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OBJECTIVE

To examine the association of erythrocyte n-6 polyunsaturated fatty acid (PUFA)
biomarkers with incident type 2 diabetes and explore the potential role of gut
microbiota in the association.

RESEARCH DESIGN AND METHODS

We evaluated 2,731 participants without type 2 diabetes recruited between
2008 and 2013 in the Guangzhou Nutrition and Health Study (Guangzhou, China).
Case subjects with type 2 diabetes were identified with clinical and biochemical
information collected at follow-up visits. Using stool samples collectedduring the
follow-up in the subset (n 5 1,591), 16S rRNA profiling was conducted. Using
multivariable-adjusted Poisson or linear regression,we examined associations of
erythrocyte n-6 PUFA biomarkers with incident type 2 diabetes and diversity and
composition of gut microbiota.

RESULTS

Over 6.2 years of follow-up, 276 case subjects with type 2 diabetes were identified
(risk 0.10). Higher levels of erythrocyte g-linolenic acid (GLA), but not linoleic or
arachidonic acid,were associatedwith higher type 2diabetes incidence. Comparing
the top to the bottom quartile groups of GLA levels, relative risk was 1.72 (95% CI
1.21, 2.44) adjusted forpotential confounders. BaselineGLAwas inversely associated
with gutmicrobial richness and diversity (a-diversity, both P< 0.05) during follow-up
andsignificantlyassociatedwithmicrobiotab-diversity (P50.002).a-Diversityacted
as apotentialmediator in theassociationbetweenGLAand type2diabetes (P< 0.05).
Seven genera (Butyrivibrio, Blautia, Oscillospira, Odoribacter, S24-7 other, Rike-
nellaceae other, and Clostridiales other) were enriched in quartile 1 of GLA and in
participants without type 2 diabetes.

CONCLUSIONS

Relative concentrations of erythrocyteGLAwerepositively associatedwith incident
type 2 diabetes in a Chinese population and also with gut microbial profiles. These
results highlight that gut microbiota may play an important role linking n-6 PUFA
metabolism and type 2 diabetes etiology.
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Type 2 diabetes is one of the most prev-
alent metabolic conditions worldwide, and
463 million adults are living with diabe-
tes (1). To examine lifestyle-related risk
factors for the development of type 2
diabetes, the role of different fatty acids
has beenan important researchagenda.
For example, the associations of blood
biomarkers of different saturated fatty
acids and n-3 polyunsaturated fatty acids
(PUFAs) with type 2 diabetes have been
investigated in different cohorts includ-
ing a Chinese cohort used in the current
study (2–5).During thepast twodecades,
consumption of n-6 PUFAs, rich in veg-
etable oil, has been increasing rapidly (6),
while their relationshipwith human health
remains controversial. Themetabolic path-
way of n-6 PUFAs is hypothesized to be
closely involved in the type 2 diabetes
etiology (7), but has not been well char-
acterized yet.
A recentpooledanalysis of 20prospec-

tive cohort studies investigated the as-
sociation of linoleic acid (LA; 18:2n6) and
arachidonic acid (AA; 20:4n6) biomarkers
with incident type 2 diabetes, reporting
that LA, but not AA, was inversely asso-
ciatedwith type 2 diabetes (8). However,
in this pooling project, only two individ-
ual n-6 PUFA biomarkers were evalu-
ated, while cohorts in Europe reported
g-linolenic acid (GLA) and other n-6 PUFAs
to be associated with higher type 2 di-
abetes risk (8). Moreover, with only one
small cohort from Taiwan in the above
pooling project (8), evidence from Asian
populationshas been limited. As anAsian
population has different metabolic and
lifestyle characteristics in relation to
type 2 diabetes comparedwith American
or European populations (9), more in-
vestigation for n-6 PUFA biomarkers in
Asian populations is highly warranted.
Theprotectiveeffectofn-6PUFAorLA,

the most abundant n-6 PUFA, on insulin
homeostasis has been well characterized
and discussed to link n-6 PUFA exposure
to lower type 2 diabetes risk (8). However,
gut microbiota has not been heavily in-
vestigated in research on PUFAs and any
noncommunicablediseases.Ononehand,
gutmicrobiota has been considered as an
important risk factor for type 2 diabetes
and insulin resistance (10). On the other
hand, rodent studies have suggested that
high tissue levels of n-6 PUFAs are asso-
ciated with differences in gut microbiota,
including increased Proteobacteria, re-
duced Actinobacteria and Bacteroidetes,

and altered microbial a-diversity (11,12).
Yet, to our knowledge, there are no
human cohort studies investigating the
potential link among n-6 PUFA exposure,
type 2 diabetes risk, and gut microbiota
composition and diversity.

