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Abstract

Background

Pharmacodynamic biomarkers are becoming increasingly valuable for assessing drug activ-

ity and target modulation in clinical trials. However, identifying quality biomarkers is chal-

lenging due to the increasing volume and heterogeneity of relevant data describing the

biological networks that underlie disease mechanisms. A biological pathway network typi-

cally includes entities (e.g. genes, proteins and chemicals/drugs) as well as the relationships

between these and is typically curated or mined from structured databases and textual co-

occurrence data. We propose a hybrid Natural Language Processing and directed relation-

ships-based network analysis approach using IBM Watson for Drug Discovery to rank all

human genes and identify potential candidate biomarkers, requiring only an initial determi-

nation of a specific target-disease relationship.

Methods

Through natural language processing of scientific literature, Watson for Drug Discovery cre-

ates a network of semantic relationships between biological concepts such as genes, drugs,

and diseases. Using Bruton’s tyrosine kinase as a case study, Watson for Drug Discovery’s

automatically extracted relationship network was compared with a prominent manually

curated physical interaction network. Additionally, potential biomarkers for Bruton’s tyrosine

kinase inhibition were predicted using a matrix factorization approach and subsequently

compared with expert-generated biomarkers.

Results

Watson’s natural language processing generated a relationship network matching 55 (86%)

genes upstream of BTK and 98 (95%) genes downstream of Bruton’s tyrosine kinase in a

prominent manually curated physical interaction network. Matrix factorization analysis
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predicted 11 of 13 genes identified by Merck subject matter experts in the top 20% of Wat-

son for Drug Discovery’s 13,595 ranked genes, with 7 in the top 5%.

Conclusion

Taken together, these results suggest that Watson for Drug Discovery’s automatic relation-

ship network identifies the majority of upstream and downstream genes in biological path-

way networks and can be used to help with the identification and prioritization of

pharmacodynamic biomarker evaluation, accelerating the early phases of disease hypothe-

sis generation.

Introduction

The usefulness of biomarkers can be seen in many contexts such as guiding treatment deci-

sions in the form of FDA approved safety and efficacy biomarkers, as well as in the use of phar-

macodynamic biomarkers which guide dose selection and demonstrate drug mechanism of

action. The use of biomarkers in the early phases of clinical research has significantly enhanced

the probability of success from phase I to approval from an average of 8.4% to 25.9% [1].

Traditionally, biomarker discovery has been dominated by proteomic and transcriptomic

analysis methods resulting in the nomination of biomarkers that meet stringent regulatory

requirements for robust validation and qualification, for example by the FDA Biomarker quali-

fication program [2]. In contrast, pharmacodynamic and other biomarkers are identified

using biological pathway knowledge and systems pharmacology approaches that are developed

to monitor molecular responses to a therapy [3]. Once a biological hypothesis has been gener-

ated, it can be tested for disease context using different experimental systems. In the case of

immunological disease and systemic lupus erythematosus (SLE) in particular, these range

from human blood PBMCs, serum, and mouse lupus models, to validation in patients, using

gene expression data or epigenetic markers from ongoing clinical trials [4, 5]. In this way,

pharmacodynamic biomarkers in the research setting are used to provide mechanistic insights

to confirm or reject the hypothesis that inhibition of a certain biological pathway will provide

a therapeutic effect. This means that the search strategies are complex, iteratively adapted, and

hypothesis generation and testing adhere to more loosely defined requirements than tradi-

tional biomarker discovery. Consequently, biomarkers used in this context are often discov-

ered using information from multiple data sources, including unstructured data (e.g. scientific

literature reports).

The events that follow Bruton’s Tyrosine Kinase (BTK) inhibition by small molecule drugs

are excellent examples of the types of therapy responses that form the scientific basis for phar-

macodynamic biomarker discovery:

1. Transient changes directly downstream of BTK changing on the order of seconds to min-

utes such as phospholipase C gamma 2 (PLCγ2) phosphorylation or other signaling events

linked very closely to BTK activity. These biomarkers are generally validated in target

engagement assays, such as protein phosphorylation assays or immunoprecipitation assays

[6].

2. Proximal gene or protein changes that occur as a consequence of BTK pathway disruption.

These are changes most likely seen on the order of hours to days in cells expressing BTK

and can be validated by gene expression analysis or protein expression analysis methods.

Literature analysis for biomarker hypothesis generation
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3. Distal changes further downstream of BTK such as gene signatures, cell populations or anti-

body levels which can be correlated with disease. Changes may be due to effects resulting

from BTK inhibition in not only the cells expressing BTK, but also in cells not directly

affected by compound treatment.

Analyzing events that follow BTK inhibition illustrates that targeted pharmacodynamic bio-

marker discovery requires access to biological pathway information including the type of effect

(e.g. inhibition, activation) in relation to the target of interest. A primary resource for this

information is curated content and meta-databases. However, databases contain partly over-

lapping information on only selected protein sets, as discussed in a recent review [7], and in

the case of BTK may contain conflicting information from studies more relevant to the field of

oncology rather than immunology as BTK is a target for lymphoma treatment.

Unstructured data sources can serve as important alternatives to curated databases.

