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The authors present a deep learning algorithm for the automatic centroid localisation of out-of-plane US needle reflections to produce
a semi-automatic ultrasound (US) probe calibration algorithm. A convolutional neural network was trained on a dataset of 3825 images
at a 6 cm imaging depth to predict the position of the centroid of a needle reflection. Applying the automatic centroid localisation
algorithm to a test set of 614 annotated images produced a root mean squared error of 0.62 and 0.74 mm (6.08 and 7.62 pixels) in the
axial and lateral directions, respectively. The mean absolute errors associated with the test set were 0.50 ± 0.40 mm and 0.51 ± 0.54 mm
(4.9 ± 3.96 pixels and 5.24 ± 5.52 pixels) for the axial and lateral directions, respectively. The trained model was able to produce visually
validated US probe calibrations at imaging depths on the range of 4–8 cm, despite being solely trained at 6 cm. This work has automated
the pixel localisation required for the guided-US calibration algorithm producing a semi-automatic implementation available open-source
through 3D Slicer. The automatic needle centroid localisation improves the usability of the algorithm and has the potential to decrease the
fiducial localisation and target registration errors associated with the guided-US calibration method.
1. Introduction: Ultrasound (US) scanners are common in
image-guided interventions as they produce real-time imaging
without exposing the patient to harmful ionising radiation [1].
Mixed-reality US-guided surgical navigation systems aim to
improve the usability of US-guided interventions by using a 3D
virtual environment to provide a visual relationship between
tracked surgical instruments and real-time US images [2]. These
systems rely on US probe calibration to establish the spatial
transformation between the US image and a tracking sensor
attached to the transducer [3]. Using the sensor fixed to the
transducer as a reference sensor, the calibration can be used to
provide the relationship between other tracked tools and the US
image [3], as depicted in Fig. 1.

US probe calibration remains an active research area in spite
of the development of multiple US probe calibration methods.
Two of the main barriers to the translation of US probe calibration
methods from the labs to the clinic are the requirement of specific
calibration phantoms and difficult calibration techniques relying
on knowledge of US physics [4]. The US probe calibration
method that is used for this work is based on the Guided US
Calibration (GUSCAL), which formulates the US calibration
as a Procrustean point-to-line registration problem [5]. It is quick
and effective, enabling even novices to complete successful
calibrations in 3–5 min [6]. The original formulation of this
approach used a tracked and calibrated straw phantom imaged in
water [5]. However, in recent work to improve the usability and
accessibility of this algorithm, the calibrated straw phantom was
replaced with a tracked needle [6]. Magnetically tracked surgical
needles are common with many tracking systems, can be purchased
pre-calibrated from the manufacturers, and are readily used in
the field of computer-assisted surgical navigation. The tracked
needle GUSCAL method requires localisation of the centroid
of out-of-plane needle reflections, where, rather than the entire
needle being in the US plane, it is inserted at an oblique angle inter-
secting the US plane, producing a cross-sectional reflection of the
needle shaft on a black background [5].

The major limitation with the GUSCAL approach is the high
fiducial localisation error (FLE) produced as a result of users
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incorrectly localising the needle centroid [6]. Due to the blur of
the US image in the far-field, the needle’s reflection is significantly
amplified within the lower portion of the US image relative to
the reflections produced in the upper portion [6], particularly for
lower quality US machines. The inconsistent appearance of
needle reflections throughout the image negatively affects the
accuracy of the centroid localisation, with novice users experien-
cing difficulties correctly determining the pixel that best represents
the centroid of the needle reflection [6]. The FLE propagates into
target registration error (TRE), which adversely affects the accuracy
of the registration between the US image and the spatial tracking
system [6]. Manual localisation is a barrier to use for novice
users and negatively affects the accuracy of all users’ calibrations.
An automatic localisation algorithm has the potential to improve
the FLE and thus the accuracy and usability of the GUSCAL
method.

Due to the unique appearance and lack of tissue present in
the images required for the augmented GUSCAL approach,
there has been no work to automate out-of-plane needle centroids
on a uniform black background. However, one common calibration
algorithm requires the imaging of a Z-phantom comprising of thin
wires in the form of a ‘Z’ [7]. Imaging these wires submerged
in water produces three bright co-linear point reflections on a
black background, as depicted in Fig. 2a, which resembles the
images required for the GUSCAL approach as depicted in
Fig. 2b. While an automatic approach to segmenting the reflections
of the thin wires has been implemented [8], this approach
relies on the standard and known geometry of a Z-phantom, as
the image always contains three co-linear reflections [8].
Furthermore, the GUSCAL approach involves inserting the
needle at an oblique angle such that it fully intersects the US
image plane, producing a more amplified reflection compared to
the thin wires. The difference in appearance in the images and
methods required for the GUSCAL approach compared to the
Z-phantom method has motivated the development of the solution
described below.

