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Abstract

Motivation: The simultaneous availability of ATAC-seq and RNA-seq experiments allows to obtain a more in-depth
knowledge on the regulatory mechanisms occurring in gene regulatory networks. In this article, we highlight
and analyze two novel aspects that leverage on the possibility of pairing RNA-seq and ATAC-seq data. Namely
we investigate the causality of the relationships between transcription factors, chromatin and target genes and the
internal consistency between the two omics, here measured in terms of structural balance in the sample correlations
along elementary length-3 cycles.

Results: We propose a framework that uses the a priori knowledge on the data to infer elementary causal regulatory
motifs (namely chains and forks) in the network. It is based on the notions of conditional independence and partial
correlation, and can be applied to both longitudinal and non-longitudinal data. Our analysis highlights a strong
connection between the causal regulatory motifs that are selected by the data and the structural balance of
the underlying sample correlation graphs: strikingly, > 97% of the selected regulatory motifs belong to a balanced
subgraph. This result shows that internal consistency, as measured by structural balance, is close to a necessary
condition for 3-node regulatory motifs to satisfy causality rules.

Availability and implementation: The analysis was carried out in MATLAB and the code can be found at https://
github.com/albertozenere/Multi-omics-elementary-regulatory-motifs.

Contact: claudio.altafini@liu.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One of the trends in the field of gene regulatory network (GRN)
inference is to increase the inference power of the data by combining
multiple omics techniques. For instance, in recent years the integra-
tion of RNA sequencing (RNA-seq) and Assay for Transposase-
Accessible Chromatin with high-throughput sequencing (ATAC-seq)
data has given promising results, see Ackermann et al. (2016),
Calderon et al. (2019) and Ramirez et al. (2017).

This integration can be carried out in different ways. Some stud-
ies use a two-step approach, where for instance ATAC-seq is used to
obtain a large set of candidate interactions and then RNA-seq is
used to prune this set and to identify a reliable subset of high-
confidence transcription factor (TF)-target gene interactions, see e.g.
Miraldi et al. (2019) and Johnson et al. (2020). Alternatively, many
studies analyze the correlation between chromatin peaks and target
genes, see e.g. Hendrickson et al. (2018) and Starks et al. (2019).

Unlike these studies, we propose to consider simultaneously three
layers of transcription: TFs, chromatin peaks and target genes. The
first and third level are quantified via RNA-seq and the second via
ATAC-seq. In other words, we consider not only the correlation
between peak and target gene, but also between peak-TF and
TF-target gene. We show that this method can be used to identify
new cross-layers elementary regulatory motifs involving TFs, chro-
matin peaks and target genes. A necessary condition for performing
this analysis is to have paired ATAC-seq and RNA-seq data, as it is
in our case.

More precisely, we decided to focus on two classes of three-node
regulatory motifs, formed by transcription factors, chromatin peaks
and target genes. The regulatory motifs we have chosen to work
with are the chains and forks shown in Figure 1, because they encode
conditional independence relationships: two nodes in these regula-
tory motifs become independent once their values are conditioned
on that of the third node (Christopher, 2006). Such conditional
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independence can be explored in a systematic way using partial cor-
relation (Baba et al., 2004). Partial correlation has been used exten-
sively in the context of causal inference in GRNs to investigate gene-
gene interactions, see Opgen-Rhein and Strimmer (2007) and
Yiming et al. (2014). Here, instead we use sample partial correla-
tions as a tool to screen all possible three-node regulatory motifs,
based on a computational map of all possible interactions among
TFs, chromatin peaks and target genes we constructed. Only chains
and forks that pass the partial correlation test are considered as
‘selected’ regulatory motifs based on the data.