Recently, automated text mining systems that leverage machine learning and natural language

processing capabilities have experienced accelerated development to address this. Examples of

resources that obtain pathway information from unstructured text are given in Table 1. Exist-

ing methods are currently based on the assumption that biomarker genes or proteins can be

found by virtue of co-occurring in a window of text. DisGeNet is a prominent early example

with fairly good retrieval (11%) of disease biomarker associations identified as compared to a

curated database [8]. Our recent review of the literature has not provided any examples of ther-

apy response biomarker discovery and the challenge for these pharmacodynamic biomarkers

lies in automatically extracting information on relationships with direction and activity, since

the existence of co-occurrence in text does not necessarily imply the existence of a relationship

or indicate its directionality.

In spite of a good fit with text mining capabilities, Table 1 therefore contains few exam-

ples of capabilities and performance characteristics suitable for extracting biological entities

(such as genes and proteins) together with specific relationships between them (such as

upregulation, phosphorylation or other specific interactions). Text mining technologies are

currently being used directly in several applications around biomarker discovery, e.g. to

annotate modules discovered from gene expression in the search for clinical biomarker sig-

natures [16], but applications applying tools to real research questions with biological con-

text while also providing levels of uncertainty and advanced analytics (clustering or

ranking) are still emerging [17, 18].

Therefore, in the field of immunology today, the discovery of proximal and distal BTK bio-

markers typically involves hypothesis generation that is driven by non-systematic literature

analysis in combination with gene expression studies and pathway mapping resources to gen-

erate prioritized lists. As there is already a wide acceptance of higher levels of uncertainty in

predictive tools routinely used in this space (such as GSEA or GWA), an unbiased quantitative

literature analysis could be employed to significantly accelerate the process by focusing gene

expression analysis and other systems biology tools towards higher quality hypotheses. Speed

and adaptability of a search is particularly an issue because of the iterative nature of generating

and rejecting hypotheses in the context of pharmacodynamic biomarkers, the presence of

complex (text) data sources, and the need to consider timelines of events and other acknowl-

edged limitations in current tools, such as the ability to address polypharmacology and

variability.

This study was motivated by Merck’s R&D strategy to advance into digitally enhanced

R&D and to explore the capabilities of cognitive computing in general and IBM Watson in

particular to assist in that task. This study aimed to test the hypothesis that automated, high-

throughput semantic relationship extraction from scientific literature, followed by a machine

Literature analysis for biomarker hypothesis generation
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learning algorithm for novel inferences, applied herein using IBM Watson, has the potential to

address the shortcomings of standard, co-occurrence-based text analysis in the context of

pharmacodynamic biomarker discovery.

Table 1. References to biomedical relation extraction from text.

Reference Data set Methods /Dictionaries Benchmarking datasets Biological question

van Haagen

et al. 2009 [9]

12 Million Medline Abstracts

to July 2007

ER, CO,

Compared performance of co-

occurrence of keywords vs. entities,

Context profiles and STRING

Biogrid, DIP, HPRD, IntAct,

MINT, Reactome, and UniProt/

Swiss-Prot were used to establish a

set of 61,807 known human PPIs.

Concept profiles improved

sensitivity to 43% at 99%

specificity with ROC 0.9.

Protein-Protein interactions

Performance evaluation of different

text mining scoring systems.

Bravo et al.

2014 [8]

MEDLINE abstracts annotated

with MeSH term

“pharmacological biomarkers”

and “biological markers”:

164,300 abstracts

ER (bioNER)

CO (tf/idf variant)

Proteins: NCBI, Uniprot, HGNC

Disease: UMLS

686172 cooccurrences between

2803 biomarkers and 2751 diseases

Biomarker-disease associations

Mihăilă, C. and

Ananiadou, S.

2014 [10]

BioCause corpus, a collection

of 19 open-access full-text

journal articles pertaining to

the subdomain of infectious

diseases

RE, CS

Using linguistic discourse “trigger”

and “argument” models (cause-effect),

semi-supervised learning classifier

BioCause corpus (infectious

disease).

Infectious disease

Ahlers et. al.

2007 [11]

Semantic medline ER, CO, RE Gold standard annotation of 300

sentences (selected by co-

occurring drugs and genes) with

850 predictions. 55% recall and

73% precision

Pharmacodynamic effects of drugs

Ahmed et. al.

2018 [12]

AIMed and BioInfer

benchmark datasets which are

subsets of PubMed articles

annotated with Protein-Protein

interactions

RE applied to train and evaluate tree

recurrent neural network architecture.

Validation was done by 10-fold

cross validation over AIMed and

Bioinfer datasets which yielded

F1-scores of 81% and 89%

respectively

Protein-Protein interactions

Vlietstra et. al.

2017 [13]

Not defined (“triples from text

and databases”)

ER

Peregrine indexer, knowledge graph

mapping UMLS Metathesaurus and

semantic medline (and other

resources: Uniprot, LODD)

Systematic literature review of 234

studies: 163 of 222 compounds

ranked in top 2000 of 51 000

extracted compounds

Diagnostic biomarkers for migrane

in blood and CSF

Using a subgraph of migrane-related

concepts, team ranked substances

identified as pharmaceuticals

Chang et. al.

2017 [14]

PubMed queries (Keyword in

title and abstract) 12052

articles

ER, CO

Vocabularies defined by experts and

including comparative toxicogenomics

database, MeSH,

Discovery Services, IGRhCellID and

HyperCLDB.