Therefore, we hypothesized that long-
term exposure to different n-6 PUFA
status might be associated with type 2
diabetes risk in the Chinese population,
and gut microbiota might partly medi-
ate the above association. Evaluating
the prospective cohort in China, we aimed
to examine the prospective associations 1)
betweenn-6PUFAbiomarkers and type2
diabetes risk in aChinesepopulation, and
2) between n-6 PUFA biomarkers and
gutmicrobiota composition anddiversity
and subsequent health outcomes. As a
secondary aim, we also examined the pro-
spective association of dietary n-6 PUFAs
with gut microbiota and type 2 diabetes
risk in the Chinese population.

RESEARCH DESIGN AND METHODS

Study Design and Population
This study was based on the Guangzhou
Nutrition andHealth Study, a community-
based prospective cohort in southern
China. A total of 4,048 Chinese partic-
ipants aged 40–75 years who lived in
Guangzhou for at least 5 years were
recruited between 2008 and 2010 (n 5
3,169) and 2012 and 2013 (n 5 879).
All participants have been followed
up every 3 years approximately. The
study was registered at ClinicalTrials
.gov (NCT03179657).

According to our prespecified inclusion
and exclusion criteria of our participants
for the present analysis (Supplementary
Fig. 1), we excluded participants with miss-
ing information on age or sex (n 5 9),
diet (n 5 7), self-reported/diagnosed
type 2 diabetes (n 5 400) or history of
cancer (n 5 16) at baseline, or extreme
levels of self-reported total energy in-
take (,800 or.4,000 kcal/day for men
and ,500 or .3,500 kcal/day for
women) (n 5 53). We also excluded
those without measurement of eryth-
rocyte membrane fatty acid composi-
tions at baseline (n 5 298) and further
excluded those without any follow-up
information on type 2 diabetes status
(n 5 534; follow-up rate 84%). The cur-
rent analyses were censored by date of
type 2 diabetes ascertainment or 30 April
2019, whichever happened first. A total of
2,731 individuals (Han clan) were included

in the current study, with a median follow-
up time of 6.2 years.

Among the above included 2,731 in-
dividuals, stool samples from 1,606 indi-
viduals were collected between 2014 and
2018 for the subsequent 16S profiling,
with 1,591 individuals included in the
microbial association analysis after ex-
cluding participants who used antibiotics
within 2 weeks before stool collection
(n 5 15).

Measurement of Erythrocyte
Membrane Fatty Acids and Covariates
We considered relative concentrations
(percentage of total fatty acids) of eryth-
rocyte LA, GLA, and AA as the main ex-
posure variables. Blood samples were
drawn after overnight fasting at the base-
line visit. Fatty acid moieties of erythrocyte
membranes were trans-methylated and
measured as proportions (percentage) of
total fatty acids by using gas chromatog-
raphy. Sociodemographic, lifestyle, and
clinical covariates were collected with
standardized questionnaires, and die-
tary information was collected using a
validated food frequency questionnaire
(13). Details of fatty acid and covariate
measurements are available in the Sup-
plementary Materials.

Ascertainment of Case Subject With
Type 2 Diabetes
At baseline (for exclusion) and follow-up
visits, case subjects with type 2 diabetes
were ascertained according to the crite-
ria of the American Diabetes Association
for type 2 diabetes diagnosis (14) if a
participant met one of the following
criteria: a fasting blood glucose con-
centration $7.0 mmol/L (126 mg/dL),
HbA1c concentration $6.5%, or self-
reported medical treatment for diabetes.

Fecal Sample Collection and 16S rRNA
Profiling
Fecal samples were collected on site dur-
ing follow-up visits between 2014 and
2018.MicrobialDNAextraction, PCR, and
amplicon sequencing were performed as
described (see Supplementary Materials).
FASTQ files were demultiplexed, merge-
paired, and quality filtered by Quantitative
Insights into Microbial Ecology software
(version 1.9.0) (15). Sequences were clus-
tered into operational taxonomic units
(OTUs) with 97% similarity and anno-
tated based on the Greengenes Data-
base (version 13.8) (16).
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Statistical Analysis
Statistical analyses were performed us-
ing Stata 15 (StataCorp, College Station,
TX) or R (version 3.6.3). We used mul-
tivariable Poisson regression models to
estimate the risk ratio (RR) and95%CIs of
type 2 diabetes comparing quartiles of
the erythrocyte n-6 PUFA (LA, GLA, and
AA), adjusting for potential confounders.
We fitted three statistical models: model
1 includedage, sex, BMI, andwaist-to-hip
ratio (WHR); model 2 was model 1 plus
education, household income, smoking,
alcohol drinking status, physical activity,
total energy intake, and family history of
diabetes; and model 3 was model 2 plus
baseline erythrocyte total n-3 PUFAs and
fasting glucose. P value for trend was cal-
culatedbasedonper-quartiledifference in
the corresponding n-6 PUFA variable. To
compare our findings above with tradi-
tional risk factors of type 2 diabetes, we
took BMI as an example and performed
a post hoc analysis to calculate RRs of
type 2 diabetes comparing quartiles of BMI
using Poisson regression, adjusted for the
same covariates inmodel 3 described above.
In sensitivity analyses, we repeated

