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Brain tumors can appear anywhere in the brain and have vastly different sizes andmorphology. Additionally, these tumors are often
diffused and poorly contrasted. Consequently, the segmentation of brain tumor and intratumor subregions using magnetic
resonance imaging (MRI) data with minimal human interventions remains a challenging task. In this paper, we present a novel
fully automatic segmentation method from MRI data containing in vivo brain gliomas. This approach can not only localize the
entire tumor region but can also accurately segment the intratumor structure. The proposed work was based on a cascaded deep
learning convolutional neural network consisting of two subnetworks: (1) a tumor localization network (TLN) and (2) an
intratumor classification network (ITCN). The TLN, a fully convolutional network (FCN) in conjunction with the transfer
learning technology, was used to first process MRI data. The goal of the first subnetwork was to define the tumor region from
an MRI slice. Then, the ITCN was used to label the defined tumor region into multiple subregions. Particularly, ITCN exploited
a convolutional neural network (CNN) with deeper architecture and smaller kernel. The proposed approach was validated on
multimodal brain tumor segmentation (BRATS 2015) datasets, which contain 220 high-grade glioma (HGG) and 54 low-grade
glioma (LGG) cases. Dice similarity coefficient (DSC), positive predictive value (PPV), and sensitivity were used as evaluation
metrics. Our experimental results indicated that our method could obtain the promising segmentation results and had a faster
segmentation speed. More specifically, the proposed method obtained comparable and overall better DSC values (0.89, 0.77, and
0.80) on the combined (HGG+LGG) testing set, as compared to other methods reported in the literature. Additionally, the
proposed approach was able to complete a segmentation task at a rate of 1.54 seconds per slice.

1. Introduction

Although brain cancers are less prevalent, they are very
lethal. Among them, gliomas are the most common brain
tumors. They can be graded into low-grade gliomas (LGG)
and high-grade gliomas (HGG), with the latter being more
aggressive and infiltrative than the former [1]. A glioma is
highly invasive because it tends to aggressively grow and
could quickly invade the central nervous system (CNS).
According to US National Cancer Institute, approximately
18,000 Americans are diagnosed with a glioma every year;
many of them die within 14 months [2]. In clinical practice,
medical imaging, mainly computed tomography (CT) and
magnetic resonance imaging (MRI), has been used to

determine (1) the presence of a tumor, (2) the inclusion of
peritumoral edema, and (3) the spread into other locations
such as the CNS [3].

Compared to CT, MRI or contrast-enhanced MRI
becomes the imaging modality of choice for diagnosis and
treatment planning in the brain because of its sensitivity
and superior image contrast in soft tissues. However, the
multiplicity and complexity of the brain tumors under MRI
often make tumor recognition and segmentation difficult
for radiologists and other clinicians [4]. Consequently, auto-
matic segmentation of heterogeneous tumors can greatly
impact the clinical medicine by freeing physicians from the
burden of the manual depiction of tumors. Furthermore, if
computer algorithms can provide robust and quantitative
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measurements of tumor depiction, these automated mea-
surements will greatly aid in the clinical management of
brain tumors.

In the past few decades, significant research efforts in the
computer vision and image processing community have been
devoted to developing computer-aided systems that can be
used for automated tumor characterization/classification
[5–21]. Although some systems were tested and showed good
performance, the fully automatic detection and subsequent
diagnosis of brain tumors have not been massively used in
the clinical settings, thereby indicating that some major
developments are still needed [21].

Based on MRI data, our primary goal of this paper was to
propose a new fast and accurate computer system that could
first localize complete tumor region and then segment the
more detailed intratumor structure. Our computer system
contained two major steps. First, by leveraging an FCN
[22], a tumor location map was first obtained. In the second
step, a deep learning ensemble of the CNN was used to clas-
sify the tumor region into four subregions: (1) necrosis, (2)
edema, (3) nonenhancing tumor, and (4) enhancing tumor.
In this study, the performance of the proposed algorithm
was assessed in a public database containing 274 cases of
in vivo gliomas.

The paper is structured as follows: Section 2 presents the
related works in the automated brain cancer segmentation.
Particularly, attention was given to computer systems based
on machine learning. The proposed two-step (cascaded)
neural network is described in Section 3. The emphases are
on the design methodology and training methods for the
performance assessment. In Section 4, results of our numer-
ical experiments are summarized followed by some closing
remarks in Section 5.

2. Relevant Work and Our Contributions

In recent years, many methods have been proposed to
automatically segment brain tumors based on MRI data.
These methods can be largely divided into two categories:
(1) hand-crafted feature and classifier methods based on
traditional machine learning such as support vector
machine (SVM) and random forests (RF) [5–13] and (2)
fully automatic methods based on deep learning using the
CNN [14–21].

