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Label-free LC-MS analysis allows determining the differential expression level of proteins in multiple samples, without the use of
stable isotopes. This technique is based on the direct comparison of multiple runs, obtained by continuous detection in MS mode.
Only differentially expressed peptides are selected for further fragmentation, thus avoiding the bias toward abundant peptides
typical of data-dependent tandem MS. The computational framework includes detection, alignment, normalization and matching
of peaks across multiple sets, and several software packages are available to address these processing steps. Yet, more care should
be taken to improve the quality of the LC-MS maps entering the pipeline, as this parameter severely affects the results of all
downstream analyses. In this paper we show how the inclusion of a preprocessing step of background subtraction in a common
laboratory pipeline can lead to an enhanced inclusion list of peptides selected for fragmentation and consequently to better protein
identification.

1. Introduction

In the last years, clinical proteomics has witnessed an
increased interest towards mass spectrometry-based meth-
ods for quantitative differential analysis of protein content
in biological samples (i.e., biological fluids from drug-treated
versus untreated subjects, or from healthy versus ill patients).

MS-based proteomics approaches for comparative anal-
ysis include both methods based on the use of stable isotopes
[1], such as iTRAQ (Isobaric tags for relative and absolute
quantitative) and SILAC (Stable isotope labeling with amino
acids in cell culture), and so-called label-free approaches [2].

Label-free liquid chromatography-mass spectrometry
(LC-MS) differential analysis allows determining the dif-
ferential expression level of proteins in multiple samples
without presenting any limit to the number of samples being
compared and without increasing the complexity of mass
spectra. It is based on the direct comparison of peak intensi-

ties between multiple runs obtained by continuous detection
in MS mode, followed by MS/MS fragmentation of only
differentially expressed peptides. This procedure avoids the
bias toward abundant peptides, typical of data-dependent
tandem MS, and allows an increased identification of low-
abundant peptides.

In a typical label-free LC-MS experiment each analysis is
performed independently and it is followed by comparison of
the multiple LC-MS images. The computational framework
includes the steps of peaks detection, maps alignment and
normalization, peaks matching across multiple sets, and a
statistical analysis of the detected features for the evaluation
of the differentially expressed peptides.

Several open-source, commercial, and custom software
packages that address one or more of these processing
steps have been described in the literature [3]. Nevertheless,
most of the available tools show little or no care in
assessing a minimum quality standard for the LC-MS maps
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entering the pipeline. Baseline subtraction and denoising, for
instance, are still often neglected, despite their strong impact
on all downstream analyses [4, 5].

In order to show the importance of noise rejection, in
this study we report a label-free LC-MS differential analysis
of protein abundance in tears samples performed with
and without inclusion of a preprocessing step [6] into an
established analytical and computational strategy [7, 8].

The preprocessing is performed on a whole LC-MS map.
The algorithms work iteratively by first extracting all Single
Ion Chromatograms (SICs) and by then processing indepen-
dently each SIC by means of a wavelet decomposition to
identify and remove the components of the chemical and the
random noise.

Several other papers have introduced algorithms that
exploit the two-dimensional nature of the data to minimize
the noise in the mass domain by signal processing in
the chromatographic time domain. The advantage of our
denoising strategy over other algorithms, though, mainly
comes from characterising and subtracting the noise features
from all SICs independently. The limit of other common
approaches like CODA [9] or MEND [10], in fact, is that they
often process only a selection of SICs. CODA, for instance,
automatically retains only chromatograms with high S/N
ratio and combines them to form a reduced total ion hro-
matogram (TIC) trace. Similarly, MEND divides the whole
mass range in consecutive regions and for each region it
determines a global model of the noise by combining a fixed
number of “vacant” SICs, that contain no chromatographic
peaks.