the above analysis based on model 3 to
examine the impact of loss to follow-up
by a simple imputation (assuming that
participants lost to follow-up did not
develop type 2 diabetes) and 10 rounds
of multiple imputations based on regres-
sion model using all covariates listed in
model 3. In addition, we excluded case
subjectswith type 2diabetes ascertained
only by fasting glucose to test the po-
tential influence of misclassification of
type 2 diabetes by fasting glucose.
We assessed influences of additional

potential covariates on the models: di-
etary variables (dietary intake of dairy
products, red and processed meat, fish,
vegetables, and fruit, in quartiles), blood
lipids (triglycerides and LDL), prevalent
coronary heart disease, and treatment for
hypertension or hyperlipidemia. We fur-
ther examined thepotential interactionof
erythrocyte n-6 PUFA biomarkers with
age, sex, BMI, or n-3 PUFA biomarker
concentrations on type 2 diabetes risk.
Post hoc–stratified analyses were per-
formed if therewas a significant interaction
(Pinteraction, 0.05) for age, sex, BMI, or n-3
PUFA biomarker concentrations with the
n-6 PUFA biomarkers.
To test our hypothesis that gut micro-

biota may partly mediate the association
between n-6 PUFAs and type 2 diabetes,

we calculated the a-diversity metrics
(observed OTUs, Shannon diversity index,
Chao index, and Simpson index). Ob-
served OTUs and Chao index represent
the microbial richness (the number of
different features in a sample), and Shannon
diversity index and Simpson index
represent diversity (how evenly the mi-
crobes are distributed in a sample). We
standardizeda-diversity indicators (z score
was calculated: the variable was sub-
tracted by the mean and divided by the
SD) and then reduced assay-dependent
variabilities by fitting a linearmixedmodel
with an a-diversity indicator as an out-
come variable and with assay-specific co-
variates including sequencing depth and
Bristol scale as fixed effects and sequenc-
ing batch as a randomeffect. The residuals
from this modeling were then used in the
following n-6 PUFA biomarker association
analyses. We used a linear regression mo-
del to examine the association of individual
n-6PUFAbiomarkers (byquartile)with the
four a-diversity metrics, adjusted for co-
variates inmodel 3.We also conducted an
additional adjustment for dietary fiber
intake to assess the potential marginal
effect of dietary fiber, as fiber is a well-
known factor influencing the gut micro-
biome (17). To investigate the relevance
of significant findings in relation to type 2
diabetes, we performed mediation anal-
ysis (R {mediation}) (18) with the resid-
uals of a-diversity as a mediator of the
relationship between n-6 PUFAs and
type 2 diabetes, adjusting for all covariates
described in model 3. We examined the
cross-sectional associations between the
residuals ofa-diversitymetrics and type 2
diabetes by using logistic regressionmod-
els, adjusted for age, sex, BMI, education,
household income, smoking status, alco-
hol drinking status, and prevalent hyper-
tension and dyslipidemia.

We conducted a principal coordinate
analysis and permutational multivariate
ANOVA (PERMANOVA) (R function ado-
nis {vegan}, 999permutations) (19) based
on Bray Curtis distance to compare the
whole gut composition (b-diversity, how
different are the microbial communities
in one environment compared with an-
other) at genus level by quartiles of n-6
PUFAbiomarkers.Thepotential confound-
ers included in the PERMANOVA were
sequencing depth, sequencing batch, and
Bristol scale, plus covariates in model 3.
The above analysis was repeated for gut
composition at OTU level. Scaled relative

abundances (i.e., divided by the SD)were
used to lessen the influence of highly
abundant genera onBray Curtis distance.
The association of community structure
with type 2 diabetes was also assessed by
PERMANOVA (R function adonis, 999 per-
mutations) to obtain R2, indicating the
proportion of the variability explained
by the studied variables, including n-6
PUFAs. We performed the post hoc pair-
wise comparisonsbetweendifferent quar-
tiles of GLA with Bonferroni correction
(cutoff P , 0.008).