Deep learning solutions have been successful for many image
segmentation and data regression problems due to their efficient
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Fig. 2
a Appearance of the US image required for the Z-phantom calibration
approach
b Appearance of the US image required for the GUSCAL approach

Fig. 1 US image registered to the tracker’s coordinate system. Accuracy is
indicated through the alignment of the virtual models and their reflections
on the US image

Fig. 3 Data collection set-up depicting the fixed calibrated US probe
(tracking sensor is embedded within the probe) and the needle intersecting
the US beam at an oblique angle
formulas, particularly in medical image analysis [9, 10]. This
motivates us to apply and evaluate these techniques for the
problem of localising out-of-plane US needle reflections with
a uniform black background. This Letter presents a deep convolu-
tional neural network (CNN) model that performs automatic
needle localisation. The main contribution of this work is the
development and validation of a CNN model to automatically
localise out-of-plane needle reflections for a US calibration
method with anisotropic scaling. This network has been integrated
into an open-source semi-automatic US probe calibration that offers
improved accuracy and usability compared to its manual localisa-
tion counterpart. An open-source module that incorporates both
the manual and automatic methods for US probe calibration is
available in 3D Slicer, which is available for download at
https://slicer.org. This work forms the basis of high accuracy and
fully automatic US probe calibration method.

2. Materials and methods
2.1. Data collection: An Ultrasonix Sonix Touch (BK Medical,
USA) US scanner with an L14-5 linear probe was used for this
work. The magnetic tracking system used for data collection was
the NDI Aurora Tabletop tracking system (NDI, Waterloo,
Canada). Prior to data collection, the US probe used for the
experiment was carefully calibrated by an expert to the Aurora’s
coordinate system through the GUSCAL approach with manual
localisation. The calibration is computed between corresponding
pairs of points and lines. The points are generated by inserting a
tracked needle out-of-plane, such that the reflection represents
the cross-section of the needle shaft. The centroid of the needle
reflection is localised manually by the user to produce a single
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pixel point [5]. The line is formed by the position of the needle
tip and the direction vector associated with the orientation of the
needle at the time the image was captured [5]. The calibration
is solved using an iterative solution, where the TRE produced
after each point and line collection plateaus to a stable minimum
after ∼12 measurements [5].

The calibrated L14-5 US probe acquires images using the PLUS
Server [11]. As the calibrated US images are registered to the spatial
tracking system, the relationship between the tracked needle and
the US image is known. During data collection, the transducer
face of the US probe is submerged in water and the needle
imaged throughout the entire 6 cm image depth with various orien-
tations, as depicted in Fig. 3. A training set of 3825 images,
a validation set of 1519 images, and a test set of 614 images
were collected over three independent sessions. These datasets
were culled by an expert to remove images where the centroid
position did not align with the needle reflection or where the
needle was outside of the bounds of the image. The culled,
annotated datasets were used for training and evaluation of the
deep learning localisation model.

2.2. Dataset preprocessing: The raw US images within the training,
validation, and test sets were acquired as 8-bit 356 × 589 pixel
images. These images were resized to 128 × 128 pixels with
bilinear interpolation to reduce variability and decrease the
number of trained parameters in the neural network. The pixel
values were normalised to the range of [0, 1]. To generate
ground-truth annotations, the inverse of the calibration matrix was
applied to the matrix representing the needle’s pose producing a
2D pixel location representing the centroid of the needle
reflection. Thus, using the known calibration the intersection
between the tracked needle and the US images was computed,
serving as the ground-truth for training, validation, and test sets.
This process generated a label defining the coordinates of the
centroid of the needle’s reflection for each image in the set,
producing corresponding sets of images and single-pixel labels.
Each label is an (x, y) coordinate pair. The x-value was scaled
from the range of integers in [0, 355] to the continuous range
of [−1, 1]. The y-value was scaled from the range of integers in
[0, 588] to the continuous range of [−1, 1]. The output of the
algorithm returns pixel locations in the range [−1, 1]. A scaling
value was then applied to these output locations and then rounded
to produce new integer pixel coordinates that corresponded to the
centroid of the reflection in the original sized image.