Methods in the first category use manually extracted fea-
tures, and these features are input to classifiers. In other
words, once these hand-crafted features are solely deter-
mined by human operators, classifiers “weigh” them during
the training but cannot modify these features in any way.
One significant concern of hand-crafted features stems from
the fact that these features could have significant inter- and
intrauser variability. A brief summary of these methods can
be found in Table 1.

In contrast, methods in the second category can self-learn
the feature representations adapted to a specific task from
training data. Recently, deep learning neural networks, espe-
cially CNNs, are rapidly gaining their popularity in the com-
puter vision community. This trend has certainly been
accelerated after the recent record-shattering performance

of the CNN in the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) [23]. Recent deep learning methods for
automatic brain tumor segmentation are summarized below
in Table 2.

However, the above-mentioned CNN methods were all
based on the patch-wise method in which (medical) images
were often divided into patches during the training and test-
ing. The advantage of this method was that it could take
advantage of the existing classification model of the natural
image and solve the problem of the class label imbalance in
MRI images. Despite its popularity, operating on image
patches was computationally time-consuming. Recalling,
given a typical image size (e.g., 256× 256), a large number
of patches (65535) were required as inputs for prediction.
Furthermore, this method was not end-to-end and per-
formed the segmentation task by independently classifying
the central pixel of a patch, which will result in some errors
and need postprocessing. Thus, the expensive computation
and postprocessing become the bottleneck of its real-time
clinic application.

Recently, Shelhamer et al. [22] presented a novel FCN for
semantic segmentation of natural scene images. This model
can be trained in an end-to-end manner (also known as
pixel-wise). Their results showed that the FCN outperformed
the previous methods for semantic segmentation of a natural
scene image in performance and speed. Inspired by the work
in [22], we proposed a hybrid approach by constructing a
deep cascaded neural network.

Our main contribution of this work is to propose a hybrid
cascaded neural network for the purpose of segmentation of
brain tumors including segmentation of intratumor subre-
gions, from MRI data. This model consists of one FCN and
one CNN. This combination enables us to perform pixel
semantic predictions by taking advantage of both a pixel-
wise method and a patch-wise method. Formally, in this cas-
caded neural network, an FCN was first used to localize the
tumor region from anMRI slice and then a CNN with deeper
architecture and smaller kernels was used to classify brain
tumor into multiple subregions. This approach can not only
obtain the better segmentation accuracy but can also speed
the prediction efficiency.

3. Methods

3.1. Construction of the Deep Cascaded Neural Network. The
starting point of the proposed system is in vivo MRI data
consisting of four different sequences (FLAIR, T1, T1c, and
T2), and the endpoint becomes a characterized tumor (see
Figure 1). In the output image, a brain tumor is classified into
four different zones: necrosis, edema, nonenhancing tumor,
and enhancing tumor.

More specifically, the architecture of the proposed system
includes an FCN followed by a CNN which accompanies
small convolution kernels (see Figure 1). So the segmentation
task based on this cascaded network can be divided into two
major steps. In the first step, the pixel-wise FCN was used to
quickly localize the tumor by marking the tumor region.
Then, the patch-wise CNN was used to further categorize
the above-identified tumor region into different subregions
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Table 1: A summary of brain tumor segmentation methods based on traditional machine learning. Only methods using MRI data were
included in this table.

Number Publication Database Summary of method Performance

1 Corso et al. [5]
20 cases of in vivo
brain tumors;

T1, T1-C, T2, FLAIR

A hybrid method combining an
affinity-based segmentation method

with a generative model
0.62–0.69 (Jaccard)

2 Hamamci et al. [6]
Synthetic data from
Utah + in vivo data

from Harvard

A cellular automata method combining
a probability framework

0.72 (DICE complete
tumor)

3 Mehmood et al. [7]

BrainWeb data + in vivo
brain tumors;

T1, T1-weighted,
T2, T2-weighted

A novel saliency model for lesion
localization and an N-cut graph segmentation

model for classification

83%~95%
(classification
accuracy)

4 Havaei et al. [8]
MICCAI-BRATS 2013

dataset
Hand-crafted features + a support

vector machine
0.86 (DICE complete

tumor)

5 Usman and Rajpoot [9]
MICCAI-BRATS 2013

dataset
Automated wavelet-based features + a

random forest classifier
0.88 (DICE complete

tumor)

6 Tustison et al. [10]
MICCAI-BRATS 2013

dataset

Combine a random forest model with a
framework of regularized probabilistic

segmentation

0.88 (DICE complete
tumor)

7 Zikic et al. [11]
40 multichannel
MR images,
including DTI

Decision forests using context-aware
spatial features for automatic segmentation

of high-grade gliomas

GT: 0.89
NE: 0.70

AC: 0.84
E: 0.72

(10/30 tests)

8 Pinto et al. [12]
MICCAI-BRATS
2013 dataset

Using appearance- and context-based
features to feed an extremely randomized

forest

0.83 (DICE complete
tumor)

9 Bauer et al. [13]
10 multispectral
patient datasets

Combines support vector machine
classification with conditional random fields

GT: 0.84
AC: 0.84

NE: 0.70
E: 0.72

(Intrapatient
regularized)

Table 2: A summary of brain tumor segmentation methods based on deep-learning neural networks. Only methods using MRI data were
included in this table.