Sentence classifier trained on

LOiverCancerMarkerRIF using word

vectors released in 2013

Extracted 2128 gene/protein

biomarker candidates and

compared with several online

resources (incl. liverome,

MarkerRIF, GeneCards,

Malacards, COSMIC).

Comparison with HCC-related

databases showed retrieval of

between 20% (Liverome, omics

data) and 50% (MarkerRIF,

manually curated from literature)

Diagnostic biomarkers for

hepatocellular carcinoma.

Ranked biomarker citations based on

journal impact factor, co-occurrence

of biomarker with statistical terms

together with a biomarker score (co-

occurrence with species, source,

disease, etc.)

Jurca 2016 et al.

[15]

MEDLINE abstracts, API

search for “breast cancer”, used

those abstracts that contained

genes

117,339 abstracts

ER (BeCAS), CO

Gene-disease relationships from

DisGeNet (CTD, UniProt)

GEO DB

Non systematic: Compared co-

expressed genes (experimental

data) in GeneMania (PPI from

BioGRID and pathway commons)

compared to a community formed

by network analysis

Diagnostic biomarkers for breast

cancer

Using gene-disease relationships,

clustering and network analysis.

ER, entity recognition; CO, co-occurence analysis; RE, relationship extraction; CS, cross-sentence references; PPI, protein-protein interaction; ROC, area under receiver

operating characteristic curve; CSF, cerebrospinal fluid.

https://doi.org/10.1371/journal.pone.0214619.t001
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Methods

Generation of relationship networks and biomarker predictions

Watson for Drug Discovery (WDD) biological relationship network extraction has been

described previously [19, 20]. Briefly, interaction networks of biological entities are extracted

as guided by a catalog of known biological interaction types and relying on natural language

parsing of sentences to establish explicit, directional relationships between known entities,

including genes and proteins (hereafter, “genes” for brevity), drugs, chemicals, and diseases.

Importantly, WDD identifies not only direct relations between two entities, but also indirect

relationships; indirect relationship extraction allows for a greater degree of variation in the

semantic positioning of the agent, verb and theme of the relationship, including the appear-

ance of other arbitrary words in key roles, for example “bcl-2 is able to modulate transmem-

brane trafficking of p53” would be considered an indirect relationship between bcl-2 and p53.

WDD relies on a rule-based approach for learning syntactic relationships that connect known

entities through verbs and other trigger-phrases from a curated dictionary, each of which also

has a canonical, or normalized, form. For example, “inhibit” and “inhibits” are trigger words

used to identify events associating a drug to a gene, and alongside similar phrases, map to a

canonical form “Regulation Negative”. Learned rules are then applied to a MEDLINE corpus

(https://www.ncbi.nlm.nih.gov/pubmed/) for extraction of relationships.

The WDD extraction engine is built using IBM InfoSphere BigInsights SystemT [21]–a

powerful information extraction system for extracting structured information from unstruc-

tured and semi-structured text. SystemT provides basic text analytic capabilities such as sen-

tence splitting, token detection, natural language parse of sentences, etc. Deep-parsing

components of SystemT are derived from an English Slot Grammar (ESG) parser [22]. that

provides core linguistic analysis. In the following sections, we describe the individual compo-

nents that are central to WDD relationship extraction: (1) entity identification and normaliza-

tion and (2) relation recognition and normalization.

Entity identification and normalization

In order to understand mentions of genes according to their context and map them to stan-

dardized identifiers, both rule-based [23] and machine-learning-based [24] approaches were

integrated [25] for gene and protein extraction and normalization. To ignore mentions of

generic protein families, such as “Histone”, and instead focus on mentions of specific genes

and proteins such as “Histone H3” can be very challenging. For example, given a mention

such as “GRK-1,3 and 5 have strong impact”, WDD needs to extract not only GRK-1, but also

GRK-3 and GRK-5. Moreover, WDD needs to normalize genes to their canonical forms (their

standard name); a key challenge here is that genes often share synonyms or abbreviations.

Thus, WDD must understand mentions of genes according to their context and map them to

standardized identifiers. To this end, WDD uses a hybrid model for gene extraction and nor-

malization. The gene annotation process involves three steps: candidate generation, candidate

selection, and entity normalization. For purposes of text inference, and specifically for bio-

marker discovery, distinguishing the gene from its protein product in text is not essential,

therefore, WDD does not explicitly differentiate between genes and proteins.

Gene candidate generation

To ensure high recall for the gene extraction task, WDD relies upon a comprehensive dictio-

nary of human genes compiled from NCBI [26], the UniProt KnowledgeBase [27], HUGO

[28], and CTD [29]. This dictionary contains approximately 461,000 entries, where each entry

Literature analysis for biomarker hypothesis generation
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is mapped to one of approximately 37,500 gene canonical forms. When generating candidates,

WDD employs a combination of dictionary-matching, pattern-matching, and abbreviation-

matching rules to maximize recall while maintaining precision; these are summarized below

and described in greater detail in a recent technical publication [20].