At genus level, we performed a linear
discrimination analysis (LDA) as imple-
mented using LEfSe (20). The default pa-
rameters were used (a value for Wilcoxon
tests was 0.05, and the LDA score was 2.0)
to identify biomarkers at genus level, dis-
tinguishing different quartiles of n-6PUFAs
or different type 2 diabetes status. Only
taxon present in at least 10% of samples
were included in the analyses. Besides,
we evaluated the potential correlation
of theabove identifiedgenerawith type2
diabetes–related traits, including fasting
insulin, glucose, total cholesterol, trigly-
cerides, LDL cholesterol, HDL cholesterol,
non-HDL cholesterol, HbA1c, HOMAof insulin
resistance, and HOMA of b-cell function.
We first modeled type 2 diabetes–related
traits as outcome variables in linear regres-
sion with age, sex, and BMI and obtained
the residuals of each type 2 diabetes–related
trait, respectively, and then we calculated
the Spearman correlation coefficients be-
tween the genera and the residuals of
type 2 diabetes–related traits. Results dis-
playing a P value ,0.05 after Bonferroni
adjustment were considered significant.

As a secondary analysis, we examined
the associations between dietary n-6 PUFAs
(LA and AA) and type 2 diabetes using
model 3. Then, the samemodel was used
to examine the associations between di-
etary n-6 PUFAs and gut microbial diversity
as the above analyses of erythrocyte n-6
PUFAs.DietaryGLAwasnot included inthe
analysis, as the level of GLA in the diet is
very low and less common in Chinese foods.
The Spearman correlation coefficients of
thedietaryn-6PUFAswitherythrocyten-6
PUFAs were calculated.

RESULTS

Characteristics of the Study
Participants
Table 1 and Supplementary Table 1 sum-
marize the baseline characteristics of the
population by quartiles of erythrocyte
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GLA, LA, and AA. The median levels (in-
terquartile range) of baseline erythrocyte
LA, GLA, AA, and total n-6 PUFAs (percent
total fatty acids) were 9.84 (8.89–10.76),
0.037 (0.025–0.052), 11.51 (10.00–12.60),
and 21.6 (19.6–23.1), respectively. Supple-
mentary Tables 2 and 3 present baseline
population characteristics of participants
with and without follow-up information
and 16S profiling, respectively. Partic-
ipants who dropped out had higher serum
glucose levels, consumedfewervegetables
and energy, tended to be older, less edu-
cated, and less physically active, and were
more likely to smoke.Dietary LA intakewas
positively (r5 0.11; P, 0.001) correlated
with erythrocyte LA (Supplementary Table
4). Different food sources of n-6 PUFAswere
summarized in the Supplementary Table 5.

Association of Erythrocyte n-6 PUFAs
With Incident Type 2 Diabetes
Higher levels of baseline GLA were asso-
ciated with higher risk of type 2 diabetes

across the three statistical models (P
trend ,0.001 for all models) (Table 2).
For model 3, compared with the first
quartile group (Q1), RRs (95% CIs) of
type 2 diabetes at Q2, Q3, and Q4 were
1.22 (0.85, 1.74), 1.43 (1.01, 2.03), and
1.72 (1.21, 2.44), respectively. For BMI,
the multivariable-adjusted RR of type 2
diabetes (95% CI) of Q4 was 2.59 (1.74,
3.86) compared with Q1 (Supplemen-
tary Fig. 2). No associationwas found for
LA or AA. Similar results (Supplementary
Tables 6 and 7) were obtained after using
the simple or multiple imputation for the
missing data or excluding cases ascer-
tained only by fasting glucose (n 5 52)
(Supplementary Table 8) in the sensitivity
analysis. Adjustment for additional dietary
factors anddisease histories showed similar
results (SupplementaryTable9).Wedidnot
observe significant interaction for n-6 PUFA
biomarkerswithage, sex, BMI, orn-3PUFAs
on type 2 diabetes risk (Pinteraction . 0.05).

Prospective Association of Erythrocyte
n-6 PUFA Biomarkers With Gut
Microbiota Diversity
Lower GLA was associated with higher
gut microbiota a-diversity (Q4 vs. Q1, P 5
0.021 for observed OTUs, 0.028 for Shan-
non diversity index, and 0.023 for Chao
index, respectively) (Fig. 1A). However,
baseline LA, AA, or total n-6 PUFAs were
not associated with the microbial a-
diversity (Supplementary Table 10). These
results remained similar after further
adjusting for dietary fiber intake (Sup-
plementary Table 11). Among 1,591
individuals included in the microbial as-
sociation analysis, we also observed posi-
tive association between GLA and type
2 diabetes (Supplementary Table 12).
a-Diversity acted as a potential partial me-
diator of the association between GLA and
type 2 diabetes (7.9%, 7.1%, and 7.1%
of mediation for observed OTUs, Shannon
diversity index, and Chao index, respec-
tively, P, 0.05) (Supplementary Table 13).