In the first step of the present work, tears proteins from
healthy (H) subjects and patients affected by hyperevapora-
tive dry eye (HDE) were subjected to tryptic digestion and
analyzed by reverse-phase chromatography nano-LC ESI-
QTOF MS in order to evaluate the protein changes related
to the disease. The msInspect software [11] was used for
alignment and normalization of the LC-MS maps while the
open-source Proteios Software Environment (ProSE) [12]
was used for statistical analysis and for the creation of the
list of peptides to be identified by RP nano-LC ESI/QTOF
MS/MS analysis followed by database search.

In a second phase of the work the same LC-MS raw data
files were first filtered to remove chemical and random noise
and then reprocessed by the same computational pipeline.
The results are compared with those obtained by means of
the standard procedure and the influence of noise rejection
on the selection of peptides for MS/MS fragmentation is
commented according to previously obtained outcomes [13].

2. Experimental

2.1. Materials and Reagents. All the analytical grade reagents,
the Myoglobin, and the solvents were purchased from Sigma
Aldrich (St. Louis, MO, USA).

2.2. Subjects Studied. A total of 4 subjects, including 2
healthy volunteers (H; 1 M and 1 F) and 2 hyperevaporative
dry eye patients (HDE; 2 M), were admitted to this study.

Inclusive criteria for patients were Schirmer test I
value ≥ 10 mm/5 min, Tear Film Break Up Time (T.F.B.U.T.)
< 10 seconds, and symptoms of ocular discomfort from
at least two months. Inclusive criteria for healthy con-
trol subjects were Schirmer test I value ≥ 10 mm/5 min,
T.F.B.U.T. ≥ 10 seconds, and no ocular discomfort symp-
toms. In both groups exclusion criteria were considered
the presence of punctuate cheratopaty and/or autoimmune
diseases, the use of contact lenses and any ocular surgery in
the last 6 months.

All the tear samples were provided by the Ophthalmology
Unit at the University of Bologna (Italy) after obtaining
informed consent from the subjects studied and according
to DEWS guide lines [14] A minimum of 5 μL tears was
collected using a micropipette with sterile tip, centrifuged
and stored as previously described [15].

2.3. Tear Samples Preparation. Total protein quantification of
each tear sample was performed by Bradford protein assay
using bovine serum albumin (BSA) as a standard according
to the manufacturers’ instructions (Bio-Rad, Laboratories
Inc., CA, USA).

For each sample, 10 μg of proteins were diluted to 10 μL
with 6 M Urea in 100 mM ammonium bicarbonate pH 8.2
and 2 picomoles of a Myoglobin (Myo, P68082) were added
as internal standard. The protein mixtures were reduced
by adding 1 μL of 100 mM dithiothreitol (DTT, Sigma) in
100 mM ammonium bicarbonate for 1 hour at 37◦C and
alkylated by addition of 3 μL of 100 mM iodoacetamide
(IAA, Sigma) in 100 mM ammonium bicarbonate for 1 hour
at room temperature in the dark. The resulting samples
were incubated overnight at 37◦C with trypsin 12 ng/μL
(Promega) in a 50 : 1 (w : w) ratio. The tryptic digestions
were blocked after 15 hours incubation with 1 μL of formic
acid, and afterwards the samples were lyophilized to dryness
and resolubilized with 20 μL of 0.1% formic acid (FA).