Dictionary-matching rules: Because it is infeasible for a dictionary to capture all possible

gene synonyms used in the literature, WDD supports fuzzy, or proximal matching of dictio-

nary terms, i.e. the identification of phrases in text that are similar to, but not exactly matching,

phrases in the annotation dictionary, which for example supports extraction of names with

variations in the use of space and hyphen characters. WDD also accounts for different levels of

ambiguity in the dictionary terms. During dictionary compilation, each dictionary term is

semi-automatically categorized according to length and character complexity into one of three

categories: unambiguous terms like “G protein-coupled receptor kinase 2”, ambiguous terms

like “ATM” (which could conceivably be used as an abbreviation to refer to any number of

non-gene concepts), and very risky terms like “C1” and “C2” (which could additionally stand

for table and figure numbers, etc.). The dictionary at time of writing contains approximately

429,000, 17,000, and 500 terms in each category respectively. Each mention that matches some

dictionary term is assigned a confidence score of “high”, “medium”, or “low”, depending on

the category of the term. Mentions with a confidence score of medium or low are further veri-

fied using the context-based classifier described in the Candidate Selection section.

Pattern- and abbreviation-matching rules: Pattern matches concern examples like “ERK1/

2”, whereupon detection of “ERK1” as a gene annotation, the immediate local context is

inspected and the character pattern “/2” is identified as shorthand for “ERK2” and normalized

accordingly. Abbreviation matching concerns dynamic detection of context-specific abbrevia-

tions in text, such that in a context like “angiotensin-converting enzyme (ACE)”, the abbrevia-

tion phrase “ACE” can be confidently extracted and normalized in the same manner as its

definition “angiotensin-converting enzyme”, independent of the confidence level that “ACE”

is assigned in any dictionary, or indeed whether it is a dictionary term at all. Dynamic abbrevi-

ation phrases identified in this way are then extracted across the entire text of the document so

that subsequent mentions of e.g. “ACE” can be understood correctly. Since the meaning of

each abbreviation can only be said to be constant within the particular document in question,

phrases identified as abbreviations do not carry over into other documents.

Candidate selection

The context surrounding terms provides important information for resolving ambiguities

resulting from abbreviation and term overlap. In order to exploit the cues in the surrounding

context, we trained a naïve Bayes classifier that uses features derived from the neighboring

context of a putative protein mention. WDD uses the sentence containing the discovered men-

tion as the context span and considers all words present to the left and right of the mention,

the number of gene mentions in the sentence, and whether or not the two immediate words to

the left and right of the discovered mention are gene names. In addition to this model, the clas-

sification step involves application of a series of manually curated rules that filter medium and

low confidence gene candidates based on key phrases and text patterns that denote a non-gene

context.

To evaluate the classifier quantitatively, we compare its output to a sample of documents

manually curated with the expected or ground truth annotations. Two ground truth corpora

are utilized for this purpose, comprised of 100 MEDLINE abstracts prepared in collaboration

with subject matter experts [19] (826 gene annotations) and all 347 MEDLINE abstracts from

the BioNLP 2011 gene extraction challenge “GENIA” (https://sites.google.com/site/bionlpst/

Literature analysis for biomarker hypothesis generation
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home/genia-event-extraction-genia) (5,301 gene annotations) respectively. As WDD develop-

ment operates on agile model of continuous development and deployment [30], evaluation is

performed within a testing framework which automatically executes upon every software

build. This evaluation is performed after all document pre-processing, annotation, normaliza-

tion and other post-processing steps have been performed ensuring that the evaluation metrics

reflect the final, user-facing result. At the time of writing, gene classification in the collabora-

tively curated ground truth achieves 91.3% precision, 74.0% recall, and 81.7% F1 score and

77.0% precision, 67.8% recall, and 72.1% F1 score in the BioNLP 2013 challenge corpus. The

difference in performance between these two datasets is primarily due to the BioNLP challenge

dataset including ambiguous or otherwise non-specific annotations such as “these genes” or “a

variety of cytokines”, which are not generally desired in WDD output, but nevertheless affect

the annotator’s quantitative performance results in this corpus.

To assess annotation performance at full-corpus scale (28,278,250 MEDLINE abstracts at

the time of writing), the classifier is also evaluated qualitatively. This is done using full-corpus

scale annotation histograms that relay the most frequently annotated phrases and canonical

names which result, in addition to numerous other aggregated statistics calculated across the

total MEDLINE annotation count of 33,767,950 gene mentions (averaging 1.19 gene mentions

per abstract, including document titles). User-provided annotation feedback is also used as a

means of identifying and resolving annotation issues.

Entity normalization

To map a mention using a synonym or alias back to the correct canonical gene, WDD adopts

the idea of unigram language models from computational linguistics [31] and builds “context

models” for genes. For example, synonym “D1” maps back to both the Dopamine Receptor D1

(DRD1) and Leiomoden 1 (LMOD1). Whenever WDD identifies D1 as a gene mention, it ana-

lyzes the surrounding words for clues to identify the correct canonical gene, allowing disam-

biguation. For example, a mention of “dopamine” or the family name “GPCR” in the abstract

would indicate that the abstract was discussing Dopamine Receptor D1 (DRD1); these patterns

are identified through training a machine learning model which utilizes data about the other

occurrences of each candidate gene across the literature.

