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Abstract

Motivation: The emergence of high-throughput sequencing technologies revolutionized genomics

in early 2000s. The next revolution came with the era of long-read sequencing. These technological

advances along with novel computational approaches became the next step towards the automatic

pipelines capable to assemble nearly complete mammalian-size genomes.

Results: In this manuscript, we demonstrate performance of the state-of-the-art genome assembly

software on six eukaryotic datasets sequenced using different technologies. To evaluate the

results, we developed QUAST-LG—a tool that compares large genomic de novo assemblies

against reference sequences and computes relevant quality metrics. Since genomes generally can-

not be reconstructed completely due to complex repeat patterns and low coverage regions, we

introduce a concept of upper bound assembly for a given genome and set of reads, and compute

theoretical limits on assembly correctness and completeness. Using QUAST-LG, we show how

close the assemblies are to the theoretical optimum, and how far this optimum is from the finished

reference.

Availability and implementation: http://cab.spbu.ru/software/quast-lg

Contact: aleksey.gurevich@spbu.ru

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Modern DNA sequencing technologies cannot read the entire se-

quence of a chromosome. Instead, they generate large numbers of

reads sampled from different parts of the genome. The emergence of

low-cost and high quality second-generation sequencing (also known

as next-generation sequencing or NGS) allowed scientists to decode

numerous previously unsequenced organisms. However, the market

of genome sequencing is rapidly developing and the recent domin-

ation of NGS technologies is now in question due to constantly

improving third-generation (long-read) sequencing (LRS). The length

of reads produced by LRS technologies, Pacific Biosciences and

Oxford Nanopore Technologies, now can exceed hundred thousand

bases, which is several orders of magnitude higher than the longest

reads generated by NGS. At the same time, these technologies pro-

duce reads with the error rate significantly higher compared to the

NGS competitors, and remain rather expensive. Thus, both kinds of

DNA sequencing technologies suffer from major drawbacks, which

can however be overcome with computational methods.

Genome assembly software combines the reads into larger

sequences called contigs. Long repeats in the genomes impede

reconstruction of full chromosomes, which is impossible in most

cases when using only short reads produced by NGS technologies.

However, these short read assemblies can be significantly improved

with long-range mate-pair libraries (Chaisson et al., 2009; Vasilinetc

et al., 2015). In contrast to paired-end libraries with typical insert

size below 1 kilobase (kb), current mate-pairs protocols generate

much longer inserts (up to 20 kb). Assembly software utilize that in-

formation to span over long repeats and coverage gaps, and extend

contigs into longer sequences, usually referred to as scaffolds. At the

same time, assembly algorithms for long reads typically do not re-

quire mate-pairs, since the read length is sufficient enough for

resolving complex repeats. The most important drawback of the

LRS technologies is the high per base error rate, that can be

addressed either by investing into a higher sequencing depth (Koren

et al., 2017), which may be expensive, or by correcting errors using

high quality short reads (Walker et al., 2014).

Various assembly tools use different heuristic approaches to ad-

dress the challenges of genome assembly, resulting in significant dif-

ferences in the contigs and scaffolds they generate. It brings up the

problem of comparing assemblies against each other. Assemblathon
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1 (Earl et al., 2011) was one of the first attempts to assess the lead-

ing genome assembly software. The organizers provided a simulated

short read dataset of an unknown simulated genome. The dataset

was assembled by 17 groups of both assembler developers and users

from around the globe and the resulting 41 assemblies were carefully

evaluated. The subsequent study, Assemblathon 2 (Bradnam et al.,

2013), used a similar competition model but provided the real

sequencing data from three vertebrate species. Unfortunately, the

evaluation scripts used in both assemblathon projects were mostly

focused on those particular genomes and could not be easily applied

for everyday quality assessment. The GAGE study (Salzberg et al.,

2012) established a golden standard in the genome assembly evalu-

ation and created a program that implements it. The GAGE tool

was further extended and improved in the QUAST (Gurevich et al.,

2013) software, which became a main evaluation tool in the subse-

quent GAGE-B competition for bacterial genome assemblers

(Magoc et al., 2013). Recent critical assessment of metagenome

interpretation study (Sczyrba et al., 2017) used MetaQUAST

(Mikheenko et al., 2016b), an extension of QUAST for metage-

nomic assembly evaluation.

Despite the wide usage of the QUAST package, it can hardly be

treated as a universal genome assembly evaluation tool. The reason

for that is the original design aimed at bacterial and small eukaryotic

assemblies which limits the tool application to genomes shorter than

hundred megabases. In this work, we present QUAST-LG, a signifi-

cantly upgraded version of QUAST capable of analyzing large gen-

omic sequences. Our tool can evaluate mammalian-size assemblies

within a few hours on a regular server. QUAST-LG includes both

speed up improvements and new quality metrics that take into ac-

count specific features of the eukaryotic genomes, such as the abun-

dance of transposons. In contrast to purely reference-free

approaches like REAPR (Hunt et al., 2013), ALE (Clark et al.,

2013) and LAP (Ghodsi et al., 2013), the original QUAST was lim-

ited in the absence of a known reference genome. QUAST-LG ena-

bles assessment for novel species by incorporating reference-free

tools as a part of its pipeline; however, reference-free analysis is not

the primary use case for QUAST-LG.

Another improvement in QUAST-LG is a concept of upper

bound assembly which is based on the fact that the reference gen-

ome cannot be completely reconstructed from raw reads due to long

genomic repeats and low covered regions. The previous studies on

the near-optimal assembly problem (Bresler et al., 2013; Lam et al.,

2014) estimate the read length and the coverage depth required for a

successful genome reconstruction under some theoretical assump-

tions on shotgun sequencing data. We approach the opposite prob-

lem: given a dataset, QUAST-LG estimates the upper bound of

completeness and contiguity that theoretically can be reached by as-

sembly software from this particular set of reads. Moreover, our

method takes into account that a dataset may consist of multiple

sequencing libraries generated by both NGS and LRS technologies.

