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The fatality of road accidents in this era is alarming. According to WHO, approximately 1.30 million people 
die each year in road accidents. Road accidents result in significant socioeconomic losses for people, their 
families, and the country. The integration of modern technologies into automobiles can help to reduce the 
number of people killed or injured in road accidents. Most of the study and police reports claim that fatigued 
driving is one of the deadliest factors behind many road accidents. This paper presents a complete embedded 
system to detect fatigue driving using deep learning, computer vision, and heart rate monitoring with Nvidia 
Jetson Nano developer kit, Arduino Uno, and AD8232 heart rate module. The proposed system can monitor 
the driver’s real-time situations, then analyze the situation to detect any fatigue conditions and act accordingly. 
The onboard camera module constantly monitors the driver. The frames are retrieved and analyzed by the core 
system that uses deep learning and computer vision techniques to verify the situation with Nvidia Jetson Nano. 
The driver’s states are identified using eye and mouth localization approaches from 68 distinct facial landmarks. 
Experimentally driven threshold data is employed to classify the states. The onboard heart rate module constantly 
measures the heart rates and detects any fluctuation in BPM related to the drowsiness. This system uses a 
convolutional neural network-based deep learning framework to include additional face mask detection to cope 
with the current pandemic situation. The heart rate module works parallelly where the other modules work in a 
conditional sequential manner to ensure uninterrupted detection. It will detect any sign of drowsiness in real-time 
and generate the alarm. The system successfully passed the initial lab tests and some actual situation experiments 
with 97.44% accuracy in fatigue detection and 97.90% accuracy in face mask identification. The automatic device 
was able to analyze different situations of drivers (different distances of driver from the camera, various lighting 
conditions, wearing eyeglasses, oblique projection) more precisely and generate an alarm before the accident 
happened.
1. Introduction

According to statistics, driver fatigue plays a critical part in traffic 
accidents, which have become a global concern in recent years [36]. 
Human factors in vehicle collisions or road accidents include drivers 
and other road users or roadside objects contributing to a crash or 
mishap [37]. Examples include the behavior of drivers, visual and au-
ditory clarity, quick decision-making ability, and quick response speed. 
According to a study based on British and American collision statis-
tics, driver error, tiredness, alcohol consumption, and other human 
variables account for 93 percent of all collisions [1]. So, human fac-
tors are the core reasons behind many traffic accidents. Rather than 
drugs or alcohol, fatigue is four times more likely to cause impairment 
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[2]. Fatigue means feeling abnormally sleepy, decreasing the typical 
efficiency of cognitive functions [38]. Drowsy people may fall asleep 
in inappropriate situations or inconvenient times and make their sur-
rounding situation highly critical. So, analyzing the problem statement, 
it is necessary to integrate modern technology to control road accidents 
due to drivers’ drowsiness. Fig. 1 depicts how weariness is linked to traf-
fic accidents, demonstrating the necessity for a drowsiness monitoring 
system to inform drivers if they become drowsy. When driving for more 
than 8 or 9 hours in a row, the number of accidents climbs rapidly.

The increasing death rates due to fatigued driving are quite alarm-
ing worldwide [39]. The death tolls in South Asian countries such as 
Bangladesh are getting terrible. Several simulation-based attempts to 
identify real-time fatigue in drivers have been constructed and modeled 
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Fig. 1. A graph shows how fatigue is related to vehicle crashes.

by various developers worldwide in recent years. These systems are 
later associated with high-end vehicles such as Volvo, Tesla, Mercedes-
Benz, etc. However, the proposed schemes are out of reach for the 
middle class, particularly in South Asia. Expensive equipment is diffi-
cult to integrate into automobiles in Bangladesh, and high-maintenance 
gadgets are not user-friendly. This study aims to develop a low-cost, 
fully integrated fatigue and face mask detection system. The system 
uses computer vision and heart rate monitoring to identify fatigue and 
face masks, with the demands of South Asian transportation networks 
in mind.