Table 1—Baseline population characteristics by quartiles of erythrocyte GLA (n 5 2,731)

GLA (gC18:3n6)

Q1 (N 5 682) Q2 (N 5 683) Q3 (N 5 683) Q4 (N 5 683)

Age (years) 57.9 (6.0) 58.1 (5.8) 58.3 (5.6) 58.1 (5.2)

Sex (% of women) 227 (33) 231 (34) 201 (29) 167 (24)

BMI (kg/m2) 22.7 (3.1) 23.2 (2.9) 23.5 (3.0) 23.5 (3.1)

WHR 0.9 (0.1) 0.9 (0.1) 0.9 (0.1) 0.9 (0.1)

Education level
Middle school or lower 176 (26) 182 (27) 198 (29) 209 (31)
High school or professional college 338 (50) 327 (48) 317 (46) 303 (44)
University 168 (25) 174 (25) 168 (25) 171 (25)

Household income (Chinese Yuan/month/person)
#500 10 (1) 16 (2) 13 (2) 16 (2)
500–1,500 159 (23) 162 (24) 195 (29) 188 (28)
1,500–3,000 429 (63) 407 (60) 362 (53) 358 (52)
.3,000 84 (12) 98 (14) 113 (17) 121 (18)

Family history of diabetes 71 (10) 62 (9) 76 (11) 78 (11)

Current smoking 110 (16) 108 (16) 104 (15) 90 (13)

Current alcohol drinking 48 (7) 59 (9) 32 (5%) 35 (5)

Physical activity (MET z h/day) 40.5 (14.0) 42.3 (15.1) 41.4 (15.3) 41.7 (15.1)

Total energy intake (kcal/day) 1,759 (491) 1,778 (484) 1,771 (499) 1,764 (471)

Dairy intake (g/day) 16.1 (13.2) 17.3 (14.5) 16.7 (15.9) 16.1 (13.6)

Red and processed meat intake (g/day) 84.5 (54.4) 84.7 (52.9) 82.4 (53.0) 84.0 (53.4)

Vegetable intake (g/day) 374.0 (189.9) 388.3 (188.0) 383.9 (260.8) 383.2 (248.2)

Fruit intake (g/day) 149.8 (107.1) 149.2 (116.6) 147.0 (112.1) 145.3 (104.6)

Dietary fiber intake (g/day) 11.2 (3.2) 11.3 (3.1) 11.4 (4.6) 11.3 (4.4)

Fish intake (g/day) 56.7 (69.0) 50.6 (38.5) 49.1 (34.16) 49.0 (63.7)

n-3 PUFAs (%) 7.7 (1.6) 7.1 (1.6) 6.8 (1.7) 6.0 (2.0)

Fasting blood glucose (mmol/L) 4.7 (0.6) 4.7 (0.7) 4.7 (0.7) 4.7 (0.7)

Serum TG (mmol/L) 1.2 (0.9) 1.4 (0.8) 1.7 (1.1) 1.8 (1.4)

Serum HDL (mmol/L) 1.5 (0.3) 1.4 (0.3) 1.4 (0.3) 1.3 (0.3)

Serum LDL (mmol/L) 3.5 (0.8) 3.5 (0.8) 3.6 (0.9) 3.6 (1.0)

Data are mean (SD) for continuous measures and n (%) for categorical measures. TG, triglycerides.
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For b-diversity, GLA and AA significantly
(P , 0.01) contributed to dissimilarities in
gut microbiota composition at the genus
level (Supplementary Table 14). Specifically
for GLA, the gut microbiota composition at
genus level was different across quartile
groups of GLA concentrations (Supplemen-
tary Table 15), with P 5 0.006 for com-
parison between Q1 and Q4, as visualized
in Fig. 1C, for example.

Cross-Sectional Association of Gut
Microbiota Diversity With Type 2
Diabetes
Patients with type 2 diabetes had a lower
a-diversity represented by observed OTUs,
Shannon diversity index, Simpson index,
and Chao index compared with partic-
ipants without type 2 diabetes (Fig. 1B
and Supplementary Table 16). We also
found that the overall b-diversity was
different between participants with and
without type 2 diabetes (Fig. 1D and Sup-
plementary Table 17).

Taxonomic Profiles of Gut Microbial
Community in Different Levels of GLA
We then focused on exploring gut genera
potentially underlying the association be-
tween GLA and incident type 2 diabetes.
At the genus level, the gut microbiota of
participants within Q1 and Q4 of GLA was
both dominated byBacteroides, while the
relative abundance of Bacteroides was
significantly higher in the Q4 group (P5
0.016).We also identifiedRothia, [Eubac-
terium], and Coprococcus enriched in par-
ticipants with high GLA levels (Q4) using
the LDA method (Fig. 1E). We found sev-
eral overlapping taxonomic biomarkers
enriched in participants without type 2
diabetes and with low GLA level, includ-
ing Butyrivibrio, Blautia, Oscillospira,
Odoribacter, S24-7 other, Rikenellaceae
other, and Clostridiales other (Fig. 1E).
Genus [Eubacterium], S24-7 other, Blautia,
Oscillospira,Odoribacter, Rikenellaceae other,
Coriobacteriaceae other, Faecalibacte-
rium, and Christensenellaceae other were

negatively correlatedwith triglycerides
(Bonferroni-corrected P, 0.05) (Fig. 2). No
correlation was observed for other meta-
bolic trait–microbiota pairs (Supplementary
Table 18).