To demonstrate QUAST-LG functionality, we evaluate the

ability of the state-of-the-art genome assembly tools to assemble

medium-sized and large genomes. We use whole genome sequencing

(WGS) datasets that include two libraries—Illumina paired-end

reads, and either high-quality Illumina mate-pairs, or a long-read li-

brary. Both leading LRS technologies, Pacific Biosciences single mol-

ecule real time (PacBio SMRT) sequencing and Oxford Nanopore

sequencing, are present among these test datasets. To enable con-

venient reproduction of our results, all datasets and software tools

used in this study are freely available.

2 Materials and methods

2.1 Upper bound assembly construction
We construct upper bound assembly based on a reference genome

and a given set of reads. At first, the construction algorithm maps all

reads to the reference genome and detects zero-coverage regions

(Fig. 1a). We use Minimap2 (Li, 2017) for aligning long error-prone

reads (PacBio and Nanopore) and BWA-MEM (Li, 2013) for short

Illumina reads (paired-ends and mate-pairs).

Further on, the lightweight Red (Girgis, 2015) de novo repeat

finder is used to mark long genomic repeats in the reference

(Fig. 1a). We call a repeat long if its length exceeds the median insert

size of a paired-end library (when several paired-end libraries are

available, the maximum median value is used). Among the detected

repeated sequences, we select only those that occur at least twice in

remote parts of the genome. Such long repeats cause ambiguities

during the assembly, which may be resolved only by long reads or

mate-pairs. Other long regions marked by Red appear to be short

tandem repeats having multiple copies at the same genomic loci. To

the best of our knowledge, such tandem repeats do not cause ambi-

guities and can be approximately resolved by the assemblers without

using long-range information [e.g. using de Bruijn graph topology

(Miller et al., 2010)].

Splitting the reference sequence by coverage gaps and long

repeats results in a set of unique genomic fragments referred to as

upper bound contigs, that however do not reflect the best possible

assembly of the entire dataset. To achieve a more realistic upper

bound, we detect the contigs that are connected by long reads or

mate-pairs and further join them into upper bound scaffolds if the

number of connections exceeds a small threshold n (Fig. 1b). In this

study we used n¼1 for long reads and n¼2 for mate-pairs. We say

that a long read connects two contigs if it simply overlaps with both

contigs. A pair of reads connects contigs if the left read overlaps

with the first contig and the right read overlaps with the second con-

tig. During this analysis we ignore read pairs that map inconsistently

or with abnormal insert size (in the first or the last decile). To enable

efficient overlap detection between reads and upper bound contigs,

we sort all reads according to their mapping positions. Thus, the

scaffold construction algorithm requires OðN log NÞ time for read

sorting and O(N) time for finding overlaps, where N is the total

number of long and mate-pair reads used for scaffolding.

Once upper bound contigs are joined into scaffolds, the gaps be-

tween adjacent contigs are filled with the corresponding genomic

sequences from the reference genome, or—in case of coverage

gaps—with stretches of N’s (Fig. 1c). Remaining unresolved repeats

are added to the final upper bound assembly as separate sequences.

2.2 Adaption of conventional metrics for large genomes
The key characteristics of the assembly quality are the assembly

completeness (what fraction of the genome is assembled), correct-

ness (how many errors the assembly contains) and contiguity (how

many fragments the assembly consists of and how long they are).

Both completeness and correctness can be accurately measured by

QUAST-LG only when a high-quality reference genome is available.

Some contiguity statistics, such as the well-known N50 metric, do

not require a reference. However, when an estimate of the genome

size is known, their more suitable analogues can be computed,

namely NG50. If a reference sequence is available, we provide even

more relevant insight by computing NGA50-like statistics (Gurevich

et al., 2013), the contiguity measures based on error-free aligned as-

sembly fragments rather than the initial contigs/scaffolds.
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The alignment against the reference genome appears to be the

most time consuming step in the assembly evaluation, especially for

large genomes. To address this bottleneck, we replaced an accurate

and slow NUCmer aligner [from MUMmer v3.23 package (Kurtz

et al., 2004)] used in original QUAST with a faster Minimap2

aligner (Li, 2017). The recently released MUMmer 4 package

(Marcais et al., 2018) was also outperformed by Minimap2 in our

benchmark experiments, albeit the speed increase in this case was

not as substantial as the Minimap2’s improvement over the previous

MUMmer version. We have thoroughly chosen Minimap2 options

in order to maintain the alignment speed-accuracy ratio for different

scenarios. In standard mode QUAST-LG runs alignment with the

parameters enabling accuracy comparable with NUCmer which is

suitable for small genomes. In ‘--large’ mode QUAST-LG configures

Minimap2 to achieve adequate running times for large and complex

inputs.

The assembly correctness is usually characterized by the number

of large assembly errors, so-called misassemblies. Gurevich et al.

(2013) define a misassembly breakpoint as a position in an

assembled contig where the flanking sequences align to opposite

strands (inversion), or to different chromosomes (translocation), or

the inconsistency size d (a gap or an overlap) between the alignments

of the left and right flanking sequences on the reference is more than

a predefined breakpoint threshold X (relocation). The alignments on

the same strand of the same chromosome and having d < X are

considered as small errors and classified as local misassembly.