Number Publication Database Summary of method
Performance (DICE)

Complete Core Enh

1 Urban et al. [14]
MICCAI-BRATS
2013 dataset

3D CNN with 3D convolutional kernels 0.87 0.77 0.73

2 Zikic et al. [15]
MICCAI-BRATS
2013 dataset

Apply a CNN in a sliding-window
fashion in the 3D space

0.84 0.74 0.69

3 Davy et al. [16]
MICCAI-BRATS
2013 dataset

A CNN with two pathways of both local
and global information

0.85 0.74 0.68

4 Dvorak and Menze [17]
MICCAI-BRATS
2013 dataset

Structured prediction was used
together with a CNN

0.83 0.75 0.77

5 Pereira et al. [18]
MICCAI-BRATS
2013 dataset

A CNN with small 3× 3 kernels 0.88 0.83 0.77

6 Havaei et al. [19]
MICCAI-BRATS
2013 dataset

A cascade neural network architecture
in which “the output of a basic CNN is treated

as an additional source of information
for a subsequent CNN”

0.88 0.79 0.73

7 Lyksborg et al. [20]
MICCAI-BRATS
2014 dataset

An ensemble of 2D convolutional neural
networks +doing a volumetric segmentation

by three steps
0.80 0.64 0.59

8 Kamnitsas et al. [21]
MICCAI-BRATS
2015 dataset

Using 3D CNN, two-scale extracted
feature, 3D dense CRF as postprocessing

0.85 0.67 0.63
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representing different pathologies. This system design was
motivated and justified as follows. First, the FCN can take
a whole image as the input and localization of a complete
tumor only requires one-pass of the forward propagation.
Thus, it can remarkably improve the segmentation effi-
ciency. Second, this combination of FCN and CNN can alle-
viate the pixel sample class imbalance problem which is
serious in MRI images. Thus, it can capture better segmen-
tation details. Third, the intratumor characterization in the
second step will only need to be applied to the tumor
regions localized in the first step instead of the entire image,
thereby significantly reducing forward computing time.
Hereafter, the FCN and the CNN are referred as to tumor
localization network (TLN) and intratumor classification
network (ITCN), respectively.

3.1.1. A Description of TLN. We modified the FCN-8s archi-
tecture [22] to model our TLN. The input channels (RGB) in
the original FCN-8s were changed to 4 channels in order to
account for 4 different MRI modalities. And the 21 output
channels in the original FCN-8s were changed to 2, corre-
sponding to either the tumor region or the nontumor region.
As shown in Figure 2, after the operations of the convolution
and pooling, the feature map became smaller in size (see
Table 3). To obtain a higher resolution of the final features,
the input images (size 240× 240) were padded to 438× 438
using zero padding [22]. Additionally, the deconvolution
was applied so that the size of output image matched with
that of the input image. It is worth noting that multiple con-
volutional kernels were used in each convolutional layer for a
better feature extraction (e.g., edges, curves, and corner).

We observed that a significant amount of low-level
feature details such as location and edge could be lost after
convolution striding and pooling. However, these lost fea-
tures were valuable for semantic segmentation. Thus, two
skip connections [22] were introduced for two purposes: (1)

mitigating the loss of local image features and (2) combining
local information obtained from intermediate layers (i.e.,
max pooling 4 and max pooling 3, resp.) with the global
information in these deep layers (i.e., after 7 convolution
layers). All relevant parameters used in the subnet TLN are
shown in Table 3 below.

3.1.2. A Description of ITCN. The proposed ITCN includes
two convolutional layer groups (3 layers each), two max
pooling layers, and three fully connected layers. Recall that
the TLN yields a binary tumor map for a given MRI image
and the ITCN (see Figure 3) further classifies the identified
tumor into 4 different subregions. Formally, for each location
i, j within the identified tumor map, 4 patches (size of
33× 33) centered on the i, j location were extracted from
the original 4 input channels (FLAIR, T1, T1c, and T2) and
subsequently used as the input to the ITCN. More details of
this ITCN subnet are listed in Table 4.