Researchers have taken the following measures to determine the 
drowsiness of drivers, such as (i) vehicle-based measures, (ii) behav-
ioral measures, and (iii) physiological measures [40]. The vehicle-based 
measures include vehicle deviation and position, speed, acceleration, 
and steering wheel movement. The behavioral measures involve eye 
movement, head poses, facial expressions like a yawn, eye blink, and 
others captured by the camera. Finally, Electrocardiograms (ECG), Elec-
tromyography (EMG), and Electroencephalograms (EEG) are examples 
of physiological measurements [3].

The aim of this work is to develop a system that could deal with fa-
tigue driving using multiple input data sources. This integrated system 
is user-friendly, cost-efficient, and easy to use. This system takes input 
data from both the onboard camera and heart rate monitor and works 
independently to ensure system reliability in some extended challenging 
situations. It requires low power to run as it can operate with traditional 
batteries or regular power-banks or even with a DC-to-AC power car in-
verter to never run out of energy. Modern approaches like EAR (Eye 
Aspect Ratio) and mouth openness ratio, model-independent, are uti-
lized to identify tiredness in this research. The point of interest vanishes 
in a critical drowsy state in the circular eyeball detection approach, 
which can sometimes be corrupted [41]. However, in the employed 
EAR and mouth openness approach, the interest points are always in 
the zone and do the work even when the individuals completely close 
their eyes. This system works with any transparent or semi-transparent 
eyeglasses. Even when wearing an eye lens, this system still works typ-
ically. The proposed automatic driver drowsiness identification device 
detects 68 different facial points to detect eye and mouth precisely. In 
the tests, the maximum distance to capture and analyze the state was 
4-5 feet, which is undoubtedly sufficient for any vehicle. So, with this 
system, drivers can drive with complete comfort without noticing the 
camera. This is the first system that integrates EAR, mouth openness 
techniques, and heart rate monitoring for simultaneous drowsiness de-
tection and face mask identification in this new situation during the 
coronavirus pandemic. The system employs a convolutional neural net-
work model to recognize the face mask. The face mask detection model 
is accurate enough to detect any face mask, which has been trained 
with an open-source face mask detection dataset. The integration of 
EAR, mouth openness and heart rate monitoring reduced the chance of 
false results and complete system failure. Both systems are connected 
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with a central alarm system yet independent of their work. It also gives 
the users complete control of comfort and safe drive. Drivers can use 
both modules simultaneously, as they can use anyone for their conve-
nience. The system will still detect the drowsy states with almost the 
same accuracy.

The proposed system implemented in this work initially checks the 
face mask on the driver. When a face mask is worn, the system rec-
ognizes it and identifies drowsiness using the heart rate module. The 
computer vision module begins detecting when the driver removes the 
face mask, and the system receives the required frames to recognize 
the EAR and yawn. If either of these two modules detects any signs 
of drowsiness, the system generates an alarm immediately to keep the 
driver awake. The system can also ignore regular eye blinks and mouth 
openness when speaking specific words, e.g., “wow,” which causes the 
mouth to open as if yawning.

This paper implements an automatic fatigue driving and face mask 
detection system to warn drowsy drivers about potential road accidents. 
The following are the significant contributions to this work:

• An autonomous fatigue driving detection system has been devel-
oped utilizing deep learning, computer vision and heartbeat ob-
servation. Eye and mouth localization through computer vision is 
utilized to detect the states. The necessary values in this detection 
method are computed using a 68-point facial landmarks localiza-
tion.

• An automatic face mask detection system is added using a deep 
convolutional neural network model.

• Diverse real-life circumstances are considered to detect driver 
drowsiness, e.g., different distances of driver from the camera, var-
ious lighting conditions, wearing eyeglasses, oblique projection, 
wrong masks wearing, etc.

• A comprehensive experiment is performed to verify the threshold 
EAR values before using them in the core system.

• The Nvidia Jetson Nano developer kit is used in the fatigue driving 
and face mask detection processes.

• The AD8232 heart-rate sensor is used with an Arduino Uno micro-
controller to measure the heartbeat change during drowsy driving.

• The performance of this embedded system is evaluated in terms of 
accuracy from the achieved real-time experimental data. Finally, 
the features and performance of this paper are compared to other 
existing works.

To the best of our knowledge, the computer vision and heart-rate 
based fatigue driving and face mask detection approaches are imple-
mented on an advanced embedded device, i.e., Nvidia Jetson Nano 
developer kit, for the first time in this work.