Eukaryotic genomes usually contain a lot of transposable ele-

ments (TEs) which may cause discrepancies between the reference

genome and the genome actually being assembled. These short var-

iations result in a huge number of false positive misassemblies if

computed according to the definition given above. To distinguish

between true misassemblies and the ones caused by TEs, QUAST-

LG performs an additional check of each relocation and inversion to

identify possible TEs (Fig. 2). The identification procedure depends

on the size of the breakpoint threshold X which optimal value

should slightly exceed the length of the largest TE in the genome

(the processing of tandem TE insertions and deletions is out of scope

of this paper). The optimal value thus depends on the subject organ-

ism and we allow users to set it manually. For the sake of consist-

ency, we used the same X¼7 kb in all benchmark experiments in

this study (see Supplementary Methods for details on the value

choice). This is also the default value in QUAST-LG in contrast to

regular QUAST which uses X¼1 kb.

2.3 Best set of alignments selection
Long contigs are rarely mapped to the reference perfectly as a single

unambiguous alignment. An alignment software typically reports

multiple alignment fragments from different locations of the

Fig. 1. Upper bound assembly construction. (a) All available reads (brown for long reads, orange for mate-pairs, and yellow for paired-ends) are mapped to the

reference (gray) to compute zero-coverage genomic regions. Repeat sequences (red) are detected using repeat finder software. Non-repetitive covered fragments

are reported as upper bound contigs. (b) The overlaps between the contigs (green), and either long or mate-pair reads are detected, and contigs are further joined

to form upper bound scaffolds. (c) The gaps between adjacent contigs within a scaffold are filled either with reference sequence (for covered regions) or with

stretches of N nucleotides (for coverage gaps). Unresolved repeats are added as separate sequences

Fig. 2. Detection of discrepancies caused by TEs. On each subfigure, we plot the reference genome R (top), the contig C (bottom), their matching fragments (blue

and green bars for the positions in C and R, respectively) and locations of TEs (violet bars) causing discrepancies in the mapping. The inconsistencies in the align-

ments are shown by arrows and d characters. (a) TE is present in R and missing in C. Since d here is equal to the TE’s length, a specifically chosen breakpoint

threshold X transforms classification of this discrepancy from a relocation to a local misassembly (X > d). (b) TE is located inside C but its position in R is signifi-

cantly away from the rest of C mappings and could also be located on the opposite strand. Original QUAST would treat this situation as two misassembly break-

points (relocations or inversions) because d1 and d2 are usually much higher than X. In contrast, QUAST-LG classifies such pattern as possible TE since it

computes d ¼ d2 � d1, that is again equal to the TE’s length and could be prevailed by appropriate X. (c) TE is the first or the last alignment fragment in C, while its

location on R is large distance d away from the neighboring C fragment. QUAST-LG cannot reliably distinguish this situation from a real relocation/inversion: it

would need to be able to recognize TE based on its genomic sequence, which is out of scope of this paper
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genome. This may happen due to the presence of genomic repeats

and TEs in the reference genome and in some cases because of

algorithmic issues in the assembly or/and alignment software.

QUAST-LG attempts to accurately assess each contig and select a

set of non-overlapping alignments that maximizes the total align-

ment score, which is defined as a function of the alignment lengths,

mapping qualities and side by side inconsistencies (misassemblies).

This problem is known as the collinear chaining problem (Myers

and Miller, 1995) and it is usually solved by sequence aligners for a

low-level chaining, that is joining short matching seeds into larger

alignment fragments. For example, MUMmer (Kurtz et al., 2004)

combines maximal unique matches and Minimap2 (Li, 2017) chains

minimizers (Roberts et al., 2004). Here we implement a dynamic

programming algorithm called BestSetSelection for a high-level

chaining, that is combining alignment fragments (see Supplementary

Methods).

Our algorithm is conceptually similar to delta-filter utility from

MUMmer package (Kurtz et al., 2004) but our approach includes a

comprehensive set of penalties for various misassembly events. This

feature allows BestSetSelection to correctly resolve many complex

sets of alignments, which are typical for eukaryotic assemblies, and

produce a more accurate chaining than delta-filter in our benchmark

experiments.

BestSetSelection is a quadratic algorithm with respect to the

number of fragment alignments per contig which is usually fine since

this number is generally small (up to 100). However, this may cause

a significant slowdown in case of large genomes evaluation when

the number of alignments may reach dozens of thousands in some

contigs. Although there are chaining algorithms with sub-quadratic

time complexity (Abouelhoda and Ohlebusch, 2005), they are not

applicable to our gap cost function and associated with a large con-

stant. Instead, we have implemented a simple heuristic that always

finds the best alignment set or one of the several sets that maximize

the score (Supplementary Methods). And even though the heuristic

idea does not guarantee the speed up in theory, it significantly

dropped the running time of all six benchmark dataset evaluations.

2.4 K-mer-based quality metrics
As shown above, the presence of many TEs and other specific fea-

tures of eukaryotic genomes significantly complicates assembly

evaluation. Although QUAST-LG adjustment of the conventional

completeness and correctness measures improve the assessment, it

may still not be good enough to form the complete picture of eu-

karyote assembly quality. Here we propose to assess assemblies

using a completely different strategy inspired by the evaluation

procedures in Putnam et al. (2016) and Chapman et al. (2016) and

generalized for an arbitrary genome analysis in QUAST-LG. This

strategy is based on the analysis of unique k-mers (non-repeated

sequences of length k) both in the reference genome and in the as-

sembly. If k value is sufficiently large (QUAST-LG uses 101-mers by

default), unique k-mers appear to be widespread across the genome.

For instance, the fruit fly genome contains 122 millions unique 101-

mers out of 137 millions total 101-mers. The existence and the posi-

tions of such k-mers in the assembly describe its completeness and

correctness.