In the ITCN, as inspired by the work of Simonyan and
Zisserman [24], multiple convolutional layers with small ker-
nels (3× 3 pixels) were used. An alternative approach would
be an architecture with fewer layers and larger kernels. The-
oretically, two cascaded convolutional layers with two 3× 3
kernels have similar effects on the receptive fields, as com-
pared to one convolutional layer with a 5× 5 kernel. But
two cascaded layers with two 3× 3 kernels result in more
complex nonlinearities and fewer weights. Fewer weights
lead to a less computing cost and can also alleviate the pos-
sibility of overfitting. It is generally understood that, with
the increase of the CNN’s depth, a CNN can gain higher
representation capacity. As shown in Figure 3, in each of
the two pooling layers, a 3× 3 overlapping subwindow with
a stride of 2 was applied to the feature maps for reducing
feature dimension and integrating higher-level features.
The detailed hyperparameters of the ITCN can be found
in Table 4 below.

Tumor localization network (TLN) Intratumor classification network (ITCN)

Tumor candidatesOutput of TLN

Input Output

… …

Figure 1: An illustrative overview of the proposed deep cascaded convolutional neural network for a fast and accurate tumor segmentation.
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3.2. Implementation. All numerical experiments were con-
ducted using a Dell workstation equipped with dual Intel
E5-2603 CPUs and amiddle-end GPU graphic card (GeForce
GTX 1080, NVIDIA, CA, USA). The operation system of the
workstation is Ubuntu (version 14.04). The proposed cas-
caded neural network has been implemented using Python
(version 2.7) under the framework of Caffe, an open-source
deep learning platform (http://caffe.berkeleyvision.org/).
Some essential details are discussed below.

3.2.1. Preprocessing. As recommended by the literature [25],
MRI data were preprocessed before the proposed cascaded
neural network was applied. Basically, the N4ITK method
was first used to correct the distortion of MRI data, followed
by data normalization.

Given an image X, x i, j is the intensity correspond-
ing to the jth column at the ith row of X i, j = 1, 2,… ,
240 . The data intensity normalization procedure is briefly
described below:
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Figure 2: An illustration of the architecture of the TLN subnet for pixel-wise prediction.

Table 3: Parameters used in the subnet TLN. In each convolutional layer, the feature maps had been padded by 1 prior to the convolution so
that all intermediate feature maps do not change their sizes before and after the convolution.

Number Layer name Filter size Stride Number of Filters Output

1 Conv 1_1 +ReLU 3∗3 1 64 438∗438∗64

2 Conv 1_2 +ReLU 3∗3 1 64 438∗438∗64

3 Max pooling 1 2∗2 2 — 219∗219∗64

4 Conv 2_1 +ReLU 3∗3 1 128 219∗219∗128

5 Conv 2_2 +ReLU 3∗3 1 128 219∗219∗128

6 Max pooling 2 2∗2 2 — 110∗110∗128

7 Conv 3_1 +ReLU 3∗3 1 256 110∗110∗256

8 Conv 3_2 +ReLU 3∗3 1 256 110∗110∗256

9 Conv 3_3 +ReLU 3∗3 1 256 110∗110∗256

10 Max pooling 3 2∗2 2 — 55∗55∗256

11 Conv 4_1 +ReLU 3∗3 1 512 55∗55∗512

12 Conv 4_2 +ReLU 3∗3 1 512 55∗55∗512

13 Conv 4_3 +ReLU 3∗3 1 512 55∗55∗512

14 Max pooling 4 2∗2 2 — 28∗28∗512

15 Conv 5_1 +ReLU 3∗3 1 512 28∗28∗512

16 Conv 5_2 +ReLU 3∗3 1 512 28∗28∗512

17 Conv 5_3 +ReLU 3∗3 1 512 28∗28∗512

18 Max pooling 5 2∗2 2 — 14∗14∗512

19 Conv 6 +ReLU 7∗7 1 4096 8∗8∗4096

20 Conv 7 +ReLU 1∗1 1 4096 8∗8∗4096
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(1) Removed the top 1% and bottom 1% from each slice
of the MRI data.

(2) For each slice of MRI data X, a normalized image X′
was obtained. In the scaled image X′, each intensity
value x′ i, j can be obtained as follows:

x′ i, j = x i, j − X

Xs
, 1

where x i, j is the gray value of pixel i, j prior to the
normalization and X and Xs are the mean and standard devi-
ation of the unscaled image X, respectively.

The above-mentioned preprocessing method was used to
process each modality MRI data including FLAIR, T1, T1c,
and T2. Particularly, the FLAIR images were generated using
fluid-attenuated inversion recovery protocol and useful in
terms of differentiating the brain tumor from its normal
background. Figure 4 presents some FLAIR slices before
and after using the proposed image intensity normalization.

We randomly selected 3 different cases from the FLAIR data-
set. As shown in Figure 4 below, it is easy to find that the
above-mentioned data normalization can improve the com-
parability of different slices.