In addition to the use of unstructured context information for gene disambiguation, WDD

also leverages structured data associated with each of the candidate genes, and the document

in which the annotation occurs. The structured data used for candidate genes is sourced from

the Gene Ontology (GO) [32, 33] and used to increase the context model score for each candi-

date gene if any of the GO labels also occur in the document text. The structured data used for

documents depends on the corpus in question, for example, MEDLINE abstracts include

curated Medical Subject Headers (MeSH); this document metadata is used in the machine

learning model in an equivalent manner to the context words extracted from the document

text.

A prior technical publication describes the gene disambiguation algorithm in greater detail

through a worked example of disambiguating a mention of “Drp1”, which could mean one of

many genes depending on the context; the other processes mentioned here are also described

in greater detail [20].

Event extraction and normalization

To extract relationships, WDD uses a catalog of gene-gene relation types and other biologically

relevant verbs, together with natural language parsing of sentences. The catalog is maintained

Literature analysis for biomarker hypothesis generation
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as a list structure similar to that used in the BioNLP 2013 pathway extraction task. The goal of

extraction is to obtain triples, each comprising:

1. A relation: an element appearing in the catalog of relationships

2. An agent: a gene that is causally active in an event.

3. A theme: a gene that undergoes the effects of an interaction.

Entities (agents and themes) and the relationship between them are collectively referred to

as events.

Depending on the relation, extracted triples may or may not possess directionality. Binding

relationships, for instance, do not represent directional relationships, whereas phosphorylation

is an example of a relation that has a clear causal agent and affected theme.

WDD extracts two kinds of triples that capture relationships between genes–direct and indi-

rect. The first is a simple triple where there is a direct relationship between known entities. The

following two sentences express direct relationships between known entities Plk1 and RSK1, and

between p53 and Notch1: “In addition, studies on HeLa cells using Plk1 siRNA interference and

overexpression showed that phosphorylation of RSK1 increased upon interference and decreased

after overexpression, suggesting that Plk1 inhibits RSK1.” “These data indicate that p53 negatively

regulates Notch1 activation during T cell development.” The second is a relationship where the

genes are involved in more complex and indirect relationships. In the following examples we see

that WDD extracts relationships between bcl-2 and p53 that are indirect, since different processes

are involved in their interaction: “Silencing of Bcl-2 induced massive p53-dependent apoptosis.”

“Our data suggests that bcl-2 is able to modulate transmembrane trafficking of p53.”

Learning patterns for event extraction

WDD applies rules over natural language parse trees for relation detection. Each sentence is

run through the IBM ESG Parser and the dependency parse structure is examined for syntactic

connections between the labeled relationships, agents, and themes. WDD applies complex

rules where indirect interactions are involved. For example, a sentence such as “ATM-medi-

ated phosphorylation of p53 at serine 15.” contains an indirect interaction, “mediated,”

between the agent and the main relation, phosphorylation, i.e., “ATM-mediated” is an adjec-

tive modifying “phosphorylation”:

amod(phosphorylation, ATM-mediated) prep_of(phosphorylation, p53)

A rule is applied to allow for any indirect relationship (from the relationship catalog) to act

as a connector between an agent and the relationship.

WDD applies rules where agents and themes are not simply genes but rather processes or

events involving a gene. For example, in the sentence “Our data suggests that bcl-2 is able to

modulate transmembrane trafficking of p53.” the relation “modulate” is connected to an entity

“p53” via a process that is captured in the phrase “transmembrane trafficking of p53”. Parse

structures for every gene-gene relation in the labeled training data are examined in the above

manner to collect a set of rules that describe how relationships and entities might relate to one

another. Although the set of rules is not exhaustive and will not identify every possible rela-

tionship, the high quality of the rules yields precision and recall sufficient to create a network

well suited to relationship prediction [20].

Inference from networks

Collaborative Filtering [34] is the process of using known connections in a network to predict

possible new connections. While this approach has been applied extensively to predict human
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preferences, the application of this method for predicting new biological connections is less

well studied. Our approach to doing prediction over the generated network of gene relation-

ships uses matrix factorization (MF) [35]. This technique can use the discovered triples directly

to simultaneously predict many kinds of relationships. The process of evaluating the consis-

tency of a relationship between entities, or between entities and a property, starts with extract-

ing the known relationships from publications, as described in earlier sections. These

relationships are then represented as a binary matrix. The score in this matrix for the relation-

ship to be evaluated is set to zero. This matrix is then factored into H�W, where H and W rep-

resent smaller, dense matrices of a fixed, lesser dimensionality. The score of the relationship is

its value in the product matrix of H�W. This score is compared to a set of comparable existing

relationships evaluated in a similar manner in order to obtain a ranking of the relationship.

Given a set of agents (M) and a set of Targets/Properties (N), and directional relationships

extracted from publications of the form m! n, where m 2M & n 2 N, calculate the relative

consistency of any particular m,n pair as follows:

1. Build a binary matrix, X, of dimension M x N containing a 1 in the mth row, nth column iff

m!n exists in the scientific literature.

2. Set X[a,b] = 0, for the relationship a!b, whose consistency is to be evaluated.

3. Create a factorization of X, such that:

• Lij(Wi�,H�j): loss at (i, j)

• We assume the input is non-negative.