We use KMC 3 (Kokot et al., 2017) to detect all unique k-mers

in the reference genome. The percentage of these k-mers detected in

the assembly is reported as its k-mer completeness. Compared to the

genome fraction completeness measure, the k-mer-based value

accounts for per-base quality of an assembly which is usually highly

important for the downstream analysis such as genome annotation.

The benchmarking below shows that assemblies with a very similar

genome fraction may have completely different k-mer completeness

due to a high mismatch and indel error rates.

The k-mer-based correctness is calculated based on a small uni-

formly distributed subset of all unique k-mers in order to speed up

the computation. We select the subset in a way that any two k-mers

from the subset are at least 1 kb apart from each other in the

reference genome R. The subset is provided to KMC and it identifies

contigs having at least two k-mers. The contig position of each

detected k-mer is examined and we refer to a consecutive list of

k-mers k1; k2; . . . ; kn (where n � 2) in a contig C as a marker if for

any i 2 ½1; n� 1� the distances between ki and kiþ1 in C and R are

equivalent within a small error (5% of the distance in R by default).

We further process contigs having at least two markers to check

whether the relative positions of adjacent markers mj and mjþ1 cor-

relate with their locations in R. QUAST-LG reports a k-mer-based

translocation breakpoint if mj and mjþ1 are originated from different

chromosomes and a k-mer-based relocation if the markers are from

the same chromosome but the inconsistency between their positions

in C and R is larger than a predefined threshold (we use 100 kb

threshold by default). We further refer to k-mer-based translocations

and relocations as k-mer-based misjoins to exclude confusion with

regular QUAST misassemblies. K-mer-based misjoins are essentially

similar to the regular misassembly metrics, except that they are

focused on the most critical assembly errors. The key benefit of these

measures is in their tolerance to inconsistencies caused by TEs, since

TEs mostly correspond to genomic repeats and thus lack unique

k-mers. For example, k-mer-based relocations can successfully re-

solve the situations when a contig starts or ends with a TE which

cause an ambiguity in the regular misassembly detection algorithm

(Fig. 2c).

2.5 Evaluation without a reference genome
In most real assembly projects a reference genome sequence is not

available and the assembly quality assessment must rely on other

sources of information. The primary purpose of QUAST-LG is the

reference-based analysis but we also include a few de novo

eukaryote-targeted completeness measures to make our tool useful

in a wider set of applications. QUAST-LG is supplied with

GeneMark-ES (Lomsadze et al., 2005) software for de novo gene

prediction in eukaryotic genomes. However, despite the relevance of

the gene finding in assessing downstream analysis perspectives its

heuristic nature may result in a misleading output in some experi-

ments. For instance, an assembly may contain multiple copies of one

gene which will be reported several times. To counter this, we add-

itionally use BUSCO (Simao et al., 2015) to find the number of

assembled conserved genes that are present nearly universally in

eukaryotes in a single copy. To demonstrate how BUSCO complete-

ness correlates with more accurate reference-based quality metrics,

we added its computation in all our benchmark experiments.

Note that reference-free correctness metrics are out of scope of

QUAST-LG and we recommend using specialized de novo evalu-

ation tools for this scenario. For instance, REAPR (Hunt et al.,

2013) identifies likely assembly and scaffolding errors based on

paired reads mapping. Another example is KAT (Mapleson et al.,

2017) that compares the k-mer spectrum of the assembly to the

k-mer spectrum of the reads, which is quite useful in identifying

missing sequence, collapsed repeats and expanded sequences in the

assembly.
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3 Results

3.1 The datasets
We chose six WGS datasets representing four eukaryotic genomes:

the yeast (YeastPB and YeastNP), the worm (WormPB), the fruit fly

(FlyMP) and the human (HumanMP and HumanNP) (Table 1).

Selected genomes represent a wide range of genome sizes, from 12.5

megabases (Mb) for yeast up to 3 gigabases (Gb) for human. The

number of chromosomes ranges from just 4 (fruit fly) to 23

(human). Each dataset includes a single Illumina paired-end library

and an additional long-read (PacBio SMRT or Oxford Nanopore)

or Illumina mate-pair library which is associated with the sub-

scripted abbreviations in the dataset names (PB, NP, MP, respective-

ly). The use of two libraries in each dataset enables generation of

both high quality and continuous assemblies. All the benchmarked

species were previously sequenced and finished to a very high stand-

ard genome sequences, allowing us to deeply investigate the correct-

ness of each assembly. All datasets and reference sequences were

downloaded from the public sources, the links are available from

our project web page.

In addition, we used previously annotated and curated structural

variants (SVs) for both human individuals analyzed in this study.

These SVs were provided to QUAST-LG using ‘--sv-bedpe’ option

(Mikheenko et al., 2016b) for muting misassemblies caused by true

structural inconsistencies between the reference and the sequenced or-

ganism. SVs for the HumanMP (HG004) dataset were taken from

Chaisson et al. (2014) (automated annotation of HG002, a close rela-

tive of HG004) and SVs for HumanNP (HG001) were downloaded

from the curated database of genomic variants (MacDonald et al.,

2014) and from the Wala et al. (2018) study [automated annotation

of HG001 large deletions with LUMPY (Layer et al., 2014)].

3.2 The assemblers
Only a couple of the leading genome assembly tools can handle both

long and short reads (paired-ends only or together with mate-pairs)

data. Thus, we selected two separate groups of assemblers, one for

each type of the input data (Table 2).

Most of the short-read assemblers (Table 2, top) utilize jumping

libraries for repeat resolution and scaffolding. The only exception is

DISCOVAR de novo (https://software.broadinstitute.org/software/

discovar/blog/) that was scaffolded using external BESST (Sahlin

et al., 2014) software.

