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1  |  INTRODUC TION

The health and diversity of insect populations are major contrib-
uting factors to global food production, ecosystem function, and 
economic stability (Gallai et al., 2009; Ollerton et al., 2011; Steffan-
Dewenter et al., 2005). Due to national and public concern over 
population declines, there has been a growing interest in insect 
and pollinator monitoring to inform possible proactive management 

strategies (Biesmeijer et al., 2006; Breeze et al., 2021; Potts et al., 
2010; Steffan-Dewenter et al., 2005). Good management requires 
good data, and monitoring is only useful if the data gathered are 
meaningful and of high quality (Kosmala et al., 2016; Kremen et al., 
2011). Traditional methods of monitoring insect–plant interactions 
typically entail researcher observation at one or several focal plants 
over a set time period (e.g., 5–10 min, 1–4 h; Fitch & Vaidya, 2021; 
Kunin, 1993; Roy et al., 2016). However, human observations are 
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Abstract
Insect and pollinator populations are vitally important to the health of ecosystems, 
food production, and economic stability, but are declining worldwide. New, cheap, 
and simple monitoring methods are necessary to inform management actions and 
should be available to researchers around the world. Here, we evaluate the efficacy 
of a commercially available, close-focus automated camera trap to monitor insect–
plant interactions and insect behavior. We compared two video settings—scheduled 
and motion-activated—to a traditional human observation method. Our results show 
that camera traps with scheduled video settings detected more insects overall than 
humans, but relative performance varied by insect order. Scheduled cameras signifi-
cantly outperformed motion-activated cameras, detecting more insects of all orders 
and size classes. We conclude that scheduled camera traps are an effective and rela-
tively inexpensive tool for monitoring interactions between plants and insects of all 
size classes, and their ease of accessibility and set-up allows for the potential of wide-
spread use. The digital format of video also offers the benefits of recording, sharing, 
and verifying observations.
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prone to misidentification, a lack of verifiable proof in the form of 
pictures or video, and difficulty identifying insects to a relevant tax-
onomic level (Kremen et al., 2011; Roy et al., 2016).

Automated camera systems have been found to be a powerful 
yet underutilized tool for gathering large amounts of high-quality 
insect data (Gilpin et al., 2017; Lortie et al., 2012; Pegoraro et al., 
2020; Steen, 2017). Camera traps have been used to address numer-
ous research questions including pollinator diversity and behavior 
(e.g., Howard et al., 2021; Manetas & Petropoulou, 2000) and insect 
predation (Grieshop et al., 2012). However, many of these camera 
systems use continuous video recording, which produces massive 
quantities of data, and require adaptations to achieve the desired re-
cording settings or to extend battery life (e.g., Droissart et al., 2021; 
Lortie et al., 2012; Micheneau et al., 2008; Pegoraro et al., 2020; 
Steen, 2017). While these more sophisticated, custom systems have 
been shown to be effective (e.g., Droissart et al., 2021), an evalu-
ation of a more user-friendly, accessible, “out-of-the-box” solution, 
such as game cameras, would benefit the less technologically savvy 
practitioner (Droissart et al., 2021; Steen, 2017).

Here, we evaluated the use of high-definition, commercially avail-
able game cameras with close-focus functionality to monitor insect–
plant interactions and behaviors. We then compared the results to 
traditional human observations. Based on previous studies, we pre-
dicted cameras would capture more insect detections than humans in 
general (Lortie et al., 2012; Pegoraro et al., 2020). However, we further 
compared two recording settings available on most models of game 
cameras: scheduled and motion-activated. We predicted the number 
of detections by cameras would vary based on insect body size. For 
example, motion-activated cameras would capture more large insects 
because they would trigger the motion sensor, whereas the scheduled 
cameras make no use of the motion sensor feature. In addition, we 
evaluated insect detections by the two camera settings and human 
observations based on insect behaviors. We did not limit documented 
behaviors only to pollination behaviors in order to maximize the utility 
of the technology to answer a variety of research questions such as 
monitoring of insect diversity and/or interspecific interactions (Morse, 
1986; Reed, 1995; Robertson & Maguire, 2005). We predicted that 
behaviors that result in more time at the flower (e.g., flower probing) 
would be detected similarly between both cameras and humans, but 
that fast-moving behaviors (e.g., flying) would be more likely to be 
detected by cameras. Our goal is to present a proof-of-concept for 
high-precision insect–plant monitoring that uses relatively inexpen-
sive tools, requires minimal training to carry out, and can be used to 
address a wide variety of insect-plant research questions.