Association of Dietary n-6 PUFAs With
Incident Type 2 Diabetes and Gut
Microbiota Diversity
Dietary LAwas positively associated with
incident type 2 diabetes (Q4 vs. Q1: RR
1.51; 95% CI 1.09, 2.09) (Supplementary
Table 19). Dietary LA intake was associ-
ated with a-diversity (Chao index), but
notb-diversity (SupplementaryTables20
and 21).

CONCLUSIONS

In the present community-based pro-
spective cohort of a Chinese population,
we found that baseline erythrocyte GLA
levels were positively associated with
incident type2diabetes, independentof
BMI and other potential confounders.

Table 2—Association of erythrocyte n-6 fatty acids with incident type 2 diabetes*

Erythrocyte n-6 fatty acids

Multivariable-adjusted RRs (95% CIs)

Q1 Q2 Q3 Q4 P for trend

LA (C18:2n6) Median (%) 8.11 9.43 10.29 11.41

Number of case
subjects/total
participants

72/682 73/683 65/683 66/683

Model 1 1.00 (Reference) 0.98 (0.73, 1.33) 0.94 (0.69, 1.28) 0.97 (0.71, 1.32) 0.77

Model 2 1.00 (Reference) 1.00 (0.74, 1.35) 0.95 (0.70, 1.31) 0.98 (0.72, 1.33) 0.81

Model 3 1.00 (Reference) 0.93 (0.69, 1.24) 0.93 (0.69, 1.26) 0.91 (0.67, 1.24) 0.59

GLA (gC18:3n6) Median (%) 0.02 0.03 0.04 0.07

Number of case
subjects/total
participants

44/682 61/683 78/683 94/683

Model 1 1.00 (Reference) 1.33 (0.92, 1.92) 1.59 (1.12, 2.26) 1.88 (1.34, 2.64) ,0.001

Model 2 1.00 (Reference) 1.35 (0.94, 1.95) 1.59 (1.11, 2.25) 1.85 (1.31, 2.61) ,0.001

Model 3 1.00 (Reference) 1.22 (0.85, 1.74) 1.43 (1.01, 2.03) 1.72 (1.21, 2.44) ,0.001

AA (C20:4n6) Median (%) 7.73 10.90 12.02 13.41

Number of case
subjects/total
participants

77/682 75/683 68/683 56/683

Model 1 1.00 (Reference) 0.87 (0.64, 1.17) 0.84 (0.62, 1.14) 0.81 (0.59, 1.12) 0.19

Model 2 1.00 (Reference) 0.86 (0.64, 1.17) 0.84 (0.62, 1.14) 0.81 (0.59, 1.12) 0.21

Model 3 1.00 (Reference) 0.89 (0.65, 1.22) 0.96 (0.69, 1.35) 1.00 (0.71, 1.40) 0.85

Total n-6 PUFAs Median (%) 16.76 20.77 22.32 23.97

Number of case
subjects/total
participants

71/682 81/683 63/683 61/683

Model 1 1.00 (Reference) 1.05 (0.78, 1.41) 0.90 (0.66, 1.24) 0.97 (0.70, 1.33) 0.60

Model 2 1.00 (Reference) 1.04 (0.77, 1.41) 0.92 (0.67, 1.26) 0.96 (0.69, 1.32) 0.60

Model 3 1.00 (Reference) 1.02 (0.75, 1.39) 0.98 (0.70, 1.36) 1.05 (0.76, 1.47) 0.83

*Multivariable-adjusted RRs (95% CIs) were calculated for Q2–Q4 of the erythrocyte n-6 fatty acids using Q1 as the reference group using Poisson
regression models. Covariates included in model 1 were age, sex, BMI, and WHR; model 2, model 1 plus education, household income, smoking and
alcohol drinking status, physical activity, total energy intake, and family history of diabetes; andmodel 3 asmodel 2 plus baseline erythrocyte total n-3
PUFAs and fasting glucose. P value for trend was calculated based on per-quartile increase in the corresponding PUFA.
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Proportions of LA, AA, or total n-6 PUFAs
were not associated with type 2 diabe-
tes incidence. Our further investigation
integrating gut microbiota data revealed
that GLA may be associated with type 2
diabetes risk through a mechanism that
varies diversity and composition of gut
microbiota. Our findings suggest that n-6
PUFAs and gut microbiota covary in the
development of type 2 diabetes risk,
highlighting thepresenceofanovelmech-
anismof how fatty acids or gutmicrobiota
influence type 2 diabetes risk. All of the
results support our hypothesis about the
interrelationships among n-6 PUFAs, gut
microbiota, and type 2 diabetes.
Our findings suggest that high circu-