2.4. Liquid Chromatography and Mass Spectrometry. For each
sample 4 μL were analyzed by LC-MS analysis using a CapLC
(Waters, Manchester, U.K) with flow splitting from 5 μL/min
to 200 nL/min, connected with a nanoelectrospray interface
to a QTOF Ultima (Waters) using MassLynx v4.0 software as
operating software. The peptide separation was performed
on an Atlantis dC18 NanoEase column (150 × 0.075 mm,
3 μm) (Waters) with an Atlantis dC18 NanoEase precolumn
(0.3 × 5 mm, 5 μm particle size) (Waters), using as mobile
phase A H2O/acetonitrile (95 : 5) 0.1% FA while the mobile
phase B was acetonitrile/H2O (95 : 5) 0.1% FA. A 90-minute
chromatographic gradient was used to give a linear increase
after 3 minutes from 2% B to 35% B in 70 minutes and
from 35% B to 80% B in 2 minutes, and after 3 minutes
at 80% B the column is conditioned again at 2% B for
15 minutes. One blank injection with a 30-minute gradient
was run between samples to reduce sample carry over, and
every six samples 2 pmol of Myo tryptic digest were analyzed
as quality control using the same 90 minutes gradient to
evaluate the experimental variation. During MS analysis the
QTOF was set to scan in profile mode m/z 400–1800 with
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Figure 1: Typical pipeline for comparative LC-MS analysis. (a) The preprocessing step of noise rejection is shown as optional to the common
workflow. (b) Details of the bioinformatic steps: in black the standard workflow, in red the alternative workflow subsequent to noise rejection,
and in green the comparison of the results obtained by the two approaches.

1.9 seconds per scan and 0.1 seconds of scan delay. The
samples were analyzed in triplicates. Four microliters of
sample were injected for targeted MS/MS and the same LC
gradient was used. The survey scan time was set to 1 second
and a peak limit of 15 counts to switch to MS/MS mode. For
inclusion lists the time tolerance was set to 300 seconds.

2.5. MS Data Analysis. The pipeline of MS data analysis
has been already described elsewhere by our research group
[7, 8] and is shown in Figure 1(a). Briefly, massWolf (v2.0,
http://sashimi.sourceforge.net) was used for the conversion
of Micromass LC-MS raw data file to mzXML, while the
peptide feature detection was performed using msInspect
v2.1. Two alignments were performed for the analysis of all
the LC-MS features: one with an H sample and one with
an HDE sample as master. The normalization of the LC-
MS maps and their alignments were performed by means
of the peptide Array tool in msInspect [11], using a mass
window of 0.2 m/z and a time window of 250 scans. After
alignment, significantly upregulated features were scheduled
for targeted MS/MS in inclusion lists generated using the
ProSE 2.1 platform [12]. The inclusion limit was a fold
change of at least 1.5 and a P-value of 0.05 in a Student’s
t-test. For the t-test the total intensities, which represent
the integrated peak volumes, were used. For features where
peaks could not be found in the healthy control samples,
a value of 50 ion counts was used, which was an estimate
for the detection level in the present setup. Selected features
were sorted according to intensity and put into include lists
with a maximum of 300 peaks per include list. The retention

times of the second technical replicate acquired sample were
used in the include list. Targeted MS/MS analysis was finally
performed to identify the peptides contained in the include
lists.

2.6. Tandem MS Data Analysis. To generate peak lists
for peptide identification, ProteinLynx Global Server 2.2
(Waters) was used. The XML format peak lists were
converted to mzData using ProSE. Mascot version 2.2
(www.matrixscience.com) was used for peptide identifica-
tion.

The Sprot human database, version 57.3, was used,
468851 sequences in total. The search settings were 0.2 Da
precursor and 0.6 Da fragment tolerances, carbamidomethy-
lation of cysteine as fixed modification, methionine oxida-
tion as variable modification, and semiTrypsin with one
missed cleavage as enzymatic digestion. The search results
were exported as XML and matched with MS features using a
ProSE plug-in, with a retention time tolerance of 100 seconds
and a mass tolerance of 0.12 Da. Proteins were considered
correctly identified when at least two different peptides (with
significant individual score, i.e., P < 0.05) were present.

2.7. Noise Rejection. In the second phase of this work, the
original mzXML files entering the pipeline described in
Figure 1(a) were cleaned from extraneous noise by a wavelet-
based algorithm already described by our research group [6].
Briefly, the algorithm works on a whole LC-MS map by first
extracting all Single Ion Chromatograms (SICs) from the
spectrographic data and by then decomposing each SIC to
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Table 1: Alignment of technical replicates. Mass Window = 0.2 Th, Scan Window = 250 scans, Min Charge = 2+.