2  |  METHODS

2.1  |  Insect monitoring

We conducted a series of 16 paired human and camera trap obser-
vation trials to compare game cameras (hereafter, “camera traps”) to 
human observers for documenting insect–plant interactions. Trials 

took place at five study sites in Champaign County and DuPage 
County, Illinois, U.S.A., between 1 July and 21 August 2020. Each 
site was a suburban or exurban residential property containing nu-
merous planted native and ornamental species.

For each trial, we deployed two cameras (Bushnell NatureView 
HD model 119740, Bushnell Outdoor Products, Overland Park, 
Kansas), each equipped with a close-range 460 mm lens. Cameras 
with similar specifications are available from alternate manufactur-
ers (e.g., Reconyx Professional Series cameras with custom focal dis-
tance, Reconyx, Holmen, Wisconsin). One camera was set to record 
one 60-s-long video every 5  min (hereafter, “scheduled” camera) 
and the other was set to record one 60-s-long video when triggered 
by motion (hereafter, “motion-activated” camera) (See Supporting 
Information S2 for video examples). Cameras were mounted on sep-
arate tripods and aimed at a focal flower or small cluster of flowers 
of the same species at a distance of 46 cm (Figure 1). We used the 
handheld Live View accessory provided with the camera to ensure 
proper focus and framing of the focal flower part. After activating 
the pair of cameras, an observer sat 1–2 m from focal flower and 
observed insect interactions using binoculars, in order to facilitate 
more accurate insect identification from a distance. Although the 
majority of pollinator observations are conducted with the naked 
eye, we found binoculars to be a helpful tool when focusing on one 
or a few focal flowers in order to compare it to the performance 
of camera traps. The observer monitored the focal flower for 3  h 
after activating the cameras and recorded the identity, quantity, and 
behavior of all insects interacting with the flower. All analyses were 
conducted with data collected during a 3-h period in which observ-
ers and cameras simultaneously monitored the focal points of the 
plant.

Insect monitoring was conducted using 13 plant species, cover-
ing a range of flower morphologies, and included native and non-
native species (Table 1). Flower species diversity was favored over 
replication in the experimental design in order to display game 
cameras’ performance when compared to humans in a variety ap-
plication cases. Observations were conducted during daylight hours 
between 08:57 and 18:14. Trials were not conducted in inclement 
weather with precipitation or during storms.

2.2  |  Video annotation

After the observation trials, camera trap videos were reviewed 
and annotated using the image analysis software Timelapse 2 
(Greenberg, 2021). For each video, a trained observer recorded 
the identity, quantity, and behavior of all insects present. In most 
cases, the observer who conducted the plant observations also 
annotated the videos for that trial. Insects were identified taxo-
nomically order level Diptera, Formicidae, Coleoptera, Lepidoptera, 
Hemiptera, Hymenoptera excluding the family Formicidae, or un-
known. Formicidae were considered separately from the rest of 
Hymenoptera due to its morphological and behavioral differences. 
Hymenoptera was further organized into three size categories 
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(small, medium, large) according to body length. The small size cat-
egory represents insects approximately less than 10 mm in length 
(e.g., Chrysis spp., Agapostemon spp.), medium size insects are ap-
proximately 10–15 mm in length (e.g., Vespula spp., Anthidium spp.) 
and the large insects are approximately greater than 15 mm in length 
(e.g., Bombus spp., Xylocopa spp.). Because of variation in life history 
stages, we categorized Lepidoptera as either adult or larva rather 

than by size class. Insect behavior was classified into six behaviors: 
flying, hovering, landing, walking, probing, and moving between 
flowers. Insect interactions with leaves, stems, and other parts of 
the focal plant were ignored, as were interactions with flowers that 
were out of focus or in the background. Insects that were unidentifi-
able to taxonomic order were included in overall insect counts but 
excluded from order-specific analyses.