Another concept that has been used in biological networks is
structural balance (hereafter simply denoted balance), see
Facchetti et al. (2013), Iacono et al. (2010) and Mangan and Alon
(2003). Notice that, in the context of signed networks, balance is
synonym to coherence, although the latter assumes different mean-
ings in other fields (e.g. Cadzow and Solomon, 1987). Balance is
associated to signed cycles, in particular a cycle is balanced if it has
an even number of negative edges and unbalanced otherwise. In
previous studies (Facchetti et al., 2013; Iacono et al., 2010;
Mangan and Alon, 2003) the focus was on counting balanced
motifs in a given biological network, and the common result was
that balanced motifs were enriched over unbalanced ones. Here,
balance is instead associated to the sample correlations of triplets
of nodes that belong to different omics, which form our elementary
regulatory motifs. Interestingly, in our analysis we also find a simi-
lar property: the triplets of correlations selected by the data for our
chain and fork regulatory motifs tend to be enriched for balanced
triangles, while the percentage of unbalanced triangles is signifi-
cantly lower than in random data, suggesting that the notion of
balance can be observed in experimental data, even when these
span different omics.

We have gathered four publicly available datasets of paired
RNA-seq and ATAC-seq experiments on human immune cells, see

Table 1. Datasets A and B represent time-series of primary human
naı̈ve CD4þT during early T-helper type 1 differentiation
(Magnusson et al., 2019). The difference between A and B is that in
the latter the activation was performed in the presence of progester-
one. Datasets C and D are time-series experiments on human
monocyte-derived dendritic cells under infection with HIV-1, where
the latter serves as mock experiment (Johnson et al., 2020). For
details, see the corresponding publications.

2 Materials and methods

2.1 TF-peak-target gene map
Assume mRNA expression levels of transcription factors (T) and

target genes (G) have been measured with RNA-seq, while the acces-
sibility of chromatin regions (A), also called peaks, has been quanti-
fied by ATAC-seq.

ATAC-seq data can also be used to build interaction maps be-
tween A—G and A—T. More precisely, each peak was mapped to
the closest gene, with the constraint that its TSS must be located
within a maximum distance of 3000 base pairs (bp) from either side

(a)

(b)

(c)

Fig. 1. Workflow of this article. (a) Schematic depiction of two key events that lead to gene expression: (1) the chromatin region around the promoter is loose and accessible to

TFs binding, and (2) available TFs bind to specific DNA sequences in the promoter region of the gene. (b) Possible regulatory motifs. Which event precedes the other is still

under investigation, thus several causal three-node regulatory motifs can be associated to represent the regulatory interactions between TFs, chromatin regions and target genes.

(c) Balanced and unbalanced cycles corresponding to the undirected graph of A! T ! G (i.e. chromatin! TF! gene). Plus and minus signs denote positive and negative cor-

relation values between the corresponding nodes

Table 1. List of paired RNA-seq and ATAC-seq datasets used in this

study

Index Cell type Availability and reference

A Human Th1 E-MTAB-7775, E-MTAB-10444,

(Magnusson et al., 2019)

B Human Th1 E-MTAB-10423, E-MTAB-10444

C Human DC GSE125817 (Johnson et al., 2020)

D Human DC GSE125918 (Johnson et al., 2020)
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of the peak edges, see e.g. Corces et al. (2016), Fullard et al. (2018)
and Wu et al. (2018). In addition, whenever such a target gene was
found, we have also associated the peak to every gene whose TSS
was situated within a distance of 65000 from the TSS of the afore-
mentioned (i.e. closest) gene, as done e.g. in Yu et al. (2015).
Footprinting and motif analysis was then performed to associate
each peak to a list of potential TFs binding events. See
Supplementary Materials and Methods for more details. The result
is two sets of interactions: between chromatin regions and target
genes (A–G), and between TFs and chromatin regions (T–A). From
there, we can retrieve a third set of interactions, between TFs and
target genes (T–G), by connecting TFs and target genes that share at
least one common chromatin region in the computational templates
A–G and A–T. Altogether, the three combined interaction mappings
form what we call a multi-omics TF-peak-target gene map.

Such mapping typically contains a significant amount of false
positives, as highlighted in Yan et al. (2020). In this work, we ad-
dress the issue by combining the notions of dynamical correlation,
partial correlation and balance, which we now introduce.