• Find best model:

min
W;H

X

ði;jÞ2Z

LijðWi�;H�jÞ

• In our implementation we use Spark ALS (Alternating Least Squares Matrix Factorization)

for implementation of matrix factorization. More details about the ALS document in

Spark:

– https://spark.apache.org/docs/latest/api/java/org/apache/spark/mllib/

recommendation/ALS.html

– http://spark.apache.org/docs/latest/mllib-collaborative-filtering.html#collaborative-

filtering

• Here are some brief explanations about the parameters along with default values.

– numBlocks is the number of blocks used to parallelize computation (set to -1 to auto-

configure). (-1)

– rank is the number of latent factors in the model. (20)

– Iterations (20)

– lambda specifies the regularization parameter in ALS. (0.1)

– implicitPrefs specifies whether to use the explicit feedback ALS variant or one adapted

for implicit feedback data. (implicit)
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– alpha is a parameter applicable to the implicit feedback variant of ALS that governs the

baseline consistency in preference observations. (0.1)

4. The resulting H,W matrices can be multiplied to produce a new matrix X2. The value of

X2[a,b] is the relative consistency score for the relationship a!b.

5. Repeat this process for a set of comparable relationships to use as a background population.

This can be some representative sample of all existing relationships in the literature.

Biological networks and performance evaluation

The WDD BTK network consisted of 64 gene upstream of BTK and 103 genes downstream of

BTK. This network was compared to a BTK network from Clarivate Analytics MetaBase

(https://clarivate.com/products/metacore/). MetaBase provides manually curated high quality

systems biology content with nearly 1.7 million molecular interactions from over 1,600 path-

way maps, and more than 230,000 disease-gene associations. A comparative study made by

Shmelkov et. al. for transcriptional regulatory pathways in humans for seven well-studied tran-

scription factors indicated that MetaBase had significantly high overlap with 10 other com-

monly used pathway databases [36].

The BTK network from MetaBase consisted of genes that were up to four links from BTK,

upstream or downstream, with each link representing a directional physical interaction such

as phosphorylation, receptor binding, ubiquitination, etc. As described, WDD extracts infor-

mation on direct as well as indirect relationships. Since direct relationships are more likely to

be transient changes upon BTK inhibition which were not in the focus of this study, we

removed directly interacting proteins after ranking.

Data and code availability

All data generated or analyzed during this study are included in the published article and its

supplementary information files (S1 and S2 Tables). A free 30-day trial of WDD is available at

https://content.mkt.watson-health.ibm.com/whls-2018-wdd-free-trial.html.

Results

Fig 1 shows the end-to-end approach used for identification of putative biomarkers using liter-

ature mining and network analysis. Our method begins with extracting all of the biological

relationships between genes and representing them as a network. A small part of this network

for BTK is depicted in S1 Fig. Evaluation of each gene-gene connection in detail reveals sen-

tence-level extractions (S2 Fig), which in aggregate create a list of directional connections

between genes.

To assess the accuracy of our approach for pharmacodynamic biomarker identification, we

compared the networks generated by WDD and Metabase for our gene of interest, BTK. Of

the 64 genes upstream of BTK in the WDD network, 55 of them (86%) were also found

upstream of BTK in Metabase. Of the 103 genes downstream of BTK in the WDD network, 98

of them (95%) were also found downstream of BTK in the Metabase network. These results

show that WDD was able to accurately identify genes up and downstream of BTK.

Overlap may be good in well-established canonical pathways and the quality of data may

differ depending on the biological pathway studied. Differences in methods for determining

relevant interactions (such as high throughput or others) and variability arising from different

tissue or cell line origins are known challenges for direct quantitative comparisons [37].
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Next, we tested the ability of the WDD gene network to predict new indirect interactions

between downstream genes impacted by BTK, based on what is already known in the network

about these genes. In total there were 103 downstream genes found in the WDD network

extracted from sentences in MEDLINE abstracts. We then used matrix factorization to rank all

remaining genes based on strength of downstream association to BTK. This is done by repre-

senting the sentence-level gene-gene connections identified earlier as a matrix (S3 Fig and S1

Table), with a number in each cell indicating how many articles there are with a sentence

describing a relationship of gene(row) -> gene(column). The top 50 results of this ranking are

shown in Table 2 and the full 13,595 results shown in Supplemental Table 2. This ranking was

then compared to a known set of BTK biomarkers identified by Merck subject matter experts,

only one of which was in the set of 103 genes originally known to WDD to be one step down-

stream of BTK. As shown in Table 3, matrix factorization analysis predicted 11 of 13 genes

identified by Merck subject matter experts in the top 20% of the 13,595 ranked genes, includ-

ing 7 in the top 5%. The area under the receiver operating characteristics (ROC) curve in Fig 2

demonstrates that gene ordering compared to these 13 genes was significantly more accurate

than chance, with an area under the curve of 0.82. This result demonstrates that the Watson

gene-gene network generation pipeline can identify new hypotheses that match expert analy-

ses, i.e., predicting unknown associations based on known associations observed in literature.

To evaluate our method’s performance against alternative applications, we repeated our

analysis using co-occurrence of genes with BTK in Medline abstracts. The assumption is that

such an occurrence gives indirect evidence of a biological relationship between the gene and

BTK, and roughly speaking, the more co-occurrence we see the stronger the relationship. If we

were to observe the same (or a better) level of accuracy at identifying biomarkers with co-

occurrence, we would generally prefer it, since it is simpler to compute and more general in its

application.