F I G U R E  1 Image (a) shows a schematic 
of insect observation trials. Two camera 
traps with different recording settings 
(one scheduled, one motion-activated) 
were placed side-by-side on separate 
tripods, 46 cm from the focal flower. A 
human observer viewed insect–plant 
interactions occurring on the focal flower 
using binoculars. Images (b–d) display 
the camera trap setup with a variety of 
lighting conditions flower types. Each trial 
lasted 3 h and took place in Champaign 
County and DuPage County, Illinois, USA

TA B L E  1 Number of insect–plant interactions detected on each species of plant monitored during 16 3-h observation trials in Champaign 
County and DuPage County, Illinois, USA

Focal plant species Origin IL County Trials Scheduled Motion Human Total

Asclepias tuberosa Native Champaign 1 77 3 22 102

Coreopsis sp. Native DuPage 1 7 0 4 11

Daucus carota Non-native DuPage 1 29 0 45 74

Echinacea paradoxa Non-native Champaign 3 432 408 118 958

Echinacea purpurea Native Champaign 1 9 2 24 35

Eutrochium purpureum Native DuPage 1 199 0 65 264

Hyssopus officinalis Non-native Champaign 2 1920 1235 217 3372

Mentha spicata Non-native DuPage 1 150 284 322 756

Monarda fistulosa Native DuPage 1 23 7 19 49

Nepeta mussinii Non-native DuPage 1 104 49 62 215

Rudbeckia hirta Native Champaign 1 46 9 54 109

Verbena urticifolia Native Champaign 1 132 8 64 204

Veronica sp. Native Champaign 1 350 15 23 388

Total 16 3478 2020 1039 6537
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2.3  |  Statistical analyses

All statistical analyses were conducted in Program R v. 4.0.0 (R Core 
Team, 2020). We created generalized linear mixed models to evalu-
ate the influence of observation method (scheduled camera, motion-
activated camera, and human observer) on the number of insects 
of each taxonomic order detected during observation trials. We in-
cluded trial number as a random effect to account for variability due 
to different observers and focal plant species among trials. Because 
the camera data were not continuous throughout the 3-h observa-
tion period, we cannot directly compare results for individual de-
tections but, rather, we compare overall differences in numbers and 
diversity of insects detected among methods.

We constructed our model set using the “lme4” package (Bates 
et al., 2015). We checked for overdispersion using the function by 
Bolker et al. (2021) and for zero-inflation using the “performance” 
package (Lüdecke et al., 2021). Overdispersion was detected in 
many of our count data models (variance-to-mean ratios >2), thus 
we used a negative binomial distribution (White & Bennetts, 1996) 
for all models to maintain consistency and comparability among 
the model set. In cases where an individual model was not overdis-
persed, use of either a negative binomial distribution or Poisson 
distribution did not quantitatively and qualitatively affect model 
results (see Supporting Information S1 for all model summaries 
and diagnostic tests). We report odds ratios to quantify the effec-
tiveness of each camera type relative to the traditional human ob-
server method. To present odds ratios in a forest plot, we used the 
packages “ggplot2” (Wickham, 2016) and “ggforestplot” (Scheinin 
et al., 2021).

We compared the diversity of insects (number of taxonomic 
orders) detected by the three observation methods using a linear 
mixed model via the “lme4” package (Bates et al., 2015), again with 
trial as a random effect. We examined residual plots to confirm 
that assumptions of linearity and homoskedasticity were not vio-
lated. Next, we evaluated the influence of camera type (scheduled 
versus motion-activated) on the body size of insects detected by 
creating generalized linear mixed models using a Poisson distribu-
tion. We compared detections of small-, medium-, and large-bodied 
Hymenoptera, as well as larvae and adult Lepidoptera, between the 
two camera types. Size classes were not documented by human ob-
servers during trials, so we could not evaluate body sizes detected 
by humans in comparison to cameras. Last, we tested for differ-
ences in the frequencies that behaviors were observed by scheduled 

cameras, motion-activated cameras, and human observers using chi-
square tests.