Total Only I Only II Only III I-II I-III II-III I-II-III

H1 I-II-III
UNPROCESSED 4167 767 568 564 315 288 208 1457

PROCESSED 5736 1061 915 1018 379 361 338 1664

% increase 37.65 38.33 61.09 80.50 20.32 25.35 62.50 14.21

H2 I-II-III
UNPROCESSED 4476 890 933 625 208 420 347 1053

PROCESSED 5783 1178 1307 925 228 519 472 1154

% increase 29.20 32.36 40.09 48.00 9.62 23.57 36.02 9.59

HDE1 I-II-III
UNPROCESSED 4456 861 889 607 314 475 245 1065

PROCESSED 6324 1301 1386 1051 384 650 347 1205

% increase 41.92 51.10 55.91 73.15 22.29 36.84 41.63 13.15

HDE2 I-II-III
UNPROCESSED 3921 842 543 563 345 253 288 1087

PROCESSED 5087 1068 754 962 356 299 394 1254

% increase 29.74 26.84 38.86 70.87 3.19 18.18 36.81 15.36

Common
47.9± 3%

Processed
35.3± 0.9%

Unprocessed
16.8± 3%

Figure 2: Results of the alignment of the original and the filtered
files of all 12 LC-MS run. Common: features found in both maps;
processed: features found only after noise rejection; unprocessed:
features found only in the original maps.

identify and remove the noise components. This cleaning
step is simply added to the standard pipeline (Figures 1(a)
and 1(b)) to selectively remove random and chemical noise
while leaving the peptide peaks unaffected.

All data were processed by a stand-alone Java application
on a 2.66 GHz iMac running Mac OS X with 1 GB of
RAM allocated for the JVM heap. The decomposition was
performed on 6 scales and by means of the Coifmann wavelet
of degree 1.

3. Results and Discussion

3.1. Effects of Denoising on Peptide Feature Detection. The
peptide Array tool of msInspect was run on the technical
replicates of all subjects and the results are shown in Table 1.
The first column of the table shows that the number of
peptide features detected by msInspect increases on average
by about 35%. In order to access sensitivity of the cleaning,
only peptides with a charge ≥2 were included in the table.
Uncharged features were excluded to avoid spurious peaks,
while singly charged peptides were excluded to avoid false
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Figure 3: KL ratio of corresponding peptides after the alignment of
the processed and the unprocessed maps of HDE2III. Most of the
peptides have KLClean < KLOriginal.

positive identifications caused by chemical noise, whose
regular pattern of peaks occurring at every Th can easily
be mistaken for the isotopic distribution of a 1+ peptide.
Furthermore, by only considering peptides that are aligned
through at least two of the replicates or through all of the
replicates, the average increase in detection can be estimated,
respectively, around 20% or 13%. A second alignment was
performed between the original and the filtered files of each
LC-MS run. In this case, since each file was practically aligned
to itself, stricter parameters of Mass Window = 0.05 Da and
Scan Window = 5 scans were imposed. Figure 2 shows that
on average half of the peptides are found both before and
after the cleaning. The figure shows also that about one
sixth of the peptides have disappeared from the original file
because of the cleaning, while one third have emerged in the
processed files after background subtraction.

The biggest region of the pie chart relates to the peaks
that are left unaffected by the cleaning, typically high-
intensities peptides. A look into the quality of these peptide
features shows a 30% average increase in the number of
consecutive scans in which a peptide is detected (data not
shown). This improvement is usually obtained by unveiling
the lowest peaks of its isotopic distribution.
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Figure 4: Details of unprocessed and processed LC-MS maps. Despite its high intensity, the highlighted doubly charged peptide
QLCSFEIYEVPWEDR (m/z 986.04) was not assigned a charge in the original map, because some of its isotopes were altered by the chemical
noise.