3.2.2. Convolution Operation. Each feature map Z shown in
Figures 1, 2, and 3 was associated with one convolution
kernel. Z was computed as follows:

Z = b + 〠
k

r=1
Wr ∗Xr , 2

where k is the number of input channels, b is a bias term, Xr is
an image from the rth input channel, and Wr is the weight
associated with the rth channel. In (2), ∗ denotes a convolu-
tion operator.

3.2.3. Nonlinear Activation Function. In our study, the TLN
used rectified linear unit (ReLU) function [23] to perform
nonlinear transformations. This selection was because ReLU
could achieve better results as compared to the classical
sigmoid and hyperbolic tangent functions. The use of ReLU

Conv 1_1 Conv 1_2 Conv 1_3 Conv 1_1 Conv 1_2 Conv 1_3

Max
pooling 1

Max
pooling 2

Fully
connected

256
Fully

connected
4

Fully
connected

128

33 × 33 × 4

……

Figure 3: An illustration of the second subnet ITCN for the intratumoral classification. The classification was done in a patch-to-patch
fashion.

Table 4: A list of parameters used in the proposed subnet ITCN. In each convolutional layer, the feature maps had been padded by 1 prior to
the convolution so that the convolution do not change the size of the resultant feature map.

Number Layer name Filter size Stride Number of filters FC units Output

1 Conv 1_1 + LReLU 3∗3 1 64 — 33∗33∗64

2 Conv 1_2 + LReLU 3∗3 1 64 — 33∗33∗64

3 Conv 1_3 + LReLU 3∗3 1 64 — 33∗33∗64

4 Max pooling 1 3∗3 2 — — 16∗16∗64

5 Conv 2_1 + LReLU 3∗3 1 128 — 16∗16∗128

6 Conv 2_2 + LReLU 3∗3 1 128 — 16∗16∗128

7 Conv 2_3 + LReLU 3∗3 1 128 — 16∗16∗128

8 Max pooling 2 3∗3 2 — — 8∗8∗128

9 FC1 + dropout — — — 8192 256

10 FC2 + dropout — — — 256 128

11 FC3 + softmax — — — 128 4
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was also able to accelerate the training [26]. Mathematically,
the ReLU function is defined below:

f z =max 0, z 3

In the ITCN, the leaky rectifier linear unit (LReLU) [27]
was used. This was because imposing zeros (see (3)) could
negatively affect the calculation of gradients. During the
training of this neural network, zero gradients will signifi-
cantly slow down the adjustments of weights. The LReLU
function reads

f z =max 0, z + α min 0, z , 4

where α is the leakiness parameter [18].
To address the multiclassification problem, a well-

known softmax function was used to transform the neural
network outputs to probability distributions. Softmax is
defined as follows:

Yi = sof t max Zi = eZi

eZ
, 5

where Zi is the output from the ith neuron and Yi is the prob-
ability of input pixel corresponding to the ith class. In the
TLN, i = 1 or 2 because the TLN was to perform a binary clas-
sification in the first step. In the ITCN, i = 1, 2, 3, 4 since the
ITCN was to classify the MRI data into four classes.

3.2.4. Loss Function. Given a set of weights of the proposed
neural network θ, a categorical cross-entropy loss function
was used to compute the loss of ground truth and pre-
dicted probability distribution. Mathematically, under an

arbitrary prediction for the ith pixel, the predition loss can
be defined as

L θ = −〠
C

j=1
Yij′ log Yij , 6

where Y′, Y , and C are a one-hot vector, the predicted prob-
ability distribution, and the number of classes, respectively.

In the TLN, predictions were made for each pixel of
the input image so that the loss function can be written
as follows:

L θ′ = −
1
S
〠
S

i=1
〠
C

j=1
Yij′ log Yij , 7

where C = 2 and S is the pixel number of the input image. In
every training, only one input image was used (the size of
minibatch was 1).

Now referring to the ITCN, the loss function was calcu-
lated in conjunction with the concept of mini-batch. Thus,
the loss function has the following form,

L θ″ = −
1
M

〠
M

i=1
〠
C

j=1
Yij′ log Yij , 8

where C = 4 and M is the size of minibatch. Of note, in this
study, M = 256.

To achieve better generation ability and avoid overfitting,
L2 regularization terms were also added to (7) and (8). Thus,
the final forms of the loss functions are

(a)

(b)

Figure 4: Randomly selected examples of FLAIR slices before (a) and after (b) the above-mentioned intensity normalization.
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L θ′ = −
1
S
〠
S

i=1
〠
C

j=1
Yij′ log Yij + λ

S
〠
Q

k=1
θk′

2 , 9

L θ″ = −
1
M

〠
M

i=1
〠
C

j=1
Yij′ log Yij + λ

M
〠
Q

k=1
θk′

2 , 10

where λ is a regularization constant and Q is the number of
model parameter.