2.3. Neural network architecture: Automatically localising the
centroid of the needle in a US image can be thought of as a
keypoint localisation problem. A facial keypoint detection
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Fig. 5 Graph displaying the change in training and validation loss (MAE)
throughout the training process. The loss is calculated in terms of the
output of the neural network, which is an (x, y) coordinate pair with
values in [−1, 1]
algorithm [12] motivated the architecture presented in this Letter.
CNN was designed to receive a US image as its input and predict
coordinates over a continuous range. An iterative training and
testing process was implemented to assess which architecture
worked best for the required task. The final network consists of
five alternating convolutional and max-pooling layers, followed
by four fully connected layers. The output layer is a
fully-connected layer with two units, which outputs the regressed
coordinates of the centroid of the US needle. The depth of the
convolutional layers increases with each successive layer. The
number of filters in the first layer is 16, and this number doubles
with each successive convolutional layer. The first convolutional
layer uses filters of size 3 × 3, and all successive convolutional
layers use filters of size 2 × 2. All convolutional layers use a
stride of 1. The initial parameters of the convolutional layer
were determined using Glorot uniform initialisation [13]. All
max-pooling layers use a pool size of 2 × 2 and a stride of 1. The
activation function used in all pre-output layers is the Leaky
Rectified Linear Unit (Leaky ReLU) function, which was chosen
over Rectified Linear Unit (ReLU) because it converges faster
during training [14]. The output layer has no activation function,
i.e. it is an unmodified linear output. The output layer predicts the
coordinates of the centroid of the needle in the image, whose
values are bounded by [−1, 1]. The dataset used to train this
network did not contain images in which the centroid was outside
of the image. Since the output layer is linear, the network may
predict a coordinate pair outside of this range. However, should
this scenario occur, the 3D Slicer implementation only accepts
predicted centroid coordinates within the original image bounds
and would return an error, prompting the user to input a new
image. In total, the model contains 2 668 338 trained parameters.
A diagram of the model’s specific architecture is depicted in Fig. 4.
2.4. Neural network training: The batch size was 128 and the model
was trained for 150 epochs to minimise the mean absolute error
(MAE) loss function. We employed the Adam optimisation
algorithm [15], with a = 1× 10−4 for epochs 1–100, and
a = 7× 10−5 for epochs 101–150. To reduce overfitting, L2
regularisation with l = 1× 10−5 was applied in all convolutional
layers. These hyperparameters were determined iteratively in a
heuristic manner. One hyperparameter was varied at a time while
all others were held constant. As the training, validation and test
sets were recorded during independent sessions, they were not a
Fig. 4 Diagram depicting the architecture of the neural network model used
to predict the coordinates of the centroid of a US needle reflection
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random split from the complete dataset. Fig. 5 demonstrates the
minimisation of the loss function over the training process.

Training experiments were completed using hardware, including
an Intel i7-7800X CPU at 3.5 GHz and an Nvidia Titan Xp GPU
with 12 GB of memory. The code was written in Python and the
model architecture was defined using the Keras API with the
TensorFlow backend.
3. Results
3.1. Centroid localisation accuracy: The accuracy of the needle
centroid localisation was evaluated using a test set, obtained
independently from both the training and validation sets. For each
image the root mean squared error (RMSE) and MAE between
the previously labelled and automatically generated pixel
locations was calculated. Both similarity metrics provide
distances between the labelled and automatically generated pixel
coordinates obtained from the 8-bit 356 × 589 pixel images. To
convert from pixel values to millimetres, the scaling factors
obtained from a calibration are required. A major issue in US
probe calibration research is the inability to produce a
ground-truth calibration. If a method existed to generate a
calibration with gold-standard certainty, the relationship between
the tracking system and the US image would be known and there
would be no need for US calibration research. Therefore, the
scaling values representing the pixel spacing were obtained by
performing five careful manual calibrations for a single US probe
at 6 cm. The scaling factors in the axial and lateral directions
were extracted from each transformation matrix using single
value decomposition on the 3 × 3 anisotropic scaling and rotation
matrix.

Four sample images extracted from the test set and the manual
and automatic localisation are depicted in Fig. 6. The RMSE dis-
tance between the automatic and ground-truth segmented locations
is presented in Table 1. The average RMSE for the test set was 0.62
and 0.74 mm (6.08 and 7.62 pixels) for the axial and lateral direc-
tions, respectively. The MAE and standard deviation of the test set
was 0.50 ± 0.40 mm and 0.51 ± 0.54 mm (4.9 ± 3.96 and 5.24 ± 5.52
pixels) for the axial and lateral directions, respectively. As this so-
lution localises a single-pixel coordinate, the most descriptive error
metrics are physical and pixel-based distances between the labelled
and automatic centroid positions. Localising the single-pixel needle
centroid with absolute certainty is a difficult task, as user bias
results in variability between expert users’ manual localisations.