The general improvement of the quality of the common
peptides is also evident in Figure 3. The x-axis gives the
average intensity of two aligned peaks, while the y-axis shows
the logarithm of their KL ratio. KL is the Kullback-Leibler
score and it is used in msInspect as a measure of how
closely the observed isotopic distribution of a peptide feature
matches its own theoretical distribution at a given mass. This
score is always nonnegative and approaches zero for better
matches. Therefore all peptides which benefit from a correct
denoising will gain a lower KL, will have a ratio KLcl/KLor <
1, and will be located below zero on the logarithmic axis.
On the opposite, the peptides located above zero are those
negatively affected by noise rejection, while points close to
the horizontal axis indicate unaffected scores.

The figure thus shows that most of the peptides gained
a better (lower) score and that the best improvements were
obtained at very low intensities, therefore by those peptides
originally masked or hidden by the chemical noise.

The second and the third sectors of the chart show
peptides which have appeared or disappeared in the pro-
cessed maps as a consequence of the preprocessing step.
This result is more difficult to interpret because of the high
complexity of the samples, which makes it almost impossible
to infer which of the found peptides were true positives and
which of the lost peptides were true negatives. Nevertheless,
visual comparison of original versus clean maps confirms the
detection of new low-intensity peaks [6], belonging to sector
2. It also shows that most of the peptides lost in sector 3

are uncharged features which are assigned a charge only after
cleaning, like the peptide highlighted in Figure 4.

3.2. Effects of Denoising on Protein Identification. The ProSE
toolkit was used to identify over-expressed and under-
expressed peptides in the maps of the HDE subjects com-
pared to the H controls. The same statistical analysis was
then repeated for the processed data, thus producing a
total of 4 include lists (IL), subsequently used for peptide
identification by tandem MS (Figure 1(b)).

The results of the MS/MS analysis are summarized
in Table 2. Since no processing is performed on tandem
MS spectra, the quality of protein identification can be
directly ascribed to the quality of the include lists. Despite
an expected variability of the identified peptides, which is
mostly related to experimental conditions of the targeted
acquisitions, the general trend shows a clear improvement of
protein identification obtained from the processed data.

Considering the protein under-expressed in HDE
patients, the denoising strategy allowed the identification of
4 new proteins and achieved a higher sequence coverage and
a better protein score for three proteins already found with
the unprocessed data. In particular, Secretoglobin (SG1D1)
had 0 peptides in the raw IL and 5 in the clean one,
Mammaglobin-B (SG2A1) had 0 versus 3, Ig kappa chain C
region (IGKC) had 0 versus 2, Cystatin (CYTS) had 0 versus
4, while Lipocalin-1 (LCN1) had 6 versus 12, Proline-rich
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Table 2: List of the peptides identified using the include lists from unprocessed and processed data. Bold italic proteins indicate abundance
variations in agreement with previous outcomes [13].