3  |  RESULTS

During 16 insect observation trials, scheduled cameras triggered on 
average 34.1 times per trial (median = 34.5 triggers, range = 27–36 
triggers), resulting in 3478 insect detections (median = 121 detec-
tions, range  =  8–1044 detections) in 545  min of video recordings 
(Table 1). Motion-activated cameras triggered on average 16.3 times 
per trial (median  =  7.5 triggers, range  =  0–83 triggers), resulting 
in 2020 insect detections (median  =  13.5 detections, range  =  0–
736 detections) in 261 min of video recordings. Human observers 
recorded 1039 insects (median  =  45.5 detections, range =4–328 
detections) in 2880 min of observation. The number of triggers on 
the scheduled camera was lower than the expected 36 triggers per 

Order Scheduled camera
Motion-activated 
camera

Human 
observer

Coleoptera 0.88 ± 0.57 0.19 ± 0.19 0.44 ± 0.26

Diptera 20.56 ± 6.36 5.94 ± 2.67 14.88 ± 3.99

Formicidae 8.12 ± 4.14 0.56 ± 0.45 1.06 ± 0.60

Hemiptera 15.50 ± 15.10 0.31 ± 0.25 0.25 ± 0.19

Hymenoptera 207.63 ± 75.29 112.13 ± 52.30 48.25 ± 19.76

Lepidoptera 7.75 ± 5.52 0.38 ± 0.27 1.44 ± 0.67

TA B L E  2 Number of insect-plant 
interactions (mean ± SE) of six insect 
groups detected by scheduled cameras, 
motion-activated cameras, and human 
observers during 16 3-h observation 
trials in Champaign County and DuPage 
County, Illinois, USA

F I G U R E  2 Odds ratios (dots) with 95% confidence intervals 
(lines) for the number of insect detections by motion-activated 
cameras (black) and scheduled cameras (red) relative to human 
observers (vertical black line at odds ratio = 1), by insect order. 
Filled-in dots indicate significant relationships compared to 
human observers. Hollow dots indicate relationships that are 
not significantly different from human observers. Odds ratios 
represent the number of times as likely the camera was to detect 
a given insect order compared to human observers during 16 
3-h observation trials in Champaign County and DuPage County, 
Illinois, USA. Note the x-axis is on the log scale
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trial due to equipment malfunctions. A total of 384 insects (11% of 
detections) were not identifiable to order from scheduled cameras, 
127 (6% of detections) from motion-activated cameras and 16 (2% of 
detections) from human observers.

Scheduled cameras detected more insects of all orders 
than motion-activated cameras and human observers (Table 2). 
Compared to human observers, scheduled cameras were 3.35 
(95% CI =  1.45–7.76) times more likely to detect Hymenoptera, 
7.66 (95% CI = 4.71–13.28) times more likely to detect Formicidae, 
and 49.79 (95% CI  =  16.35–151.65) times more likely to de-
tect Hemiptera (Figure 2). Motion-activated cameras were 0.27 
(95% CI =  0.12–0.63) times as likely as human observers to de-
tect Diptera (Figure 2). There were no significant differences be-
tween either camera type and humans at detecting Coleoptera or 
Lepidoptera (Figure 2).

The diversity of insect groups detected did not differ between 
human observers and scheduled cameras (β  =  0.31, SE  =  0.31, 
p =  .326). However, motion-activated cameras significantly under-
performed both human observers (β = −0.94, SE = 0.31, p =  .005) 

and scheduled cameras (β = −1.25, SE = 0.31, p <  .001), detecting 
approximately one fewer insect order per trial. Scheduled cameras 
detected significantly more insects of all body size classes than 
motion-activated cameras (all p < .01; Table 3).

Scheduled cameras documented 10 520 occurrences of six in-
sect behaviors; motion-activated cameras documented 4462 oc-
currences, and human observers documented 2365 occurrences 
(Figure 3). Overall, the three observation methods differed in their 
detection of behaviors (χ2 = 487.3, DF = 10, p < .0001). Compared 
to camera methods, humans recorded disproportionately more 
probing (human–scheduled camera: χ2 = 82.7, DF = 1, p < .0001; 
human–motion-activated camera: χ2  =  62.0, DF  =  1, p  <  .0001) 
and landing (human–scheduled camera: χ2  =  141.3, DF  =  1, 
p  <  .0001; human–motion-activated camera: χ2  =  97.9, DF  =  1, 
p  <  .0001). Conversely, humans documented disproportionately 
less flying (human–scheduled camera: χ2 = 7.9, DF = 1, p = .0050; 
human–motion-activated camera: χ2  =  37.4, DF  =  1, p  <  .0001) 
and hovering (human–scheduled camera: χ2  =  28.6, DF  =  1, 
p <  .0001; human–motion-activated camera: χ2 = 181.1, DF = 1, 