Some of the recent works on automatic driver fatigue detection are 
briefly described in Section 2. In Section 3, the required components 
and methods to implement the proposed system are described. In Sec-
tion 4, real-time experiments results and evaluation of the proposed 
automatic device are discussed. Finally, Section 5 comprises the con-
clusion and future works.

2. Related works

Automatic driver drowsiness detection to prevent road accidents and 
fatal deaths has been studied extensively in recent times. The automatic 
techniques to detect driver drowsiness involve complex image process-
ing, computer vision techniques, and deep learning approaches. For 
instance, in [4] and [5], SWM (steering wheel movement) is introduced 
as a vehicular measure to detect drowsiness using an angle sensor. It 
is not always possible to consider the geometric characteristics of the 
road. In developing countries, the roads are too narrow and consist of 
potholes in most cases. So the steering wheel movement varies in terms 
of the road condition. This technology will not be reliable enough to 
detect drivers’ drowsiness in streets with cracked surfaces. Because of 
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these road conditions, the drivers may have to drive differently, and the 
driver’s steering behavior may change according to these unavoidable 
factors. If SWM technology is used to measure the drowsiness of a par-
ticular driver who is driving on such damaged and narrow roads, the 
vehicle’s kinetic energy fails to remain constant, and the steering wheel 
movement changes without being drowsy. In [6], the authors proposed 
a face detection and eye localization method using symmetry for au-
tomatic drowsiness detection. They worked with eye localization and 
direct facial expression as trained data symmetry. Initially, this work 
used facial zone identification for the interest zone and then used eye 
localization to find out the current state of the eyes. Next, the circu-
lar localization system has been utilized for eye state detection, which 
identifies the eyeball of each eye. As long as the eyeball is detected, the 
system considers the driver is awake and working in an active driving 
state. Conversely, when the system fails to detect the eyeball but can 
detect the face in the frame, the system assumes that the driver is in a 
drowsy state and is not in active driving condition.

In [8], the authors proposed a localized edge detection of required 
zones from the face. The eye and mouth are localized using the circu-
lar edge of localizing zones. The closed-eye and open-mouth ideas are 
used to detect drowsy states. Consequently, face capture extracts the 
interest zones. Then they used the support vector machine technique, 
also known as the SVM technique, to develop the mechanism for de-
tecting faces. The facial zone was then divided into reduced interest 
zones, including the mouth and both eyes. The proposed system recog-
nizes microsleep periods (short sleep of approximately 2-6 seconds) to 
identify real-time conditions. Edge finding technology-based on Circu-
lar Hough Transform was utilized to detect the circular interest zone in 
the eye and mouth detection. Finally, the authors separated the state 
of their local area into several states. The states of mouth were divided 
into closed, slightly open, and widely available conditions to detect the 
desired drowsiness. B. Mandal and his team used a supervised spectral 
regression (SR) learning approach to develop an automatic fatigue de-
tection system model [9]. The authors created the system specifically 
for bus drivers, facing a unique job challenge in oblique visual projec-
tion by the dome camera module. The authors resolved the issue using 
a fusion approach that combines adaptive quadrature (adaptive inte-
gration) and the most widely used drowsiness metric, “PERCLOS.” The 
authors implemented two sets of eye detection systems for more de-
pendable and accurate eye detection using the dome camera mounted 
on buses, i.e., OpenCV eye detection and I2R eye detection. They de-
veloped their dataset with 23 volunteers, resulting in nearly 1,00,000 
frames from over 230 minutes of video. Finally, the authors attained 
97.1% accuracy for the left eye and 96.7% for the right eye on the train 
set, compared to 87.6% and 83.9% accuracies on the test set for the left 
and right eyes, respectively.