(a) Over-expressed proteins in hyperevaporative dry eye patients

Name Entry name m/z Charge Sequence
Score

Unprocessed Processed

Hemoglobin
subunit bete

HBB HUMAN

590.89 2 GVANALAHKYH 16 18

862.91 3 GTFATLSELHCDKLHVDPENFR 40 59

637.89 2 LLVVYPWTQR 31 30

737.508 3 TLSELHCDKLHVDPENFR 51 —

725.44 2 VVAGVANALAHKYH 33 27

835.59 2 VLGAFSDGLAHLDNLK — 74

1030.15 2 FFESFGDLSTPDAVMGNPK — 17

888.95 2 LLGNVLVCVLAHHFGK — 49

899.64 2 KVLGAFSDGLAHLDNLK — 53

575.39 2 VVAGVANALAHK — 28

524.805 2 VVYPWTQR — 14

810.203 3 FATLSELHCDKLHVDPENFR — 15

626.39 2 AGVANALAHKYH — 17

786.03 2 LGAFSDGLAHLDNLK — 22

Total number of peptides 5 13

Protein score 86 169

Serum albumin ALBU HUMAN

756.49 2 VPQVSTPTLVEVSR 47 —

613.88 2 FKDLGEENFK 5 17

717.46 2 KECCEKPLLEK 51 23

820.49 2 KVPQVSTPTLVEVSR — 85

722.35 2 YICENQDSISSK — 30

871.95 2 HPYFYAPELLFFAK — 35

926.8 3 LVRPEVDVMCTAFHDNEETFLKK — 29

Total number of peptides 3 6

Protein score 71 96

Hemoglobin
subunit alpha

HBA HUMAN

523.96 3 FPHFDLSHGSAQVK — 2

663.37 2 HFDLSHGSAQVK — 30

942.98 3 DALTNAVAHVDDMPNALSALSDLHAHK — 46

785.92 4 KVADALTNAVAHVDDMPNALSALSDLHAHK — 6

Total number of peptides — 4

Protein score — 55
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(b) Under-expressed proteins in hyperevaporative dry eye patients

Name Entry name m/z Charge Sequence
Score

Unprocessed Processed

Lipocalin-1 LCN1 HUMAN

669.86 2 TDEPGKYTADGGK 34 48

722.94 2 YCEGELHGKPVR 16 —

707.44 3 DHYIFYCEGELHGKPVR 97 36

643.64 4 SHVKDHYIFYCEGELHGKPVR 30 15

874.54 2 NNLEALEDFEKAAGAR 67 84

934.6 2 YIFYCEGELHGKPVR 14 —

496.84 2 GELHGKPVR — 10

561.36 2 EGELHGKPVR — 20

593.88 2 AVLEKTDEPGK — 28

641.38 2 CEGELHGKPVR — 2

796.48 2 FYCEGELHGKPVR — 36

885.5 2 SDEEIQDVSGTWYLK — 56

1171.21 2 HHLLASDEEIQDVSGTWYLK — 102

857.88 3 SHVKDHYIFYCEGELHGKPVR — 47

Total number of peptides 6 12

Protein score 136 257

Polymeric
immunoglobulin
receptor

PIGR HUMAN

703.95 2 VLDSGFREIENK 38 44

876.04 2 TVTINCPFKTENAQK 11 —

854.01 2 QSSGENCDVVVNTLGK 78 47

573.35 2 QGARGGCITLI — 3

775.97 2 TINCPFKTENAQK — 6

Total number of peptides 3 4

Protein score 81 63

Lactotransferrin TRFL HUMAN

694.94 2 GPQYVAGITNLKK 16 —

624.37 2 WCAVGEQELR 15 —

790.48 2 NLLFNDNTECLAR 37 —

874.03 2 RSVQWCAVSQPEATK 74 —

630.91 2 GPQYVAGITNLK — 21

702.89 2 QWCAVSQPEATK — 9

706.93 2 PIQCIQAIAENR — 62

841.97 2 CSTSPLLEACEFLR — 70

886.06 2 RDSPIQCIQAIAENR — 6

953.55 3 SQQSSDPDPNCVDRPVEGYLAVAVVR — 30

982.55 2 SASCVPGADKGQFPNLCR — 56

Total number of peptides 4 8

Protein score 77 141

Serum albumin ALBU HUMAN

1020.23 2 VFDEFKPLVEEPQNLIK 38 —

773.99 2 LKECCEKPLLEK 35 —

Total number of peptides 2 —

Protein score 46 —

Ig kappa chain C
region

IGKC HUMAN

714.45 3 HKVYACEVTHQGLSSPVTK — 79

1071.18 2 HKVYACEVTHQGLSSPVTK — 34

Total number of peptides — 2

Protein score — 79



8 Journal of Biomedicine and Biotechnology

(b) Continued.