3.2.5. Optimization Method. Equations (9) and (10) were
minimized using the minibatch stochastic gradient descent
(SGD) algorithm. To avoid numerical oscillations and
accelerate convergence, the momentum method [23] was
used. This process can be described as iterations from
(11) to (13).

gt = ∇t−1L θt−1 , 11

mt = μ∗mt−1 − ηtgt , 12

θt = θt−1 +mt 13

In (11), (12), and (13), the subscript t is the iteration
number and θ corresponds to θ′ in (9) or θ″ in (10). L θt−1
is the loss function when a parameter set θt−1 is used. gt , mt ,
and μ are the gradient, momentum, and momentum coeffi-
cient, respectively. We set μ = 0 99 and μ = 0 9 in the TLN
and ITCN, respectively. Here, ηt is the learning rate.

To suppress the SGD noise and guarantee conver-
gence, the learning rate ηt attenuates linearly from the ini-
tial learning rate η0 to the final learning rate ητ as the
iteration progresses:

ηt = 1 − γ η0 + γητ, 14

γ = t
τ
, 15

where τ is the total iteration number. In this study, we set
ητ = η0/100.

3.2.6. Training Details. The initial and final learning rates of
the TLN model were set to 1e−8 and 1e−10, respectively.
The total iteration τ = 2e6, and the momentum coefficient
was 0.99. In the ITCN subnet, the initial and final learning
rates were set to 1e−3 and 1e−5, respectively. In the ITCN
subnet, the total iteration τ = 2e6 and the momentum coeffi-
cient μ = 0 9.

During the training of the TLN subnet, we used the trans-
fer learning technique [28, 29]. The initial weights were
obtained from a pretrained model that was trained using
ImageNet in [24]. But initial weights of the 4th input channel
were initialized using the average of the original 3 input
channel (RGB) weights. And the final two output channels
were initialized with the Xavier method [30]. Then, fine-
tuning of the TLN was performed by the optimization pro-
cess described above ((11), (12), and (13)) using the MRI
training data. However, the training of the ITCN subnet
was started from scratch and the weights were initialized
with the Xavier method [30]. To avoid overfitting, we used

the dropout regularization [31] and the dropout ratio was
set to 0.5 in all fully connected layers. Weight decay was
set as 0.005.

3.3. Datasets and Evaluation Metrics. In order to train and
evaluate the proposed system, numerical experiments were
carried out using in vivo human patient data provided by
the BRATS 2015 database [32]. The BRATS 2015 database
contains 220 HGG and 54 LGG. Experimental data have
been labeled, and five labels were used: normal brain tissues
(noncancerous zone), necrosis, edema, nonenhancing tumor,
and enhancing tumor. These pixel-wise delineations were
considered the ground truth in this study. Each case contains
four sequences of MRI data, namely, T1, T1c, T2, and FLAIR.
The dimension of eachMRI modality is 155× 240× 240 (slice
number× length×width). All MRI data were spatially regis-
tered and stored as signed 16-bit integers. But only positive
values were used.

The tenfold crossvalidation method [33] was used to
evaluate the proposed system. More specifically, the 274
cases were divided into a training set (240 cases) and a
testing set (34 cases). The 240 training cases were equally
divided into 10 subsets in which 9 subsets were used as
the training and 1 subset was used as the validation. In
the training phase of the TLN subnet, all subregions within
a tumor were merged into one tumor region. Thus, in the
binary ground truth, zero represents the noncancerous tis-
sues while one represents cancerous regions. In the train-
ing phase of the ITCN subnet, we randomly selected
4,700,000 image patches (33× 33) from the training set,
which correspond to 1,175,000 patches for each label (4
different classes).

The quantitative evaluations were conducted for 3 differ-
ent tumor regions: complete tumor region (including all four
tumor subregions), core tumor region (including all tumor
structures except edema), and enhancing tumor region (only
including the enhanced tumor structure). For each type of
regions, we compute DSC [34], PPV, and sensitivity [35] as
quantitative evaluation metrics.

DSC measures the overlap between the ground truth and
the automatic segmentation. It is defined as

DSC = P1 ∩ T1
P1 + T1 /2 , 16

where P1 and T1 represent the positive values of the model
prediction and the ground truth, respectively.

PPV is the proportion of the true positive in all segmen-
tation tumor points. It is defined as

PPV = P1 ∩ T1
P1

17

Sensitivity is the proportion of the detected tumor points
in all ground truth tumor points. It is defined as

Sensitivity = P1 ∩ T1
T1

18

The proposed system was compared with some other
published methods. Those methods all have been validated
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on the BRATS 2015 dataset. A one-step segmentation
method based on the FCN-8s was also implemented for the
purpose of comparison. The FCN-8s can segment the input
MRI images into 5 classes in a single step.