In [16], a 3D-deep convolutional neural network has been used to 
build an automatic driver drowsiness detection system. The authors 
used four different models, viz., Spatio-temporal representation learn-
ing, scene condition understanding, feature fusion, and drowsiness de-
tection. Their proposed model can work the same at different times. 
Using the feature fusion method based on the tensor product approach, 
they retrieved the Spatio-temporal representation and combined it with 
the vectors representing the scene understanding findings. Based on cur-
rent breakthroughs in computer vision disciplines, these challenges are 
efficiently simulated using 3D-DCNN and fully connected neural net-
works. The NTHU drowsy driver database has been utilized to validate 
the performance of the proposed technique. Finally, this work accom-
plished 76.2% overall accuracy for the driver sleepiness detection. In 
[17], W. Zhang et al. built technology for non-intrusive drowsiness 
recognition based on computer vision technology. The authors used 
eye-tracking, image processing, the 7-point Stanford sleepiness, and 
the 9-point Karolinska sleepiness scale. They have used Fisher’s linear 
discriminant to combine the indices and statistics. The tests gave 225 
samples of level 0 (awake), 181 and 158 samples of levels 1 and 2, in-
dicating drowsy and very drowsy conditions, respectively. They have 
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tested with six participants in a high-fidelity driving simulator and fi-
nally attained driver drowsiness recognition accuracy greater than 86%.

Some of the researchers implemented the detection approach to 
smartphone applications. In [11], Y. Ed-Doughmi et al. used a recur-
rent neural network (RNN) to detect fatigued driving. This paper used 
the NTHU-DDD video dataset in RNN model training. The data samples 
were extracted from the video clips of different driving states. The entire 
dataset has 849 video clips of about 7 seconds each. The proposed multi-
layer architecture has six convolutional layers, four max-pooling layers, 
one flatten layer, and two fully connected layers. This system uses a 
smartphone application connected to a web server to alert trusted con-
tacts. Finally, the proposed system provides 92% validation accuracy in 
fatigue driving detection employing the conv3d 3D RNN approach. In 
[14], A. Dasgupta and his colleagues used the percentage of eye closure 
(PERCLOS) method to develop a smartphone-based fatigue detection 
system. The system uses the PERCLOS metric to determine the states of 
the drivers. After violating the PERCLOS threshold, the system measures 
the voice-to-unvoiced ratio through the smartphone’s microphone. The 
system demands an active touch response from the driver to satisfy the 
active state. If no response from the driver is recorded, the system gen-
erates the alarm and sends an SMS to the trusted contacts. The authors 
achieved a 93.33% fatigue state classification.

In some works, the automated fatigue detection task has been de-
ployed in different embedded circuits, e.g., Arduino, Raspberry Pi, 
Nvidia Jetson, etc. For example, in [15], N. Karuppusamy and B. Kang 
used a recursive neural network (RNN), electroencephalography (EEG), 
and gyroscope to determine fatigue driving. They used an EEG sen-
sor to capture the brainwaves related to fatigue states. The Arduino 
Uno microcontroller is used to capture the gyroscope data. Real-time 
frames of drivers are captured with a Basler Ace camera and used in 
the trained RNN model. All three of these methods are used in the final 
classification. Finally, the proposed system achieved 93.91% accuracy 
in identifying the fatigues of the drivers. In [13], A. K. Biswal et al. used 
video stream processing (VSP) to determine the fatigue states of drivers. 
The authors used the eye aspect ratio (EAR) concept to calculate the 
Euclidean eye distance. This system can convey location information 
to trusted individuals and issue alarms. The basic system was built us-
ing a Raspberry Pi 3 Model B. The proposed system achieved 97.1%
drowsiness detection accuracy when tested on ten individuals with and 
without eyeglasses. In [7], the authors proposed an embedded system 
based on deep neural network model compression. This work divided 
the entire driver fatigue detection process into several models and then 
compressed them into usable form with a deep neural network. First, 
the entire face is divided into four models. In the detecting system, the 
facial boundary serves as an initial model. Then the authors made a 
model for the mouth only, which detects the yawns. They separated 
two eyes into two different models for the left and right eyes. Finally, 
the obtained data from the driver’s drowsiness detection network were 
compressed to be implemented on an embedded system of Jetson TK1. 
The authors achieved the best overall performance in terms of accu-
racy, detection time, and frame rate with the VGG-16 based faster 
RCNN deep learning technique. In [12], the authors aim to develop a 
high-performance, robust fatigue driving detection system. They used a 
convolutional neural network (CNN) to train the proposed model. Next, 
they used the Nvidia Jetson Nano developer kit to implement the pro-
posed system into a fully embedded device. The system uses the face 
detection network “LittleFace” and classifies detected faces into two 
states, i.e., small and large yaw angles. Then a specialized regression 
technique, the SDM algorithm, boosts the normal state classification by 
introducing an improved face alignment operation. EAR and MAR de-
termine the fatigue state classification. Their proposed architecture has 
six convolutional layers and three max-pooling layers prior to the out-
put layer. Lastly, the face detection network achieved 88.53% accuracy, 
and the proposed system achieved 89.55% overall accuracy.