2.2 Dynamical correlation
Calculating correlation coefficients in longitudinal studies requires
appropriate tools to take into account the dependency between
(often irregularly spaced) time points as well as latent factors, see
Yule (1926) and Granger (2007). Failing to do so will introduce bias
in the correlation coefficients and create false connections between
the data. One of the approaches to render the data normally distrib-
uted is to use the notion of dynamical correlation. In particular we
focus on the definition introduced by Opgen-Rhein and Strimmer
(2006) and reviewed in Supplementary Materials and Methods.
From now on the adjective ‘dynamical’ will be implicitly assumed
when dealing with correlation or partial correlation.

2.3 Partial correlation
A partial correlation reflects the strength of a linear relationship be-
tween two variables after controlling for potential effects coming
from other variables. The concept has received wide attention in dif-
ferent fields, such as GRN inference (Opgen-Rhein and Strimmer,
2007; Yiming et al., 2014; Zampieri et al., 2008) and brain function-
al connectivity (Reid et al., 2019). We denote the partial correlation
coefficient between the variables X and Y given Z with RðX;YjZÞ,
which is expressed in formula by

RðX;YjZÞ ¼ RðX;YÞ � RðX;ZÞRðY;ZÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� RðX;ZÞ2Þð1� RðY;ZÞ2Þ

q : (1)

In particular, partial correlations can be used to test causal inter-
actions in the data. To illustrate its usefulness, consider the simplest
case of three variables: X, Y and Z. Assume X, Y and Z are part of a
regulatory chain, for instance X regulates Z, which in turn regulates
Y: X! Z! Y, see Figure 1b, left. This common regulatory motif is
characterized by the fact that the dependence between X and Y is
mediated by Z and that X and Y become independent once we ‘pro-
ject away’ the information due to Z (Baba et al., 2004). More for-
mally, if we consider X, Y and Z as (Gaussian) random variables,
the joint probability distribution of the regulatory motif X! Z!
Y factorizes as pðX;Y;ZÞ ¼ pðXÞpðZjXÞpðYjZÞ where p(X) is the
probability distribution of the variable X and pðZjXÞ is the condi-
tional probability distribution of Z given X. Conditioning over Z
and using Bayes rule

pðX;YjZÞ ¼ pðX;Y;ZÞ
pðZÞ ¼ pðXjZÞpðYjZÞ

shows that once conditioned on Z, the joint probability between X
and Y factorizes, i.e. X and Y are conditionally independent given Z:
X?YjZ. Technically we have that X and Y are conditionally inde-
pendent given Z when the residuals are uncorrelated. In practice we
can setup a test using the sample partial correlation RðX;YjZÞ and
consider as conditional independence the following condition:

X?YjZ() jRðX;YjZÞj < h1;

where h1 is a threshold calculated in Supplementary Materials and
Methods.

A similar observation can be made for forks, X Z! Y, see
Figure 1b, right. In fact the apparent correlation between X and Y
disappears once we control for the effects of the common regulator
Z. This regulatory motif is also characterized by conditional
independence.

2.4 Structural balance
Given three variables X, Y and Z let us compute their pairwise corre-
lations RðX;YÞ; RðX;ZÞ and RðY;ZÞ. These three correlations form
an undirected cycle of length three (i.e. a triangle). We say that such
a cycle is balanced if RðX;YÞ � RðX;ZÞ� RðY;ZÞ > 0. In the follow-
ing section, balance will be used as a test of internal consistency
among the variables involved in the basic chain and fork regulatory
motifs.

3 Results

3.1 Elementary gene regulatory motifs and their

conditional independence
The approach we follow in this article is to break down the complex-
ity of GRNs by analyzing elementary causal regulatory motifs. In
particular, we start our analysis by modeling the interplay between
TF and chromatin accessibility, which leads to gene expression. We
show that it can be represented as two regulatory motifs, T ! A!
G and A! T ! G.