4. Results

4.1. Qualitative Observations.Overall, we found that the pro-
posed system can accurately delineate gliomas. Visual

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5: Representative examples of computer segmentation results of four brain tumors. (a–d) The original FLAIR, T1, T1c, and T2 slices,
respectively. (e) The ground truth overlaid with the FLAIR image. (f) Segmentation results overlaid with the FLAIR image. (e, f) Red, green,
yellow, and blue colors denote necrosis, edema, nonenhancing tumor, and enhancing tumor, respectively.
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inspections were conducted for testing data to validate the
segmentation results of our proposed method. Figure 5
shows four selected examples. It can be observed that our
method can effectively localize and segment brain tumors
with vastly different shapes and sizes. Visually, the computer
segmentation is comparable to the ground truth.

Also, the proposed system led to good details around
boundaries. Figure 6 presents two representative examples
of this observation. Since these brain tumors are complex,
Figure 6 shows some good showcase examples. During the
process, we found that the TLN subnet was able to effectively
identify nearly all the tumor pixels. Subsequently, the ITCN
subnet efficiently classified the tumor region into four subre-
gions. Our method could largely detect the complete tumor
and classify it to different tumor subregions from multimod-
ality MRI images though there were a few misclassifications.
This is not surprising because, pathologically, the brain gli-
oma tumors invade their surrounding tissues rather than dis-
placing them. Hence, the appearance of cancerous tissues
and their surrounding (normal) tissues could be fairly similar
under MRI.

We also found that, as compared to the FCN-8s with one-
step segmentation, the proposed system could segment het-
erogeneous gliomas with a better boundary detail. The results
of the proposed method and FCN-8s are compared in
Figure 7. Five different typical slices representing signifi-
cantly different tumor shapes and sizes are shown in this fig-
ure. It is easy to see that the results obtained from the
proposed method (the third column) are more similar to
the ground truth (the first column), as compared to the

classification results by the FCN-8s (the second column).
Furthermore, boundaries of various subregions obtained by
the FCN-8s were overly smoothed and, perhaps, inaccurate.
But our method using the ITCN had better boundaries of
the enhancing and nonenhancing regions.

4.2. Evaluation and Comparison. The quantitative compari-
sons with other methods in terms of DSC are summarized
in Tables 5 and 6. All experiments were conducted on the
BRATS 2015 dataset. The results of Table 5 were obtained
by using the combined testing set of HGG and LGG, whereas
results shown in Table 6 only used HGG data.

Obviously, the proposed cascaded neural network obtains
the comparable and better DSC value on all tumor regions.
Based on the combined testing dataset (see Table 5), our
method obtained better comprehensive performance values
(0.89, 0.77, and 0.80) as compared to other methods.
Although themethod proposed by Kamnitsas et al. [21] yields
a slightly higher DSC value in the complete tumor, they
obtained lower DSC values in core tumor and enhancing
tumor. Actually, in their work, a 3D CNN and the structure
prediction technology were adopted (i.e., conditional random
field). Thus, it is computationally time-consuming and needs
extra postprocessing. Furthermore, the method proposed by
Dong et al. [36] yielded a slightly higher DSC value in core
tumor andYi et al. [37] yielded the sameDSC value in enhanc-
ing tumor.

As can be seen in Table 6, based on the HGG testing data-
set, our method obtained the highest DSC values in the com-
plete tumor and enhancing tumor categories. Although the

(a) (b) (c)

Figure 6: Two slices of computer segmentation result in a testing case: (a–c) the ground truth, results of tumor localization using the TLN
subnet, and the intratumor segmentation results using the ITCN subnet, respectively. (a, c) Red, green, yellow, and blue colors denote
necrosis, edema, nonenhancing tumor, and enhancing tumor, respectively.
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method proposed by Dong et al. [36] yielded a higher DSC
value in the core tumor cases, it obtained a lower DSC value
in the complete tumor category.

Recently, we found that Pereira et al. [39] also proposed a
hierarchical brain tumor segmentation approach from MRI
HGG images. The difference between their method and our

(a) (b) (c)

Figure 7: Examples of segmentation results from five typical slices comparing the FCN-8s (b) and the proposed method (c). (a) The ground
truth. In this figure, red, green, yellow, and blue colors denote necrosis, edema, nonenhancing tumor, and enhancing tumor, respectively.
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method is that they adopted the FCN in both first and second
steps. We compared the results of our method with their
method (see Table 7). Our proposed approach obtained the
better DSC values (0.90, 0.81, and 0.81) in all tumor regions.
Furthermore, the proposed method also yielded higher PPV
values in the complete and enhancing tumor categories and
a higher sensitivity in the core tumor category. Of note, Per-
eira et al. [39] trained and tested on the BRATS 2013 dataset
but we on the BRATS 2015 dataset.