latingGLAmight bea risk factor for type2
diabetes,which is consistentwith several
prospective studies in western countries
(21,22). The null finding for AA in our
present study is also consistent with those
from previous studies (8). The findings for
LA were inconsistent between our study

and previous ones (8). Circulating LA re-
flects habitual consumption of n-6 PUFA,
typically from plant-derived oils. The in-
consistencymay reflect that Europeanand
Chinese populations use plant oils differ-
ently with a combination of different foods.
For instance, Chinese adults may consume
plantoilswithmeat; therefore, thepositive
andnegative effects of thosewould lead to
the null finding for circulating LA. By con-
trast, an American or European population
may use plant oils with vegetables or in a
healthy diet pattern. Such dietary con-
founding might influence GLA findings
little, as GLA is a product of tightly reg-
ulated desaturation of LA, and result in
the consistent findings between studies.

Dietary LA showedpositiveassociation
with type 2 diabetes, which was consis-
tent with the results of circulating GLA.
This is of interest, as there is no direct
correlation between dietary LA and cir-
culating GLA. Circulating GLA is derived
from the metabolism of LA, and the LA

was absorbed from the diet and was
an established biomarker of dietary LA
(23,24). Therefore, circulatingGLA ismainly
determined by the metabolism in the n-6
PUFApathway, but is also indirectly affected
by dietary n-6 PUFA intake. These results
highlight that both diet and metabolism
of the n-6 PUFAs may have important
roles in the etiology of type 2 diabetes.
Taken together, these results suggest
that both dietary n-6 PUFAs and circulat-
ing n-6 PUFAs (i.e., GLA)may be important
factors to consider for the population-level
risk assessment of type 2 diabetes.

Given the putative relationship be-
tween gut microbiome and type 2 di-
abetes, we hypothesized and confirmed
that gut microbiome diversity may play a
role linking n-6 PUFAs and type 2 diabetes
and that n-6 PUFAs may prospectively
affect gut microbiota composition. Our
findings are in line with a randomized
controlled trial in which a-diversity and
Blautia were reduced while Bacteroides

Figure 1—Erythrocyte GLA and gut microbiota covary in the development of type 2 diabetes risk. A: Community richness (observed OTUs and Chao
index) and community diversity (Shannondiversity index and Simpson index) betweenQ1 andQ4of erythrocyteGLA. The box plots feature themedian
(center line), upper and lower quartiles (box limits), and 1.5 times the interquartile range (whiskers). P valueswere calculated for Q4 of the erythrocyte
n-6 fatty acids using Q1 as the reference group using a linear mixed model. B: Community richness (observed OTUs and Chao index) and community
diversity (Shannon diversity index and Simpson index) across type 2 diabetes status. P values were calculated using a logistic regression model. C:
Dissimilarities in gutmicrobiota compositionbetweenQ1andQ4oferythrocyteGLA representedbyunconstrainedprincipal coordinateanalysis (PCoA)
with theBrayCurtis dissimilarity index.Differenceof erythrocyteGLAexplained0.3%of thedissimilarities in gutmicrobiota composition (PERMANOVA,
P5 0.006). D: Dissimilarities in gut microbiota composition across type 2 diabetes status. Type 2 diabetes explained 0.25% of the dissimilarities in gut
microbiota composition (PERMANOVA,P50.001).E: Gutmicrobial taxonomicbiomarkers identifiedby the LDAatQ1andQ4of erythrocyteGLAandby
type 2 diabetes status. T2D, patients with type 2 diabetes; Non-T2D, participants without type 2 diabetes.
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was increased after higher-fat diet inter-
vention (rich in n-6 PUFAs owing to exclu-
sive use of soybean oil) (25). Although we
did not observe higher relative abundance
of Bacteroides in patients with type 2 di-
abetes in our study, Bacteroides has been
found to be more abundant in type 2 di-
abetes in another Chinese population (10).
We found that Butyrivibrio, Blautia,

Oscillospira, and Odoribacter, genera known
to contain a series of butyrate-producing
bacteria, are all enriched in participants
within Q1 of GLA and participants with-
out type 2 diabetes. These bacteria have
been reported to have the ability to use
fructose or glucuronate and were inversely
associated with obesity (26–30). More-
over, in our study, Blautia, Oscillospira,
and Odoribacter were inversely associ-
ated with circulating triglycerides, which
were found to be positively associated
with type 2 diabetes and higher level of
GLA (31,32). Thus, our study suggests that
lower levels of GLA may be correlated with
factors increasing the abundance of these
bacteria and preventing the development
of type 2 diabetes.