Table 4 shows the validation gene set, along with the number of Medline articles where

each gene co-occurs with BTK and a resulting area under the ROC curve of 0.72.

Fig 1. Overview of pipeline used for identification of putative BTK inhibition biomarkers. Pubmed abstracts were

used as an input for generating a working corpus from which gene entities were identified, selected, and normalized

for generation of a relationship network. This relationship network was used for comparison to the MetaCore curated

database and further analysis using matrix factorization for the prediction of potential BTK biomarkers and compared

to a list of potential BTK biomarkers created by subject matter experts.

https://doi.org/10.1371/journal.pone.0214619.g001
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Table 2. Top 50 genes predicted by WDD to be downstream of BTK.

Gene Score Known Downstream to BTK

(1 = yes, 0 = no)

Rank (including known)

AKT1 0.54458815 1 1

NFKB1 0.5154992 1 2

TNF 0.50323606 0 3

IFNA1 0.4434148 1 4

TP53 0.4385939 1 5

EPHB2 0.4313362 1 6

IL6 0.42688292 1 7

INS 0.41607705 1 8

MAPK8 0.41537482 1 9

STAT3 0.38802144 0 10

IL2 0.3744676 1 11

MAPK3 0.36648414 0 12

BCR 0.35648954 1 13

VEGFA 0.3489667 0 14

IL10 0.34443948 1 15

IL4 0.3414984 0 16

IFNG 0.33224836 0 17

JUN 0.3214404 0 18

CRK 0.31818953 0 19

TGFB1 0.3179956 0 20

EGFR 0.31714404 1 21

CD4 0.3144715 0 22

TLR4 0.31039178 1 23

IL8 0.303452 0 24

STAT5A 0.30185032 0 25

EGF 0.30117995 0 26

IGHV1-2 0.30093542 0 27

CBL 0.29676566 1 28

STAT1 0.2944623 1 29

RAC1 0.28429946 1 30

MTOR 0.28102204 1 31

SYK 0.28000763 1 32

ABL1 0.27899128 1 33

IL17A 0.27572146 0 34

MYC 0.27440986 1 35

CD34 0.27148065 1 36

CSF2 0.2702503 0 37

CD40 0.2699324 1 38

CD8A 0.2696973 0 39

JAK2 0.26840165 0 40

VAV1 0.26694292 0 41

FAS 0.26671404 1 42

BCL2 0.2651292 1 43

AIMP2 0.26320416 0 44

LYN 0.2610977 1 45

GRB2 0.26066443 0 46

(Continued)
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In order to be trustworthy, matrix factorization results need to be explainable in a way that

scientists can understand. Our method for doing this relies on finding similar matrix rows

containing the connection predicted for the input element. That is, if a connection is predicted

to exist downstream of BTK for gene X, then we find another gene whose pattern of connec-

tions is most similar to X that also has a connection downstream of BTK. Table 5 depicts the

results of this type of analysis for STAT3, a gene predicted to be downstream of BTK. Here we

see that STAT1 is very similar to STAT3 in its overall connections and therefore can assess the

likelihood that STAT3 will also behave in a similar manner with BTK. The direct evidence for

the BTK->STAT3 connection can be displayed to the user based on the sentence(s) that gener-

ated that connection in the network.

Discussion

We have demonstrated how a directed network of gene-gene relationships extracted from lit-

erature can be used to identify novel biomarkers that are not explicitly stated in any of the

ingested literature. Sentence parsing of biological relationships enables much richer represen-

tation and reasoning than simpler text mining methods based on co-occurrence, which cannot

provide crucial information on direct or indirect relationships required to answer most biolog-

ical questions. Further, as shown in our comparison, co-occurrence among genes of infrequent

publication in literature is largely silent when it comes to giving early signals of a potential con-

nection. Using matrix factorization, in contrast, allows us to make the most of what little we

know to make our best educated guess at where connections might lie. As we have outlined in

Table 2. (Continued)

Gene Score Known Downstream to BTK

(1 = yes, 0 = no)

Rank (including known)

PI3 0.25447765 1 47

CASP3 0.25388432 0 48

SRC 0.25309193 0 49

CDKN1A 0.25100806 0 50

Includes known genes (those already in WDD’s network). Full table of 13,595 ranked genes available in supplemental Table 1.

https://doi.org/10.1371/journal.pone.0214619.t002

Table 3. WDD matrix factorization ranking of known BTK targets.

Gene WDD Rank Percentile

BCL2A1 2240 16%

CCL3 506 4%

EBI3 124 1%

EGR1 384 3%

EGR3 1448 11%

IKZF1 379 3%

IL4I1 2775 20%

IRF4 284 2%

RASGRP1 997 7%

TNF 3 0.02%

IGKC 10558 78%

IGJ 9933 73%

SDC1 654 5%

https://doi.org/10.1371/journal.pone.0214619.t003
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the introduction, the effects of BTK inhibition can be direct as well as indirect and this has

important implications for the usefulness of experimental data for discovery of proximal or

distal pharmacodynamic biomarkers. Here we have shown an example of a WDD workflow

that uses direct and indirect relationships and therefore has superior predictive power to other

automated literature-based discovery approaches. Compared to an analysis based on direct

Fig 2. Receiver operating characteristic curve of WDD-predicted versus known BTK interactions. Resulting

receiver operating characteristic curve from analysis comparing WDD-predicted BTK biomarker ranking to a subject

matter expert-derived list of potential BTK biomarkers. Area under the curve = 0.82.

https://doi.org/10.1371/journal.pone.0214619.g002

Table 4. Co-occurrence ranking of known BTK targets.