Name Entry name m/z Charge Sequence
Score

Unprocessed Processed

Proline-rich
protein 4

PROL4 HUMAN

815.2 2 DRPARHPQEQPLW 43 15

801.48 2 FPSVSLQEASSFFR — 84

537.66 3 PSVSLQEASSFFRR — 13

598.38 2 HPPPPPFQNQQRPPR — 15

552.68 3 PPPPPFQNQQRPPR — 27

Total number of peptides 1 5

Protein score 43 84

Secretoglobin
family 1D member
1

SG1D1 HUMAN

869.57 1 APLEAVAAK — 24

572.9 2 FKAPLEAVAAK — 39

988.67 2 QALGSEITGFLLAGKPVFK — 96

712.8 3 CQALGSEITGFLLAGKPVFK — 71

622.86 2 KCVDTMAYEK — 10

Total number of peptides — 5

Protein score — 188

Mammaglobin-B SG2A1 HUMAN

732.95 2 FKQCFLNQSHR — 45

969 2 ELLQEFIDSDAAAEAMGK — 81

977.54 2 ELLQEFIDSDAAAEAMGK + oxM — 7

Total number of peptides — 3

Protein score — 89

Cystatin-S CYTS HUMAN

964.05 2 PNLDTCAFHEQPELQK — 21

685.74 3 PNLDTCAFHEQPELQKK — 29

1135.65 2 SQPNLDTCAFHEQPELQKK — 6

986.04 2 QLCSFEIYEVPWEDR — 67

Total number of peptides — 4

Protein score — 70

protein 4 (PROL4) had 1 versus 5, and Lactotransferrin
(TRFL) had 4 versus 8. One protein was found with a better
sequence coverage but a lower protein score (Polymeric
Immunoglobulin Receptor (PIGR): 3 versus 4) and a last one
was found only before filtering (Serum Albumin (ALBU): 2
versus 0).

Among the proteins over-expressed in HDE patients, 1
protein was found only after noise rejection (Hemoglobin
subunit alpha (HBA): 0 versus 4) and 2 proteins achieved
a higher sequence coverage and a better score (Hemoglobin
subunit beta (HBB): 5 versus 13 and ALBU: 3 versus 6). The
obtained results have been compared with the outcomes of
a previous study performed by our research group [13], in
which the differential expression of proteins in HDE patients
over H controls was monitored by mono-dimensional gel
electrophoresis and western blot analysis. Under-expressions
of LCN1, SG1D1, SG2A1, TRFL, and over-expression of
ALBU are in perfect agreement with the previous study
and these proteins are shown in bold italic in Table 2. In
particular, noise filtering allowed to identify ALBU as over-
expressed in HDE patients, whereas the standard pipeline
wrongly identified the protein as both under- and over-
expressed.

As regards the variations in the abundances of HBA,
HBB, IGKC, PROL4, PIGR, and CYTS associated to HDE,
this could not be validated by comparison with previously
published data. Nevertheless, a clear proof of their proper
identification can be observed in Figure 4, where the correct
charge assignment of the CYTS peptide QLCSFEIYEVP-
WEDR allowed its inclusion in the list of peptides under-
expressed in tear samples from HDE patients.

4. Conclusions

We have previously shown that wavelet denoising in the RT
domain achieves selective rejection of chemical and random
noise while preserving peptides features and morphology.
The approach has proved to unveil low-intensity peptides
originally masked by the chemical noise and to reduce false
positive identification, by filtering noise peaks originally
mimicking the peptide morphology.

In this work we have applied our noise filtering strategy
to a label-free LC-MS differential analysis of protein abun-
dance in tears samples. The mzXML files have been simply
intercepted, processed by our algorithm and reinserted in the
standard workflow just before the analyses by msInspect.
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The results show that noise rejection allows to increase
the sensitivity of msInspect to real peptides and to obtain
more accurate include lists for further targeted MS/MS
analysis. These results are validated by comparison to
previous outcomes which confirm an improvement in terms
of number of identified proteins, higher sequence coverage,
and better protein scores.
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