Additionally, the segmentation speed for testing data was
also documented (see Table 8). Computational performance
of the first four methods was obtained through respective
publications [18, 19, 21, 36]. The proposedmethod is efficient
as compared to other methods. It only takes averagely 1.54
seconds in order to segment a slice and only runs slightly
slower than the FCN-8s (0.98 seconds). This is understand-
able because the proposed method needs two-stage segmen-
tation while the FCN-8s only needs a forward computation.
However, the FCN-8s yields less accurate and overly smooth
boundary maps. Of note, adopting the FCN for image seman-
tic segmentation is faster than the traditional method based
on patch-wise [22, 36]; despite computational efficiency, tests
reported in the literature were done using slightly different
computing platforms.

5. Discussions and Conclusions

In this work, a cascaded neural network was designed, imple-
mented, and tested. The proposed system consists of two
steps. In the first step, the TLN subnet was used to localize
the brain tumor. Then, the ITCN subnet was applied to the

Table 5: A summary of DSC quantitative comparison on BRATS 2015 combined dataset (HGG and LGG).

Method Dataset Grade
DSC

Complete Core Enh

Pereira et al. [38]
BRATS 2015 Challenge Combined 0.78 0.65 0.75

BRATS 2015 Training Combined 0.87 0.73 0.68

Havaei et al. [19] BRATS 2015 Challenge Combined 0.79 0.58 0.69

Kamnitsas et al. [21]
BRATS 2015 Challenge Combined 0.85 0.67 0.63

BRATS 2015 Training Combined 0.90 0.76 0.73

Dong et al. [36] BRATS 2015 Training Combined 0.86 0.86 0.65

Yi et al. [37] BRATS 2015 Training Combined 0.89 0.76 0.80

FCN-8s BRATS 2015 Training Combined 0.84 0.71 0.63

Proposed BRATS 2015 Training Combined 0.89 0.77 0.80

Table 6: A summary of DSC quantitative comparison on BRATS 2015 HGG dataset.

Method Dataset Grade
DSC

Complete Core Enh

Pereira et al. [38] BRATS 2015 Training HGG 0.87 0.75 0.75

Havaei et al. [19] BRATS 2015 Challenge HGG — — —

Kamnitsas et al. [21] BRATS 2015 Training HGG — — —

Dong et al. [36] BRATS 2015 Training HGG 0.88 0.87 0.81

Yi et al. [37] BRATS 2015 Training HGG 0.89 0.79 0.80

FCN-8s BRATS 2015 Training HGG 0.88 0.76 0.71

Proposed BRATS 2015 Training HGG 0.90 0.81 0.81

Table 7: A comparison of our proposed method with hierarchical brain tumor segmentation [39] on DSC, PPV, and sensitivity metrics.

Method
DSC PPV Sensitivity

Complete Core Enh Complete Core Enh Complete Core Enh

Pereira et al. [39] 0.85 0.76 0.74 0.80 0.78 0.74 0.92 0.79 0.78

Proposed 0.90 0.81 0.81 0.91 0.77 0.87 0.87 0.84 0.76

Table 8: Comparisons of segmentation time among six different
methods. The estimation of time for the proposed method was
based on the acceleration of GPU.

Method Time

Pereira et al. [18] 8 s–24min

Havaei et al. [19] 8min

Kamnitsas et al. [21] 30 s

Dong et al. [36] 2-3 s

FCN-8s 0.98 s

Proposed 1.54 s
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identified tumor regions to further classify the tumor into
four subregions. We also adopted the advanced technologies
to train and optimize the proposed cascaded neural network.
Numerical experiments were conducted on 274 patient
in vivo data sets from the BRATS 2015. DSC, PPV, and sen-
sitivity were used as metrics for segmentation accuracy.

Based on quantitative and qualitative evaluations, we
found that the proposed approach was able to accurately
localize and segment complex brain tumors. We stipulate
that there are two reasons. First, the ITCN subnet only
represents and subsequently classifies the intratumoral
region whereas other methods need to represent and clas-
sify all heterogeneous brain tissues. Second, intratumor
subregions are usually very small proportions of the entire
image. Other neural networks (e.g., FCN-8s) may suffer
from the imbalance of different pixel labels. In the TLN
subnet, our proposed method merged different tumor sub-
regions into a whole tumor. Thus, the imbalance can be
somewhat mitigated. In the ITCN subnet, we adopted the
same quantity image patches of each class to train and
optimize the model. In the future, deep learning neural
networks could be expanded to include histological data
and other data to further improve clinical management
of brain cancers [40].

Furthermore, the proposed cascaded neural network can,
on average, complete a segmentation task within 1.54 sec-
onds. The proposed TLN subset only requires a forward
computation for localizing the whole tumor region in the first
step. Then, the ITCN subnet only needs to classify tumor
candidate pixels into different class subregions within a
much-reduced region located by the TLN, thereby improving
the computing efficiency.
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