The more detailed mechanism behind
these associations remains unclear butmay
be related to chronic inflammation. Accu-
mulating evidence supports the hypothesis
that chronic low-grade inflammation is a
risk factor for the development of type 2
diabetes (33) and that n-6 PUFA may
play a vital role in the regulation of in-
flammation. GLA is produced from LA
by the enzyme delta-6-desaturase and
is further metabolized to dihomo-GLA
(20:3n6),whichundergoesoxidativeme-
tabolism by cyclooxygenases and lipox-
ygenases to produce anti-inflammatory
eicosanoids, such as prostaglandins and
leukotrienes (24). Moreover, imbalance
of the gut microbiota and some specific
microbes have been considered as contrib-
utors for inflammationbygutmicrobiota–
derived lipopolysaccharide (LPS) (34).
The LPS stimulates Toll-like receptors to
influence innate immunity via its inter-
actionwith LPS receptors (i.e., CD14/Toll-
like receptor 4 complex) (35). It can be
proposed that LPS level is regulatedby fat
and fatty acids and associated with insulin
resistance and type 2 diabetes (34,36).

Moreover, the enrichment of inflammation-
related bacteria (i.e., Blautia) (37) in partic-
ipants with lower levels of GLA supports
an important role of inflammation in the
relationship among GLA, gut microbiota,
and type 2 diabetes.

Otherpotentialmechanisms linkingn-6
PUFAs with gut microbiota and type 2
diabetes may be related to gut metabo-
lites such as short-chain fatty acids and
bile acids. As the most abundant bac-
terial fermentationproducts, short-chain
fatty acids (such as acetate, propionate,
and butyrate) played an essential role
in the microbiota–host interaction. GLA
was inversely associated with butyrate-
producing bacteria in the current study.
Depletion of butyrate contributed to the
shift in the inflammatory status, leading
toadysbiosis of glucosemetabolism (38).
Besides, n-6 PUFAs could increase bile
acid secretion from liver (39), which may
act as an important signaling molecule
linking n-6 PUFAs and gut microbiota.
The generated bile acids could be me-
tabolized to deoxycholic acid in the gut,
which could disrupt hepatic endoplasmic
reticulum stress, thereby impairing the
glucose homeostasis (40). The above
postulation about the potential mech-
anism linking n-6 PUFAs, gut microbiota,
and type 2 diabetes may shed light on
several newprevention targets for type 2
diabetes.

Strengths of the current study include
the prospective cohort study design,
which is rarely conducted inprior research
on fatty acid–gutmicrobiota associations,
and the collection and adjustment for a
variety of information, including socio-
demographic, lifestyle, and dietary fac-
tors, anthropometric parameters, and
circulating bloodbiomarkers. In addition,
fatty acid composition in erythrocytes
reflects dietary fat intake over the past
month or two, which may be superior (a
more stable biomarker) than plasma or
plasma phospholipid fraction (23). Sev-
eral limitations merit attention. First,
although we have adjusted for several
potential confounders, due to the obser-
vational nature of the current study, we
are not able to fully exclude the influence
of residual confounding. Second, erythro-
cyte n-6 PUFAs weremeasured at baseline
only and may not represent long-term
status. Changes in dietary intake and
levels of n-6 PUFA biomarkers over time
are likely. Third, fecal samples were only
collected during follow-up but not at

Figure 2—Heat map of the Spearman correlation coefficients between GLA-relatedmicrobes and
10 type 2 diabetes–related traits. The intensity of the colors represents the degree of association
between GLA-related microbes and 10 type 2 diabetes–related traits as measured by the
Spearman correlations. All significant correlations are marked with an asterisk (Bonferroni-
corrected P, 0.05). HOMA-b, HOMA of b-cell function; HOMA-IR, HOMA of insulin resistance;
TC, total cholesterol; TG, triglycerides.
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baseline. Repeated measure of both
circulating n-6 PUFAs and gut micro-
biota or an intervention of n-6 PUFAs
would enable us to characterize bidi-
rectional effects of n-6 PUFA intakes on
gut microbiota and of gut microbiota on
circulating n-6 PUFAs. Nevertheless, our
study fills the gap of the prospective
associations between n-6 PUFA bio-
markers and gut microbiota.
In conclusion, our study suggests that

erythrocyte GLA biomarker is positively as-
sociated with incident type 2 diabetes in
the Chinese population. Gut microbiota
may play an important role in explaining
the findings. The identification of GLA-
related gut microbiota features may
serve as a potential intervention target
for further investigation. The detailed
mechanism behind the association of
GLA with type 2 diabetes risk and gut
microbiota needs further clarification in
the future.
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