Pollinator type Scheduled Motion-activated p-value

Large Hymenoptera 3.19 ± 1.33 1.25 ± 0.70 .0004

Medium Hymenoptera 40.50 ± 18.63 24.69 ± 11.52 <.0001

Small Hymenoptera 163.94 ± 62.32 86.19 ± 43.66 <.0001

Adult Lepidoptera 1.31 ± 0.70 0.13 ± 0.09 .0015

Larval Lepidoptera 6.44 ± 5.00 0.25 ± 0.19 <.0001

Note: p-values indicate the significance of the fixed effect of camera type in generalized linear 
mixed models.

TA B L E  3 Number of insect–plant 
interactions (mean ± SE) of different size/
life history stage classes of two orders 
of insects detected by scheduled and 
motion-activated cameras during 16 3-h 
observation trials in Champaign County 
and DuPage County, Illinois, USA

F I G U R E  3 Proportion of insect–
plant interactions in which insects 
performed six behaviors: flying, walking, 
hovering, probing, moving between 
flowers, and landing. Within a behavior, 
bars with different letters indicate 
significant differences among scheduled 
cameras (n = 10 520), motion-activated 
cameras (n = 4462), and human observers 
(n = 2365)
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p  <  .0001). Compared to scheduled cameras, motion-activated 
cameras recorded a higher proportion of flying (χ2 = 27.0, DF = 1, 
p  <  .0001) and hovering (χ2  =  4.4, DF  =  1, p  =  .0359), but less 
walking (χ2  =  110.0, DF  =  1, p  <  .0001). All three observation 
methods documented insects moving between flowers in sim-
ilar proportions (scheduled camera–motion-activated camera: 
χ2 = 0.1, DF = 1, p =  .7285; human–scheduled camera: χ2 = 0.7, 
DF  =  1, p  =  .3883; human–motion-activated camera: χ2  =  1.0, 
DF = 1, p = .3082).

4  |  DISCUSSION

Our results demonstrate that commercially available game cam-
era traps are an effective alternative to human observations for 
documenting insect–plant interactions and insect behaviors. In 

particular, cameras set to automatically capture video on a set 
schedule provided significantly higher numbers of detections of 
Formicidae, Hemiptera, and Hymenoptera than humans, and de-
tected more insects of all sizes than motion-activated cameras. 
Numerous studies have demonstrated the utility of modified 
cameras for documenting insect behavior and diversity (Grieshop 
et al., 2012; Howard et al., 2021; Manetas & Petropoulou, 2000). 
Our results suggest that even commercially available, unmodified 
cameras can collect valuable data for insect conservation and 
management goals.

We predicted that motion-activated cameras would capture 
more large insects because they would be more likely to activate 
the motion-sensor feature; however, scheduled cameras still out-
performed motion-activated cameras, capturing more insects of 
all size or age classes of Hymenoptera and Lepidoptera. A marked 
difference between the scheduled and motion-activated cameras is 
the motion-activated cameras’ 200 ms response time to motion trig-
gers, which may have been too slow for the rapid movement of some 
flying insects and began to record when the insect was no longer 
in frame. This may explain in part the disparity between detection 
rates of motion-activated and scheduled cameras. Due to worldwide 
concern over pollinator population collapse, the three-fold increase 
in Hymenoptera detection by scheduled cameras compared to hu-
mans may be of interest to researchers who want to survey bee/
wasp presence, richness, and inter- and intra-species interactions. 
It should be noted, however, that identification to genus or species 
for many Hymenoptera is most likely not possible with game camera 
images (Figure 4).

Our results suggest that detection rates by the different cam-
era settings and compared to human observations varied by insect 
behavior. In particular, human observers were more likely to detect 
insects that were exhibiting flower probing or landing on flowers 
whereas cameras, particularly those with motion-activated settings, 
were more likely to detect insects engaged in flying or hovering be-
haviors. This makes intuitive sense as behaviors that result in more 
time at the flower (e.g., probing/landing) are more likely to be de-
tected by the human eye whereas high motion behaviors (e.g., flying) 
may be more likely to be detected by motion-activated cameras. This 
result would suggest that researchers should consider the type of 
data of interest when considering the use of cameras for monitoring 
plant–insect interactions.