The assemblers for long-read datasets are shown on the bottom

of Table 2. We additionally used Pilon (Walker et al., 2014) polish-

ing tool to improve Canu and FALCON assemblies based on the

short reads data and Racon (Vaser et al., 2017) polishing tool to im-

prove Miniasm assemblies. MaSuRCA utilizes both short and long

reads simultaneously by design and Flye [the successor of ABruijn

(Lin et al., 2016) assembler] has its own polishing tool based on

long reads only. SPAdes package (Bankevich et al., 2012) includes a

recently developed module for hybrid LRS and NGS data assembly

(Antipov et al., 2016) which is however targeted at bacterial

genomes in its current implementation and therefore was not

included in this study. Thus, MaSuRCA is currently the only soft-

ware capable to perform sufficiently well on both types of input

datasets.

3.3 Data preprocessing
WGS data usually requires a preprocessing stage, such as adapter

trimming and error correction. Some of the assemblers we bench-

marked have its own error correction modules, while others rely on

clean input. To fairly compare the assembly algorithms we per-

formed an independent error correction, ran each assembler on both

raw and corrected data and selected the best pipeline for each tool.

To correct sequencing errors in Illumina short reads, we per-

formed quality trimming using Cutadapt v1.15 (Martin, 2011) with

the option ‘-q 20’ and all other parameters set to the default values.

All paired-ends libraries appeared to be free from the adapters. To

clean adapters in mate-pairs, we ran NxTrim software (O’Connell

et al., 2015). We did not perform additional correction of long-read

libraries, since all four tools used for their assembly have intrinsic

correction strategies.

Table 1. Benchmark datasets details

Dataset YeastPB YeastNP WormPB FlyMP HumanMP HumanNP

Species S.cerevisiae S.cerevisiae C.elegans D.melanogaster H.sapiens HG004 H.sapiens HG001

Genome size 12.1 Mb 12.1 Mb 100.3 Mb 137.6 Mb 3.1 Gb 3.1 Gb

Library 1 RL, IS 101 bp, 220 bp 250 bp, 350 bp 100 bp, 250 bp 101 bp, 225 bp 250 bp, 350 bp 150 bp, 350 bp

Coverage 1038� 300� 65� 35� 50� 100�
Library 2 Type PB NP PB MP MP NP

RL, IS 6 kb,— 7.7 kb,— 11 kb,— 110 bp, 8 kb 101 bp, 6 kb 6.5 kb,—

Coverage 155� 120� 40� 40� 30� 30�

Note: Read lengths (RL) and insert sizes (IS) are represented by their median values, ‘—’ indicates no insert size for long-read libraries. Type stands for the

sequencing technology used for generating Library 2, PB, NP, MP are for PacBio SMRT, Oxford Nanopore Technologies and Illumina mate-pairs data, respect-

ively. Library 1 data were generated with Illumina sequencers for all datasets. HG001 and HG004 are human sample identifiers in the Genome in a Bottle

Consortium (Zook et al., 2016).

Table 2. Assemblers used in the study

Name Reference Version Date

Short-read assemblers

ABYSS Jackman et al. (2017) 2.0.2 Oct 2016

DISCOVAR de novo — 52488 Mar 2015

MaSuRCA Zimin et al. (2013) 3.2.3 Sep 2017

Meraculous Chapman et al. (2011) 2.2.4 Jun 2017

Platanus Kajitani et al. (2014) 1.2.4 Oct 2015

SOAPdenovo Luo et al. (2012) 2.04 Dec 2013

SPAdes Bankevich et al. (2012) 3.11.1 Oct 2017

Long-read assemblers

Canu Koren et al. (2017) 1.6 Jun 2017

FALCON Chin et al. (2016) 0.7 Jun 2016

Flye Kolmogorov et al. (2018) 2.3 Jan 2018

MaSuRCA Zimin et al. (2013) 3.2.3 Sep 2017

Miniasm Li (2016) 0.2-r168 Nov 2017

Note: The assemblers are divided into two groups based on the read types

they can process. DISCOVAR de novo is the successor of popular

ALLPATHS-LG (Gnerre et al., 2011) assembler but it is not published yet

(indicated with ‘—’).
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3.4 The assemblies
The assemblies of the HumanMP dataset are taken from ABySS2

study (Jackman et al., 2017) (only the ones with scaffolds). The

assemblies of the HumanNP dataset were generated by the corre-

sponding assembler developers [Canu (https://genomeinformatics.

github.io/NA12878-nanopore-assembly/), Flye (https://zenodo.org/

record/1143753) and MaSuRCA (http://masurca.blogspot.ru/2017/

05/human-na12878-hybrid-minionillumina.html)]. The assemblies

of the rest four datasets were generated during this study. Most of

the assemblers allow user to configure the assembly parameters in

order to achieve better results. We ran all assemblers using different

combinations of parameters. To select the best assembly in each

case, we chose the one that produced the largest N50 for scaffolds,

which is a common heuristic for selecting the best assembly when

the true genome sequence is unknown. All our assemblies are avail-

able online from the project web page.

3.5 QUAST-LG performance
We compared the performance of QUAST-LG against the conven-

tional QUAST v4.5 on all six benchmark datasets (Table 3). Note

that original QUAST cannot generate an upper bound assembly, so

input assemblies of each dataset were supplied with the correspond-

ing upper bound assemblies generated with QUAST-LG for a fair

comparison. Also, QUAST-LG functionality in these benchmarks

was limited to the metrics computed by QUAST for the sake of con-

sistency. At the same time, the conventional QUAST tool was con-

figured accordingly to the QUAST-LG settings on the minimal

contig and aligned fragment lengths which gave a considerable speed

up comparing to the default parameters.