Chromatin accessibility at the promoter region can enable (or
amplify) the effect of TFs on gene expression. Consider the example
of a gene with a unique transcriptional activator: it is plausible to as-
sume that the rate of its transcription depends on the state of the TF
binding region, and that the opening (closing) of the chromatin sur-
rounding it is reflected in a higher (lower) ratio between gene tran-
scription and TF availability. The opposite happens for a TF which
is a transcriptional inhibitor. In terms of causal graphs, we can asso-
ciate this example with the chain regulatory motif T ! A! G,
where the relationship between T and G is mediated by A. As dis-
cussed in Section 2.3, chain regulatory motifs are characterized by a
conditional independence. Denoting with RðT;GjAÞ the sample
partial correlation between T and G conditioned on A, then T and G
are considered conditionally independent given A if
jRðT;GjAÞj < h1. When this condition is satisfied we say that the
regulatory motif T ! A! G is selected by the data, i.e. that the
data provide a (statistically significant) evidence in support of the ex-
istence of the regulatory motif. To check for spurious conditionally
independent results caused by correlations close to zero before con-
ditioning, we discarded the cases where jRðT;GÞj < h0; here, h0 is
the threshold obtained when the number of controlled variables is
set to zero. This procedure was repeated systematically on the �4 �
105 (T, A, G) triplets present in our interaction map. For each of the
four datasets we consider in this study, �5–15% of the chain regula-
tory motifs were selected for a total of �1–2 regulatory motifs per
target gene. The results of this analysis are summarized in Table 2.

Alternatively, the interplay between TF and chromatin accessibil-
ity can be represented by the regulatory motif A! T ! G. In fact,
chromatin accessibility does not lead to gene expression unless a
suitable TF binds, and we can argue that the concentration of TF
amplifies the effect of chromatin accessibility (for instance due to the
presence of stable TF binding to the promoter region), thus leading
to the alternative chain model A! T ! G. Also in this case,
the conditional independence encoded in this chain can be tested
using partial correlation. Interestingly, the two regulatory motifs
selected by the data almost never contain simultaneously the same
(A, T, G) triplet (the overlap is significantly low as measured by a
hypergeometric test on the contingency table of Table 3, (P-value ¼
< 10�16). Selecting different (A, T, G) triplets is significant, since it
suggests that the two regulatory motifs are non-equivalent and sup-
ports the decision of taking both into account.
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A gene is normally regulated by multiple TFs, and associated
with multiple ATAC-seq peaks. In fact, footprinting analysis reveals
that up to 100 TFs can interact with the same promoter; moreover a
single chromatin region can be associated with multiple target genes.
To model this massive co-regulation we used other elementary three-
node regulatory motifs, like the forks shown in Figure 1b. In particu-
lar we decided to focus on the regulatory motifs T1  A! T2 and
G1  A! G2. In dataset A, for example, the number of such regu-
latory motifs is 9 134 221 and 7736, of which 419 362 and 298
were selected by a partial correlation test similar to the one described
above, see Table 2.

3.2 Structural balance as a data consistency criterion
In this work balance assumes the meaning of an intrinsic test of com-
patibility between the regulatory interactions in the data. For instance,
if for a triplet T ! A! G the sample correlations RðT;AÞ and
RðA;GÞ are both positive, suggesting that we have two activatory regu-
lations T�!þ A and A�!þ G, then we expect that also the edge be-
tween T and G has positive correlation. Proceeding in this way means
associating to the chain regulatory motif T ! A! G an undirected
cycle, formed by the branches T—A—G and T—G and checking if the

triangle (T, A, G) has balanced correlations. When this does not hap-
pen, then our data shows internal inconsistency, i.e. the signs of the
three correlations RðT;AÞ;RðA;GÞ and RðT;GÞ are incompatible. A
similar construction can be carried out for the other regulatory motifs
mentioned above and we can then proceed to checking the balance (i.e.
internal consistency) of the resulting triangles, see Figure 1c.

It is interesting to observe that the data appears to be significantly
consistent, as measured by the percentage of balanced cycles in the net-
work. To retrieve the null distribution of the percentage of balanced
cycles, we used a bootstrapping approach. Namely, we generated a
population of 50 000 triplets of Gaussian random signals, having the
same number of time-points as the data. Thereafter we extracted 10
000 sub populations, comprising 10 000 triplets each, and we calcu-
lated their balance ratio, thus leading to the null distribution. Balanced
regulatory motifs appear to be significantly over-represented in the
data; as can be seen in Table 2, both chain and fork regulatory motifs
are enriched for balance in almost all the datasets.