Gene Abstract

Co-occurrence count

Rank

TNF 49 10

CCL3 9 84

SDC1 4 186

IKZF1 3 241

IRF4 3 241

EGR1 1 684

RASGRP1 1 684

BCL2A1 0 7272

EBI3 0 7272

EGR3 0 7272

IGJ 0 7272

IGKC 0 7272

IL4I1 0 7272

https://doi.org/10.1371/journal.pone.0214619.t004
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biological relationships, we also removed the limitations towards proximal biomarker discov-

ery that would exist if we only used direct relationships.

Other computational approaches in network-based discovery, as well as experimental gene

expression analysis (GEA) take relationships into account by design but are still suffering from

low precision. WDD as used in this work implicitly introduces a tunable compound confi-

dence parameter since the confidence of any resulting predictions will depend on the quality

of the underlying data used in the similarity analysis. Whether the experimental result was in

vitro or in vivo, whether the result is in the context of a specified disease or in the context of

gene mutations are examples of filters that can be used to select only those parts of WDD that

are relevant to a specific use case. Additionally, it is important to be able to explain predictions

to the scientist and to bring them back to the relevant literature whenever possible, and our

method provides a compelling explanation of each prediction based on analogous gene

function.

The biggest shortcoming of our method to date is that it lacks a validation mechanism to

verify that the hypothesis that is generated is actually likely to be true. Therefore, in the future

we hope to incorporate more non-literature information about gene phenotypes into this type

of analysis. We will also work to find better methods for filtering the generic network extracted

from text based on factors such as species, confidence in the network connection, whether the

experimental result was in vitro or in vivo, and whether the network is relevant to a specified

disease. We will continue to investigate ways to incorporate real world evidence and supple-

mentary data from publications and to utilize manually curated pathway information (e.g.

Kyoto Encyclopedia of Genes and Genomes (KEGG)) to supplement what we extract from

text.

This will allow users to develop different biomarker discovery pipelines providing a side-

by-side comparison of biomarker rankings with confidence ratings as based on underlying

data but also the quality of the prediction. This direct comparison provides users with a tech-

nique to prioritize the underlying disease hypotheses based on likelihood, value and risk. To

aid this comparison, WDD should be supplemented with known manually curated pathway

information (e.g. KEGG) and Gene Expression Omnibus (GEO) data. Such analyses will yield

Table 5. Analysis of similar STAT3 matrix rows.

Similar Gene # of shared connections to STAT3 Total Connections P valuea

STAT1 273 446 6.22E-17

JAK1 102 145 1.70E-11

IL3 154 269 1.36E-06

BCL2L1 218 409 1.12E-05

IL7 100 173 8.04E-05

NFATC1 99 173 1.54E-04

PTPN6 88 156 7.59E-04

CD40 160 311 0.00240641

PI3 181 358 0.00343664

RELA 231 468 0.00430228

FLT3 107 202 0.00449299

HAVCR2 36 59 0.00594752

LYN 85 159 0.00865486

a p values were calculated using a Chi Squared test comparing the number of expected shared connections and (based on individual frequencies) the actual number of

shared connections.

https://doi.org/10.1371/journal.pone.0214619.t005

Literature analysis for biomarker hypothesis generation

PLOS ONE | https://doi.org/10.1371/journal.pone.0214619 April 8, 2019 15 / 18

https://doi.org/10.1371/journal.pone.0214619.t005
https://doi.org/10.1371/journal.pone.0214619


insights that go beyond the literal text of publications, in order to accelerate the pace of discov-

ery, enhance our understanding of disease, and give hope to patients.

Supporting information

S1 Table. Network connections used to generate analysis matrix.

(CSV)

S2 Table. All genes predicted by WDD to be downstream of BTK.

(PDF)

S1 Fig. Visual representation of WDD gene network for BTK. Searched entities (inputs) are

represented by white circles and connected gene entities by blue circles. Curvature of the con-

necting arrows indicates reciprocal (curved) or non-reciprocal (straight) relationships. Dis-

tance from the searched entity is associated with the number of documents supporting the

connection: nearer circles are connected by relationships in more documents than farther cir-

cles.

(PDF)

S2 Fig. Example sentence-level extractions from WDD BTK gene-gene network. On the left

is a summary of gene-gene network connections which can be selected to show sentence-level

evidence (on the right) for the relationship connection.

(PDF)

S3 Fig. Matrix of WDD sentence-level gene-gene relationships for BTK. BTK is the input

gene, and on the left-hand side we see the score for each gene in the matrix factorization result.

On the right-hand side are selected columns from the original matrix with yellow dots indicat-

ing non-zero values in the original input matrix and darker shading indicating higher floating-

point values in the resulting matrix after matrix factorization is applied. This gives the scientist

both a value for likelihood of being downstream of BTK, as well as both direct and indirect evi-

dence that generated that value. The direct evidence is sentences in publications that say BTK

effects the gene. The indirect evidence is genes that are similar to BTK in their behavior, that

show a downstream effect on the gene.

(PDF)
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