Table 3 shows that QUAST-LG in all situations runs faster

than conventional QUAST. The speed up becomes more signifi-

cant on large genomes. The smallest datasets (YeastPB and

YeastNP) give 4–6 fold speed up whereas FlyMP and WormPB

datasets are processed 14� and 21� times faster respectively by

QUAST-LG comparing to the original QUAST software. While

QUAST was not able to process two human datasets at all,

QUAST-LG did it in about four hours. The maximal RAM con-

sumption in QUAST-LG runs is always smaller than the one in

the corresponding QUAST runs. Note that Table 3 does not

include time and RAM needed by QUAST-LG for computing

novel metrics (k-mer-based statistics and BUSCO) and the upper

bound assembly generation. The full performance benchmark is

shown in Supplementary Table S1.

To illustrate that Minimap2 -based QUAST-LG demonstrates a

reasonable accuracy comparing to NUCmer-engined QUAST, we

additionally implemented an artificial version of QUAST-LG based

on NUCmer aligner and compared it against QUAST-LG on three

medium-size datasets (Supplementary Table S2). This comparison

shows that the choice of aligner does not significantly affect the met-

rics computed by QUAST-LG.

3.6 The assemblies comparison
Assemblers performance on all six benchmark datasets is shown in

Table 4. The visual form of this table is available in Supplementary

Figure S1. The full QUAST-LG reports are in Supplementary Tables

S3–S8 and also available online in the interactive form. Scaffold

alignment viewers (Mikheenko et al., 2016a) are depicted in

Supplementary Figures S2–S7 in form of Circos visualizations

(Krzywinski et al., 2009). In all six test cases there is no clear winner

by all metrics, since some assemblers tend to generate more accurate

but less complete assemblies and vise versa. Note that FALCON as-

sembler is originally designed for PacBio data and it failed to process

the Nanopore datasets (YeastNP and HumanNP). Furthermore,

DISCOVAR de novo was not able to assemble FlyMP dataset since it

does not satisfy DISCOVAR’s requirements on the input data.

Finally, the current version of SPAdes assembler is not designed

for mammalian-size datasets, so it is missed in the HumanMP

benchmark.

3.6.1 The yeast datasets

The yeast genome was clearly the simplest one to assemble for all

benchmarked assemblers. Flye and Canu have the largest number of

the best quality metric values on the YeastPB dataset. The most ac-

curate assembly was constructed by FALCON with 19 misassem-

blies, the largest NGA50 value (694 kb) and just 3 k-mer-based

misjoins (together with Canu and Miniasm results). Canu has the

highest percentage of the genome (98.77%) and assembled the larg-

est aligned fragment (1.512 Mb, together with Miniasm) which

length is very close to the upper bound value (1.524 Mb). However,

Canu assembly is rather inaccurate both in terms of per-base quality

(579.5 mismatches and 48 indels per each 100 kb on average) and

the number of misassemblies (35, last but one result). MaSuRCA

shows rather average quality on this dataset. Nevertheless,

MaSuRCA performed clearly the best on YeastNP and generated the

best values in all but two quality metrics. The only exceptions are

accuracies measures won by Flye (5 misassemblies) and Canu/

Miniasm (1 k-mer-based misjoin) on this dataset. Still, MaSuRCA’s

NGA50 is the best (782 kb) that even slightly exceeds our upper

bound limit (777 kb, see the Discussion section for details).

3.6.2 The worm dataset

Canu demonstrated the best results in six out of ten considered met-

rics on the WormPB dataset. Its assembly has tremendous genome

fraction (99.5%) and k-mer-based completeness (99.1%). FALCON

has the smallest number of misassemblies (94) but its k-mer-based

correctness is only the forth with Canu being the clear winner by

this parameter (just 1 misjoin). Three out of five assemblies demon-

strate the perfect BUSCO completeness equivalent to the reference

genome value (96.37%).

3.6.3 The fruit fly dataset

ABySS assembly has the smallest LGA50 (94) and the smallest num-

ber of misassemblies (266) with Platanus being a close second

(97 and 280, respectively). At the same time, Platanus has the largest

Table 3. QUAST and QUAST-LG performance

Dataset Genome # asm. QUAST QUAST-LG

size (Mb) Time RAM Time RAM

YeastPB 12.1 5 00:06 1.2 00:01 1.1

YeastNP 12.1 4 00:04 1.2 00:01 0.6

WormPB 100.3 5 02:51 8.4 00:08 6.3

FlyMP 137.6 6 04:55 13.8 00:21 9.8

HumanMP 3088.3 4 — — 03:55 135.2

HumanNP 3088.3 4 — — 04:05 135.4

Note: # asm. stands for the number of assemblies being processed.

Running time is in hh:mm format; maximal RAM consumption is in GB; ‘—’

indicates the fact that conventional QUAST was not able to process the

human datasets. All benchmarking was done on a server with Intel Xeon

X7560 2.27 GHz CPUs using 8 threads.
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aligned fragment (2.811 Mb) and the highest NGA50 (371 kb).

Meraculous has the best k-mer-based completeness (63.51%)

and the second-best correctness (6 misjoins), however, it demon-

strates rather average results in all other quality metrics. Important

to note that all assemblies have very high mismatch and indel

rates (>1100 and >90 per 100 kb, respectively) and relatively

low genome fraction (<85%) which may indicate a significant

difference between the reference genome and the actually sequenced

organism.

3.6.4 The human datasets

The upper bound assemblies of HumanMP and HumanNP indicate

that it should be almost equally difficult to assemble both datasets.