Not only balanced triplets are over-represented in the data, they
also consist of edges corresponding to the correlations in the net-
work with the highest absolute values. To formalize this observa-
tion, we have associated each triplet to scalar measures that quantify
the magnitude of the corresponding correlations. We have chosen
three measures: geometric mean, minimum and maximum; although
similar results can be obtained using other measures, such as mean
and harmonic mean. A Kolmogorov-Smirnov test reveals that the
distribution of each measure differs significantly (every P-value is
< 10�16) between balanced and unbalanced regulatory motifs,
where the former show higher average values, as seen in Figure 2.

3.3 Structural balance is a necessary condition for

conditional independence
The categorization of triplets into balanced and unbalanced sheds
light also on the conditional independence of the variables involved.
As can be seen in Figure 3, the distributions of partial correlation

Table 3. Contingency table between the number of selected T ! A

! G and A! T! G regulatory motifs in dataset A

T!A!G

Selected Non-selected

A!T!G Selected 302 20 840

Non-selected 18 973 367 973

Note: See Supplementary Results for the contingency tables of datasets B, C

and D.

Table 2. Overview of the datasets. (Upper) We report the total number of regulatory motifs (and the percentage of balanced ones) present in

the TF-peak-target map. (Middle) Next, we test if each regulatory motif is characterized by a statistically large balance ratio (see Section 3.2

for details on how the statistical test was built); fold change indicates the ratio between the value observed in the data and the mean of the

null distribution. (Lower) Lastly, we report the number of regulatory motifs that pass the conditional independence test described in

Supplementary Materials and Methods and how many of them belong to an unbalanced cycle.

Number of regulatory motifs in the data (of which balanced)

Dataset Chains T1  A! T2 G1  A! G2

A 408088 (71%) 9134221 (72%) 7736 (77%)

B 367308 (67%) 8227783 (67%) 7100 (72%)

C 309675 (63%) 10686804 (65%) 3456 (65%)

D 255324 (70%) 9004018 (68%) 3419 (74%)

Enrichment of balanced regulatory motifs: P-value, fold change

Chains T1  A! T2 G1  A! G2

A < 10�16, 1.11 < 10�16, 1.11 < 10�16, 1.19

B 3:60 � 10�7, 1.04 1:16 � 10�7, 1.04 < 10�16, 1.11

C not significant not significant 2:50 � 10�3, 1.02

D < 10�16, 1.08 < 10�16, 1.07 < 10�16, 1.16

Number of selected regulatory motifs (of which unbalanced)

A! T ! G T ! A! G T1  A! T2 G1  A! G2

A 21138 (4) 19272 (3) 419330 (32) 298 (0)

B 26573 (13) 12627 (12) 290724 (191) 184 (0)

C 37856 (440) 23427 (422) 808439 (13855) 187 (2)

D 38435 (324) 15154 (309) 519882 (11838) 202 (3)

Note: Since A! T ! G and T ! A! G correspond to the same undirect graph we use the more general term ‘Chains’ to denote (A, T, G) triplets.
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values in chains differ significantly between balanced and unbal-
anced cycles. In particular the latter distributions are characterized
by a ‘drop’ around zero, meaning that unbalanced cycles rarely lead
to conditional independence. A similar observation holds for fork
regulatory motifs as well, see Supplementary Results. What stands
out from the analysis is that balance is ‘almost’ a necessary condition
for conditional independence. Strikingly, for all four datasets, >
97% of the selected chain and fork regulatory motifs belong to a bal-
anced cycle. The enrichment of balance among selected regulatory
motifs is statistically confirmed by a hypergeometric test that com-
pares the balance ratio among the selected regulatory motifs and
among all the regulatory motifs in the network (P-value < 10�16).