To analyse this variability, five users who were familiar with the
calibration process manually selected the needle centroid on ten
unique US images that were taken from the test set. The average
standard deviation of the pixel’s axial, lateral, and normalised
Healthcare Technology Letters, 2019, Vol. 6, Iss. 6, pp. 204–209
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Fig. 6 Four example images extracted from the test set that are representa-
tive of images that would be obtained within the GUSCAL calibration
approach. The manual ground-truth localisations are indicated in red and
the automatic localisations are indicated in blue, providing a visual
representation of localisation accuracy

Table 1 RMSE and the MAE between the ground-truth and automatically
generated localisations from the test set summarised for the axial and
lateral directions in pixels and millimetres

Metric Axial (X ) Lateral (Y )

RMSE, pixels 6.08 7.62
RMSE, mm 0.62 0.74
MAE, pixels 4.9 ± 3.96 5.24 ± 5.52
MAE, mm 0.50 ± 0.40 0.51 ± 0.54
locations was calculated and reported in Fig. 7. The variabilities in
the lateral and axial directions were 2.5 and 4.3 pixels, respectively.
This highlights the variability in centroid localisation, which could
have an impact on the ground-truth labels used to produce the error
metrics. The reported error is <1 mm for both error metrics and the
network has produced visually acceptable calibrations. In future
work, a comprehensive accuracy analysis of the semi-automatic
calibration approach will be conducted. Alternatively, annotated
Fig. 7 Average standard deviation of five expert users’ manual pixel
localisations from ten images of needle reflections taken from the test set.
This image set contained a dispersion of needle reflection positions
throughout the lateral axis of the image
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datasets may be generated using simulated US physics to maximise
the accuracy of the ground-truth data labels, thereby improving the
accuracy analysis of the model.

3.2. Calibration accuracy: The accuracy of the pixel localisations is
meaningful to describe the accuracy of the deep learning algorithm.
However, the accuracy of the semi-automatic calibration is a more
meaningful result. The semi-automatic implementation of the
GUSCAL method is publically available in 3D Slicer. This
program requires the user to stream the US images and the needle
and probe tracking data into 3D Slicer, in real-time or through a
recording. When the user has an image they deem appropriate for
the calibration, a single button press or keyboard input is required
by the user, which freezes the image and tracking streams,
performs the automatic localisation of the needle reflection, and
then resumes tracking streams. This process is completed almost
instantaneously. The user repeats this process for 12–15 images,
where the majority of images are collected with the needle
intersecting the image plane at an oblique angle near the corners
of the image. The output of this process is the calibration
transformation matrix, which can be applied to the image to
register it to the tracker’s coordinate system.

Evaluating the accuracy of a US calibration is difficult as there is
no means to generate ground-truth data. A visual representation of
the accuracy was produced by showing the alignment of virtual
models of tracked tools with the reflections produced by the real
tool within the US image. Five calibration datasets were collected
by recording the images of needle reflections and the respective
needle pose with respect to the reference sensor fixed to the
probe at imaging depths of 4–8 cm. These datasets were used to
obtain calibrations using the semi-automatic GUSCAL calibration
approach. A range of imaging depths was collected to show the
ability of the deep learning model to generalise to depths other
than the single imaging depth (6 cm) used to train the network.
Visual depictions of the calibration accuracy, shown through the
alignment between the virtual needle and the reflection within the
image, for all the aforementioned imaging depths are presented in
Figs. 8–10.

4. Discussion: Our approach to solving the problem of out-of-plane
US needle centroid localisation for US probe calibration is accurate
and reliable for a single US probe across a variety of imaging
depths. Since US images captured at different depths have
varying dimensions, the resize step of the image preprocessing
enabled the network to accept images of different depths. Despite
Fig. 8 Output from the semi-automatic US probe calibration algorithm
implemented in 3D Slicer at an imaging depth of 6 cm
The figure depicts the accuracy in the axial and lateral directions through the
alignment of the virtual needle with the centre of the reflection throughout
the image, as depicted in (a)–(c) and Images (d)–(f) depict the accuracy
in the elevation (Z ) direction as the needle enters the image plane
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Fig. 10 Output from the semi-automatic US probe calibration algorithm
implemented in 3D slicer at various imaging depths
Images (a)–(c) have an imaging depth of 4 cm. All images depict the
accuracy in the axial and lateral directions by the alignment of the virtual
needle with the centre of the reflection at different lateral positions
throughout the image