We may see that the majority of quality metrics for real assemblies of

Table 4. Comparison of assemblies of six benchmark datasets

Assembler LGA50 Largest

alignment (Mb)

Genome

fraction (%)

# mis. NGA50

(Mb)

Mismatches

per 100 kb

Indels per

100 kb

K-mer-based BUSCO

compl. (%) # misjoins compl. (%)

YeastPB (genome size 12 157 105 bp)

Canu 7 1.512 98.77 35 0.669 579.50 48.25 64.39 3 99.31

FALCON 7 1.502 96.07 19 0.694 184.09 92.09 86.31 3 95.18

Flye 7 1.083 98.04 24 0.677 118.27 30.23 91.72 7 99.31

MaSuRCA 14 0.686 97.41 60 0.346 680.43 50.04 62.36 10 99.31

Miniasm 7 1.512 97.31 35 0.663 155.74 104.48 85.46 3 97.93

UpperBound 6 1.524 99.92 0 0.777 0.00 0.00 99.90 0 99.31

YeastNP (genome size 12 157 105 bp)

Canu 7 1.090 98.84 12 0.658 565.83 101.41 62.04 1 98.96

Flye 8 1.081 97.71 5 0.663 56.14 649.09 52.09 3 67.93

MaSuRCA 6 1.522 99.52 14 0.782 12.39 2.87 99.12 5 99.31

Miniasm 8 1.057 98.26 7 0.639 52.60 754.08 48.08 1 66.89

UpperBound 6 1.524 99.87 0 0.777 0.00 0.00 99.94 0 99.31

Reference 6 1.532 100.00 0 0.924 0.00 0.00 100.00 0 99.31

WormPB (genome size 100 286 401 bp)

Canu 27 3.374 99.54 147 1.292 41.18 7.29 99.09 1 96.37

FALCON 29 3.052 98.67 94 1.176 65.11 126.13 88.94 8 94.39

Flye 26 3.354 99.31 122 1.306 19.77 43.50 95.23 6 96.37

MaSuRCA 32 2.542 99.18 138 1.016 33.28 7.79 97.45 25 96.37

Miniasm 29 2.839 99.41 262 1.215 54.47 143.88 87.41 5 96.04

UpperBound 8 12.667 99.95 0 3.507 0.00 0.00 99.96 0 96.37

Reference 3 20.924 100.00 0 17.494 0.00 0.00 100.00 0 96.37

FlyMP (genome size 137 567 484 bp)

ABySS 94 2.694 79.45 266 0.331 1166.59 92.10 60.50 3 99.01

MaSuRCA 186 1.807 84.61 922 0.157 1316.66 90.11 63.35 66 100.00*

Meraculous 111 1.586 82.58 305 0.316 1241.33 91.06 63.51 6 99.01

Platanus 97 2.811 81.07 280 0.371 1288.45 91.18 62.36 24 99.01

SOAPdenovo 155 1.631 84.64 713 0.238 1308.22 91.12 63.50 12 99.67

SPAdes 123 1.656 80.41 388 0.287 1173.67 93.08 61.39 108 99.01

UpperBound 44 3.558 99.16 0 1.015 0.00 0.00 97.28 0 99.67

Reference 3 32.079 100.00 0 25.281 0.00 0.00 100.00 0 99.67*

HumanMP (genome size 3 088 286 401 401 bp)

ABySS 263 20.392 93.56 820 3.326 100.49 27.44 86.92 572 93.73

DISCOVAR 138 31.629 94.81 508 6.094 106.24 25.87 88.15 535 93.40

SOAPdenovo 3725 2.193 85.10 670 0.210 129.15 50.41 77.73 93 90.43

UpperBound 112 35.878 99.06 0 8.309 0.00 0.00 99.24 0 92.74

HumanNP (genome size 3 088 286 401 bp)

Canu 296 25.751 92.25 853 2.745 258.95 68.03 83.93 523 92.08

Flye 266 21.735 91.91 673 3.172 580.26 1125.37 26.59 97 69.64

MaSuRCA 226 22.413 93.71 13227 3.932 184.06 31.94 85.72 892 87.79

UpperBound 105 75.724 99.07 0 7.862 0.00 0.00 99.51 0 92.74

Reference 9 248.956 100.00 0 144.769 0.00 0.00 100.00 0 93.75

Note: All statistics are given for scaffolds � 3 kb. The best value for each column is indicated in bold (upper bound assembly and reference genome statistics

are excluded from the best value determination). LGA50 is the minimal number of aligned fragments that cover half of the reference genome. NGA50 corre-

sponds to the shortest length among the LGA50 aligned fragments. # mis. stands for the total number of misassemblies. K-mer-based compl. is for the fraction of

unique reference 101-mers present in the assemblies. K-mer-based # misjoins is the total number of k-mer-based misjoins. BUSCO compl. stands for the total

number of conserved genes completely or partially identified in the assembly, divided by the total number of BUSCO genes. UpperBound and Reference stand for

the upper bound assembly and the reference genome statistics, respectively. Note that Reference is given once per unique genome, that is only four times per six

datasets. We manually checked the overestimated BUSCO compl. measure for MaSuRCA assembly of FlyMP which outperformed the reference value (100.00 ver-

sus 99.67% completeness; marked ‘*’ in the table). The D.melanogaster reference sequence misses a single short BUSCO gene which is different from the BUSCO

core sequence in a few SNPs and is not identified by the tool. At the same time, MaSuRCA assembled this gene in a form more similar to the BUSCO version

which enabled its identification. The similar situation happened on the HumanMP dataset, where ABySS and DISCOVAR partially assembled two BUSCO genes

missed in the reference genome. These two assemblers thus were able to exceed the upper bound estimate of the BUSCO completeness.
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HumanMP are indeed very close to the results of HumanNP

assemblies. However, the performance of the leading mate-pair assem-

bly (DISCOVAR) is significantly better than the best values of

Nanopore-based assemblies in several important statistics, namely

LGA50 (138 versus MaSuRCA’s 226), largest alignment (31.6Mb ver-

sus Canu’s 25.8 Mb) and NGA50 (6.1 Mb versus MaSuRCA’s 3.9Mb).