3.4 Balanced and selected regulatory motifs are

conserved under different cell stimuli
Datasets A and B come from the same cell type under partially simi-
lar stimuli. Both datasets have been generated from Th cells differen-
tiated under Th1 polarizing conditions, with the difference that for
dataset B the Th1 polarization was done in presence of progesterone.
Accordingly, they are characterized by similar TF-peak-target gene
mappings: �50% of A! T ! G and T ! A! G; � 40% of T1  
A! T2 and �80% of G1  A! G2 regulatory motifs are shared
by the two datasets. When we focus on this pool of common regula-
tory motifs we observe that a significant portion is balanced in both
datasets. More precisely, there is a mild but significant overlap be-
tween the regulatory motifs that are balanced in A and those that are
balanced in B, see Table 4. Interestingly, the relationship becomes
stronger when we look at those regulatory motifs (except
A! T ! G) that are selected in dataset A and B.

A similar comparison can also be carried out between datasets C
and D, see Supplementary Results, leading to similar conclusions.

4 Discussion

In this article, we consider two alternative chain models to represent
the interplay that exists between TFs and chromatin modeling in reg-
ulating gene expression, differing for the causality direction between
A and T. Although the precise mechanisms are still unclear, several
studies have showed that the regulation can happen in both direc-
tions: TFs affects chromatin accessibility and viceversa (Li et al.,
2007; Li and Leonard, 2018; Stadhouders et al., 2018). Hence we
decided to consider both A! T ! G and T ! A! G as distinct
plausible regulatory motifs. In our case, the two sets of (A, T, G)
triplets that fit the conditional independence hypothesis for these
regulatory motifs are significantly disjoint. This is in accordance
with the notion that in some physiological situations chromatin
remodeling precedes TF binding whereas in other situations it is the
TF binding that leads to chromatin remodeling (Choukrallah and
Matthias, 2014).

In this work, we use balance as a consistency criterion. In the
context of biological networks, multiple studies have already high-
lighted that GRNs are enriched for balanced patterns (Facchetti
et al., 2013; Mangan and Alon, 2003) and altogether tend to be
close to monotone systems (Ma’ayan et al., 2008). However the ap-
plication of these ideas to sample correlations multi-omics data in
particular has never been explored before, at least in the authors’
knowledge. Indeed, the observation that combined RNA-seq and
ATAC-seq data is predominantly balanced provides evidence that it
is for the most part internally consistent. It is interesting to couple
this observation with the fact that > 97% of selected (i.e. condition-
ally independent) regulatory motifs were found to belong to a bal-
anced cycle. Conditional independence is associated to low
correlation values upon conditioning, thus it may be surprising that
unbalanced cycles (characterized by lower correlation values) rarely
lead to conditional independence.

We have also observed that the peaks that belong to chain regu-
latory motifs selected by the data are, on average, closer to the TSS

Fig. 3. (a) T ! A! G regulatory motif and corresponding distribution of

RðT;GjAÞ, divided in balanced (blue) and unbalanced (red) cycles. The balanced

and unbalanced distributions are normalized with respect to their total count

independently. (b) Similar analysis for the A! T ! G regulatory motif and the cor-

responding distribution of RðA;GjTÞ

Fig. 2. For each dataset, we gather all the regulatory motifs in Figure 1, then for

each regulatory motif we calculate minimum, geometric mean and maximum of its

three correlations. Blue denotes the distributions obtained in the balanced cycles, red

the unbalanced. In the table below we summarize the mean of each scalar measure,

computed separately in the balanced and unbalanced case
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of the corresponding target gene (see Supplementary Section S2.4).
From a biological perspective, this suggests that the regulation of
gene transcription is primarily mediated by the remodeling of chro-
matin in near proximity of the TSS.

Another application of the ideas presented in this article it to use
conditional independence to identify relevant TF-target interactions
from the data. A thorough analysis has been performed in
Supplementary Section S2.5, which shows that conditional inde-
pendence highlights relevant interactions supported by the literature.

Lastly, it should be noted that the techniques presented in this
article can readily be applied to non-longitudinal data. In fact,
chains and forks are also characterized by conditional independence
in that case, and dynamical correlation reduces to standard correl-
ation in the case of steady-state data and multiple replicates (i.e.
non-longitudinal data). Conceptually, the same remark can be made
regarding single cell (sc) data, the only difference being that correla-
tions must necessarily be computed across different cells. However,
the limited depth of the currently available methods, especially for
scATAC-seq (Chen et al., 2019), poses serious technical limitations.
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