relative to the high PS 

formulas (Figure 4C). 

 

Figure 4. Srebp2 mRNA fold change (A) and nuclear protein expression (B), and LDLR protein 

expression (C) in the liver of piglets fed different infant formulas containing high (F-HP) or low (F-

LP) PS concentrations, supplemented with cholesterol (FC-HP, FC-LP) to achieve concentrations 

similar to human breast milk. Data are means ± SEM, n = 8/diet group. Statistical differences were 

Figure 4. Srebp2 mRNA fold change (A) and nuclear protein expression (B), and LDLR protein
expression (C) in the liver of piglets fed different infant formulas containing high (F-HP) or low (F-LP)
PS concentrations, supplemented with cholesterol (FC-HP, FC-LP) to achieve concentrations similar to
human breast milk. Data are means ± SEM, n = 8/diet group. Statistical differences were determined
by two-way ANOVA; for Srebp2 mRNA, p = 0.056 for PS, p = 0.833 for cholesterol, and p = 0.427 for
interaction; for SREBP2, p < 0.001 for PS, p = 0.004 for cholesterol, and p = 0.673 for interaction; for LDLR,
p < 0.001 for PS, p = 0.881 for cholesterol, and p < 0.001 for interaction. Student Newman-Keuls post
hoc analysis. Bars without a common letter significantly differ from each other, p < 0.05.
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4. Discussion

Breast-fed infants consuming up to five-fold greater amounts of cholesterol than formula-fed
infants have been found to be less prone to obesity and related diseases, such as cardiovascular
diseases, during adulthood; the latter has been hypothesized to be attributed—at least in part—to
exposure to dietary cholesterol early in life. Also, evidence from epidemiological studies associates
initial breastfeeding, especially exclusive breastfeeding, with lower blood cholesterol levels during
adulthood [24]. As such, the importance of providing the growing infant with adequate dietary
cholesterol cannot be overemphasized. Several studies report different approaches to enhancing
circulating cholesterol in infants consuming infant formula, by using various modifications, including
blending different oil sources or the addition of cholesterol in modified infant formula, all in
an attempt to increase the cholesterol concentrations in infant formula [1,10,25–29]. The use of
PS-reduced vegetable oils in an attempt to improve cholesterol absorption, in addition to cholesterol
supplementation, has not been previously investigated in infant formula. Therefore, we utilized
a neonatal piglet model of postnatal feeding to test the hypothesis that PS impede cholesterol uptake,
resulting in increased hepatic cholesterol synthesis rates.

As expected, piglets fed formulas with a lower PS concentration exhibited less PS in plasma,
as well as in the liver tissue. These results are in line with Mellies et al. [6], who showed a direct
correlation between the PS concentrations in the human milk and in the plasma of breastfed infants.
In the present work, the reduction in PS intake led to an increase in the absorption of cholesterol,
as revealed by the higher cholesterol digestibility in piglets fed the formulas with the reduced PS.
The enhancement of cholesterol absorption provides higher cholesterol availability from the diet and
enables lower cholesterol endogenous synthesis.

Apparent ileal cholesterol digestibility ranged from 32% to 85% across the test animals in this
study. While there is a dearth of information relating to the cholesterol digestibility of formulas in
infants, the latter values were similar to those reported for the cholesterol absorption of mixed diets
when determined in adult humans using techniques such as the dual isotope label method [30–33].
Though the results are in line with the reported range, there was a significant difference observed
between the regular infant formula diet and the other formulas that differed in PS levels or cholesterol
level; however, digestibility was highest for the formula with the high cholesterol and the low PS levels.
The cholesterol digestibility was two times higher by just reducing the diet PS; and up to 10 times
higher by reducing the dietary PS and supplementing the formula with cholesterol. Consistent with
these findings, there were higher cholesterol ester concentrations (3-fold) in the ileum of piglets
fed the low PS, high cholesterol formula (FC-LP), relative to the high PS, high cholesterol formula
(FC-HP). In the ileum, the fate of absorbed cholesterol is dependent on its physicochemical state,
whether it is esterified via acylCoA:cholesterol acyltransferase 2 (Acat2) or remains in the cellular
and plasma membranes as free cholesterol [34–36]. Acat2 has long been suggested to play a key role
in facilitating cholesterol absorption by esterifying free cholesterol and directing it to chylomicron
assembly and secretion. In fact, studies in Acat2 knockout mice demonstrate that the loss of cholesterol
ester formation inhibits cholesterol absorption [37,38]. Our findings suggest that lowering PS content
in infant formula, in addition to cholesterol supplementation, will increase dietary cholesterol uptake
by the ileum.

Cholesterol synthesis was not directly measured in the present study. Instead, two intermediates
of the cholesterol pathway (desmosterol and lathosterol) were determined as proxies for synthesis
rates. Circulating cholesterol precursor markers have been used in other studies examining cholesterol
synthesis in vivo [39]. As indicated by plasma D:C and L:C ratios, cholesterol synthesis was suppressed
primarily in piglets fed the FC-LP diet, containing the low PS and high cholesterol concentrations.
Corresponding to this apparent decrease in cholesterol synthesis, nuclear SREBP2 expression was also
reduced in both F-LP and FC-LP groups, which underscores the importance of PS removal from the
diet in reducing cholesterol synthesis rates. However, it should be noted that the cholesterol precursor
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ratios are only proxies for cholesterol synthesis. Direct measures of synthesis, i.e., fractional synthesis
rates (FSR), would have been an asset in this study.

Our results reveal that the content of both PS and cholesterol in infant formulas may affect
cholesterol metabolism and synthesis. These findings are consistent with other published studies.
For example, Bayley et al. investigated the effects of supplementing formula with cholesterol on de
novo cholesterol synthesis in formula fed infants compared with breastfed infants, and demonstrated
higher fractional cholesterol synthesis rates in formula fed infants despite supplementation with
cholesterol [10]. In our study, the supplementation of cholesterol to a regular infant formula resulted
in reduced cholesterol synthesis, but to a lesser extent than the combination with the reduced PS
content, as revealed by some cholesterol synthesis markers. This therefore highlights the potential
value of reducing PS in infant formula to achieve a favorable cholesterol synthesis profile. This could
potentially have long-term effects. A recently published study showed the consequences of decreased
milk cholesterol availability, early in life, on the metabolism of cholesterol in adulthood in a mouse
model [40]. The authors blocked the intestinal absorption of cholesterol in milk fed to newborn mice
by supplementing the food of dams with ezetimibe, which interferes with the intestinal cholesterol
absorption, and revealed a decrease in cholesterol absorption and an increased histone methylation in
small intestine tissues from 24-week old offspring.

5. Conclusions

Our findings point to the importance of sterol profiles in infant nutrition for short-term cholesterol
balance. The study demonstrated that infant formula should not only provide the cholesterol, but also
enable its absorption, in order to ensure optimal cholesterol metabolism. These findings speculate to
impact the long-term effect of dietary cholesterol on health well beyond infancy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/10/12/1848/
s1, Table S1: Plant sterol concentrations in plasma and liver samples from piglets fed infant formulas containing
different PS and cholesterol concentrations.
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