While Flye generated the most accurate assembly of the

HumanNP dataset in terms of the number of misassemblies (673)

and k-mer-based misjoins (97), MaSuRCA appears to dominate by

almost all other quality metrics. In particular, this assembler pro-

duced the highest genome fraction (93.71%) and k-mer-based com-

pleteness (85.72%) among other HumanNP assemblies. It may seem

like the main drawback of these remarkable MaSuRCA results is the

huge number of misassemblies (13 227), which is an order of magni-

tude higher that the values of all the competitors on the both human

datasets. However, the detailed analysis of the corresponding scaf-

fold alignment viewer (Supplementary Fig. S7) revealed that the vast

majority of these misassemblies are located in the human centro-

meres, which were barely assembled by the other tools. Taking into

account the fact that centromeres have an extremely complex repeat

structures, the high number of misassemblies can be caused not only

by the assembler’s errors, but also by mistakes in the reference se-

quence or contigs misalignments.

4 Discussion

Since our benchmarks demonstrate that the upper bound estimates

are much more realistic than the finished reference genome statistics,

we find them useful. However, it is important to note that the pro-

posed approach for their computation is heuristic and has some im-

portant limitations.

The algorithm for upper bound assembly construction depends

on third-party software, namely Minimap2, BWA-MEM and Red,

that are the authors’ choice of tools based on their expertise. Using

another set of tools may result in a different upper bound assembly:

for instance, a user might want to predict genomic repeats using

RepeatMasker (Smit et al., 2013).

To ensure that the upper bound assembly is indeed an upper

bound, we use rather conservative settings for Red to exclude false

positive repeats, and relaxed settings for the alignment software to

retain all possible mappings. On top of that, we use a very naive

scaffolding strategy that requires just a single long read or two mate-

pairs to join upper bound contigs into a scaffold. The real-life scaf-

folding algorithms (Boetzer and Pirovano, 2014; Sahlin et al., 2014;

Vasilinetc et al., 2015) do not usually exploit such weak evidence

alone. Likewise, a very low read coverage may prevent the recon-

struction of the source sequence in practice, while we penalize only

completely zero covered fragments, treating 1-fold coverage as suffi-

cient. Therefore, our correctness and completeness estimates are the

optimistic upper bounds on the real assembly measures and could be

potentially strengthen. For instance, we provide users an option for

setting the minimal number of connections needed for joining upper

bound contigs.

The upper bound estimates are relevant to the alignment-based

metrics only, such as genome fraction, NGA50, etc. At the same

time, it is not possible to compute theoretical limits on the reference-

free analogues of these quality metrics, namely total assembly

length, NG50, etc. For example, an assembler may randomly con-

catenate contigs into a huge scaffold which will presumably contain

many misassemblies. Using this strategy, the assembler may always

outperform the upper bound assembly in terms of the largest

scaffold length. If we compute the corresponding alignment-based

metric (the largest alignment length) by splitting assemblies at misas-

sembly breakpoints, the upper bound estimate will most likely be

equal to or better than the assembler’s value.

However, some genome assembly heuristics may result in a real

assembly that overcomes the upper bound assembly even in

alignment-based metrics. For instance, a random repeat resolution

may possibly be correct in some cases and thus result in better

alignment-based metric values than the upper bound estimates.

Indeed, real-life assemblers usually do not concatenate sequences

randomly without any experimental evidence making this scenario

rather unrealistic. Another, a more plausible situation, when a real

assembly may have a bigger NGA50 or largest alignment, may ap-

pear due to the fact that unresolved repeats are reported as separate

scaffolds in the upper bound assembly. On the other hand, an as-

sembler may join unresolved repeats to their adjacent unique frag-

ments (randomly to the left or to the right one). Although such kind

of junction will not result in a misassembly, it may lead to undesired

results such as incorrect multiplicities of repeats in the assembly. An

real example of such situation may be found in Table 4 where

MaSuRCA assembly of YeastNP dataset has NGA50 0.6% (5 kb)

higher than the corresponding upper bound value.

Another novelty of QUAST-LG, k-mer-based statistics, may re-

port misleading results if its key parameter k is selected improperly.

This group of metrics is heavily affected by the density of SNPs for

the evaluated species. For example, a single SNP is expected roughly

once per kb in the human genome. Using our default k¼101 bp, we

have roughly 10% of the reference k-mers missing in the assemblies

due to SNPs. Thus, the maximally possible k-mer completeness for

human species is about 90% which correlates with assemblers per-

formance in Table 4. This issue can be somewhat solved by using

smaller values of k (can be set with ‘--k-mer-size’ QUAST-LG op-

tion). However, very small k-mer sizes may give irrelevant results

for repeat-rich genomes.

5 Conclusion

In this work, we compared the ability of the state-of-the-art genome

assembly tools to assemble four eukaryotic genomes of various size

range. This study analyzed datasets which were recently sequenced

using conventional NGS technologies and both leading LRS market

players, Pacific Biosciences and Oxford Nanopore Technologies. We,

however, excluded several other important data types, such as Hi-C

and Optical mapping, which are now often in use for chromosome-

scale scaffolding. Thus, the shown assembler performance may be fur-

ther improved using additional data not considered here.

The vast majority of the assemblers evaluated in this study are

under constant development. Thus, the snapshot of their performance

presented here will soon become obsolete. The major benefit of this

work is the development of QUAST-LG, a universal tool for large

scale genome assembly evaluation. QUAST-LG makes it easy to re-

produce this or similar benchmarking in the future and compare any

other genome assembly programs on any other LRS or NGS dataset.

We believe that the presented tool will also be suitable for everyday

quality control in ongoing research studies of eukaryotic genomes.
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