Previous studies on insect behavior have used a variety of 
camera systems with adaptations or alterations that allow them 
to function similarly to camera traps (Droissart et al., 2021; Lortie 
et al., 2012; Micheneau et al., 2008; Pegoraro et al., 2020; Steen, 
2017). Although effective, these systems often require some level 
of expertise to assemble and use. The game camera model we used 
required minimal setup and functioned as desired virtually “out-
of-the-box” with no additional alterations. Commercially available 
game cameras are user-friendly and do not require technical exper-
tise or experience to operate effectively. Additionally, the use of 
widely available game cameras may help improve the consistency 
and replicability of data.

F I G U R E  4 Screenshots from our game cameras displaying 
insects from multiple orders on or near a variety of focal flowers. 
Photos (b–e) are cut-outs of larger images. (a) Monarch Butterfly 
(Danaus plexippus; order Lepidoptera) on butterfly milkweed 
(Asclepias tuberosa); (b) Carpenter Bee (Xylocopa virginica, order 
Hymenoptera) on hyssop (Hyssopus officinalis); (c) Bumblebee 
(Genus Bombus, order Hymenoptera) on spiked speedwell (Veronica 
spicata); (d) Fly (order Diptera) on tickseed (Coreopsis spp.); (e) Ant 
(Family Formicidae, order Hymenoptera, circled in red) on spiked 
speedwell (Veronica spicata)
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Although game cameras present a promising tool for monitor-
ing plant–animal interactions and behaviors, potential shortcomings 
should be considered when adopting this technology, with advan-
tages and disadvantages ultimately based on specific study objec-
tives and logistics. For example, game cameras can produce many 
terabytes of data that require storage and management. Following 
data collection, annotation of the videos and identification of insects 
can be time-consuming and require taxonomic expertise. Similar to 
human observations on plants, there will likely be periods where 
there are no interactions and those “false trigger” videos still require 
annotation time. However, computer vision methods of automated 
detection and classification have the potential to alleviate the extra 
burden associated with processing large quantities of video data 
(Ratnayake et al., 2021; Weinstein, 2018). Further, game cameras do 
not collect video data continuously but, rather, collect video clips at 
set intervals or through motion-activation. This type of data collec-
tion may prohibit certain analyses, such as the duration of foraging 
at a flower (e.g., Sivakoff & Gardiner, 2017). In all cases, study objec-
tives must be carefully considered before adopting any monitoring 
technology.

Future studies can build upon our results by replicating our 
methods with different plant and insect communities and evaluat-
ing different recording schedules to optimize the quantity and qual-
ity of data collected in relation to deployment length (i.e., battery 
life) and study-specific goals. For example, recording shorter videos 
(e.g., 10 s) may reduce the likelihood of multiple interactions being 
recorded within a single video clip (Steen, 2017). Plant observations 
are also often conducted during daylight hours (when pollinators 
are more visible) for set periods of time, thereby potentially miss-
ing interactions that occur at different times of day or nocturnally 
(Johnson et al., 2020). The night-vision capabilities of camera traps 
can allow researchers to observe nocturnal insect visitation and in-
teraction. For example, in a recent study by Sakagami et al. (2021), 
the nocturnal impact of ambush predators such as praying mantises 
on flower-visiting moths and its plant reproductive consequences 
could not have been captured without cameras. The use of camera 
traps is key to capturing unique insect–plant interactions that are 
difficult to observe, and critically, to provide verifiable proof of these 
observations in the form of pictures or videos which can be further 
studied long after the interaction was captured.

Researchers and land managers often require baseline data on 
wildlife behavior, distribution, and abundances to make proactive 
land management decisions. Traditional monitoring can be time-
intensive and costly, leading to the use of technologies, such as 
game cameras, to augment monitoring efforts. Although game cam-
eras have been extensively used to monitor larger species (Rovero & 
Zimmermann, 2016), our study demonstrates that these technolo-
gies (specifically commercially available, unaltered cameras) can also 
effectively be used to monitor plant-insect interactions. Our study 
was designed to demonstrate the utility of this technology in a gen-
eral context, but our results highlight how cameras with close-focus 
lenses can facilitate data collection to address a wide number of re-
search questions.
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