Fig. 9 Output from the semi-automatic US probe calibration algorithm
implemented in 3D Slicer at various imaging depths
Images (a)–(c) have at an imaging depth of 7 cm. Images (d)–(f) have an
imaging depth of 8 cm. All images depict the accuracy in the axial and
lateral directions by the alignment of the virtual needle with the centre of
the reflection at different lateral positions throughout the image
training the network for images captured at a depth of 6 cm, the
network is capable of performing centroid localizations and
therefore, calibrations at imaging depths ranging from 4–8 cm, as
depicted in Figs. 8–10. Using a training set consisting only of
images captured at a depth of 6 cm was sufficient for the network
to generalise to other imaging depths at test time. This has
provided motivation to augment the training set to include images
captured at a range of depths to improve the accuracy of the model.

One limitation of this work is the inability to apply this trained
network to other US probes, such as linear probes developed by
other manufacturers, or curvilinear probes developed by the same
manufacturer as the probe used to train the network. Future work
could include reusing the neural network architecture (as depicted
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in Fig. 4) to train on annotated datasets comprising images from dif-
ferent probes and assessing the results. Large automatically anno-
tated datasets can be produced using a calibrated US probe and
the corresponding needle tracking data, with the process outlined
in the methods. This allows for a simple workflow to develop
deep learning models for an array of US probes. A large data set
comprising annotated images from a range of US probe geometries
and imaging depths could be compiled and used to re-train the
network, such that it can be generalised for a range of US systems.

As the calibration phantom being used is a pre-calibrated needle,
the only error introduced by the calibration phantom is the tracking
error of the system, which has been reported by the manufacturer to
be 1.2 mm for position and 0.5° for orientation for the specific
needle phantom being used (https://www.ndigital.com/medical/
products/aurora). Using a pre-calibrated needle produces a more
usable system as no previous calibration steps are required prior
to the probe calibration. Automating the needle reflection localisa-
tion intends to further improve the usability of this algorithm, as
users only have to focus on collecting needle reflections and are
not required to identify the centre of the needle reflection.
Furthermore, in previous work, we found that the manual localisa-
tions result in FLE that propagates into TRE. Automating this
process aims to improve the TRE and usability of the GUSCAL
method. In future work, we aim to evaluate how usability was
affected by automating the needle reflection.

Additional future work will focus on the development of a com-
pletely automatic calibration algorithm. We aim to develop a
method in which the user can simply insert the tracked needle
into the US beam, collecting a variety of needle reflections through-
out the image. The automated calibration algorithm will be used to
segment these reflections and use an outlier rejection approach to
produce the best calibration possible from the recorded set of
images. We believe this method would produce a highly usable
and accurate algorithm, allowing for easy translation and use by
novices. Other future work includes comprehensive accuracy valid-
ation for the GUSCAL method for both manual and automatic lo-
calisation approaches. Some potential future applications based
on this semi-automatic US probe calibration method are US recon-
struction for 3D modelling and surgical planning or US-guided
needle insertions.

5. Conclusion: This work developed and assessed a deep learning
framework for automatic centroid localisation of out-of-plane US
needle reflections for the GUSCAL US probe calibration method.
This method has been made open-source and can be used in the
nightly release of 3D Slicer through the SlicerVASST extension
(https://github.com/VASST/SlicerVASST). Please refer to the
GitHub repository (https://github.com/VASST/AECAI.CNN-US-
Needle-Segmentation) for the code required to replicate these
results. The automatic localisations predicted by the deep learning
model produce accurate calibrations for imaging depths ranging
from 4–8 cm, despite having trained solely on images acquired at
6 cm. This method was able to produce localisation with an
RMSE of 0.62 mm (6.4 pixels) and 0.74 mm (7.62 pixels) from
the expert labelled locations in the axial and lateral directions,
respectively. The MAE and standard deviations calculated
between the ground-truth and automatic labelled were
0.5 ± 0.4 mm and 0.51 ± 0.54 mm (4.9 ± 3.96 pixels and
5.24 ± 5.52 pixels) in the axial and lateral directions, respectively.
Overall, the accuracy of the automatic localisations of
out-of-plane needle reflections is sufficient to provide visually
accurate calibrations over a range of imaging depths, as depicted
in Figs. 8–10. Future work includes retraining the model for other
US probe geometries and developing a fully automated US
calibration method. Thus, we provide a method to automatically
localise the needle centroid with high accuracy. This work has
the potential to improve the overall accuracy and usability of the
GUSCAL US probe calibration method.
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