This section shows that automatic driver drowsiness detection has 
been performed in many works by using advanced image processing and 
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computer vision techniques. However, only a few researchers imple-
mented this intuitive detection framework on edge computing devices. 
This circumstance has inspired us to deploy the automated driver fa-
tigue recognition system into an embedded device, Jetson Nano.

3. The method and proposed system

The comprehensive and integrated system overview is presented in 
subsection 3.1 of this section, which gives a general understanding of 
the system. Subsection 3.2 introduces and describes the proposed sys-
tem’s software tools. These include general remarks on software tools, 
used versions, and specific applications. This system’s hardware compo-
nents, specifications, and specific uses are then presented in subsection 
3.3. Subsection 3.4 is focused on the depiction of eye aspect ratio and 
yawn detection methods and architectures. Subsection 3.5 is focused on 
the face mask detection methods and convolutional neural network ar-
chitecture on which the model is trained. This subsection also discusses 
the dataset and data preprocessing techniques utilized in this work. Sub-
section 3.6 presents the architecture and methods used in the heart rate 
detection module. Finally, subsection 3.7 summarizes the complete in-
tegration philosophy of the system.

3.1. System overview

After the initial boot-up, the proposed system loads the models and 
captures real-time frames through its onboard camera module. After 
getting the first frame from the real-time captured video, the system 
initiates the face mask detection process. Frames are sent to the trained 
model, and the model then analyzes the data and gives its prediction. 
After taking the predicted values, the system starts its logical proce-
dures. On the other hand, the heart rate module monitors BPM values 
from the beginning. When the driver is wearing a face mask, the system 
detects frames through the camera module, and the heart rate mod-
ule’s results determine the driver’s states. The heart rate module can 
decide the fatigue states independently. When the driver removes the 
face mask, the system gets the desired frames to detect 68 points on 
the driver’s face. The system calculates the eye aspect ratio (EAR) and 
lip distance measurements from the specified eyes and lip points. The 
system classifies the driver’s state by comparing the eye aspect ratio 
and lip distance to established threshold values. Finally, the system ac-
tivates the alarm module when the driver shows drowsiness, generating 
a beep alarm with a 2 kHz signal frequency. The alarm will be active 
as long as the driver returns to the activate state and will stop after 5 
seconds. This frequency range provides an environment that is not con-
ducive to sleep, and the driver quickly returns to an active state. Fig. 2
shows the integrated system flow chart, which depicts the control flow 
of the system outlined in this paragraph.

The Nvidia Jetson Nano developer kit serves as the computer vision 
module’s central piece of hardware. The heart rate module consists of an 
Arduino Uno as the system’s primary controller and an AD8232 heart 
rate sensor to detect heartbeats. The Nvidia Jetson Nano program all 
the models and logic for the computer vision module outlined above. 
The Arduino Uno microcontroller is used to implement the heart rate 
module. Fig. 3 represents the integrated system framework.

The Nvidia Jetson Nano developer kit analyzes the video signal data 
and interprets it using saved models after retrieving it. The rationality is 
then checked, and decisions are made under the program. The Arduino 
Uno collects analog input from the sensor, processes it, and analyzes it 
before deciding. Until the user switches off the system, the entire system 
works iteratively.

3.2. Software tools

This integrated system’s computer vision module uses a wide va-
riety of software tools to analyze the driving states, which have been 
described below:
4

Fig. 2. Integrated system flow chart.

Fig. 3. The framework of the proposed system.

OpenCV [18] is an open-source computer vision and machine learn-
ing library. It is a common infrastructure in computer vision with more 
than 2500 optimized algorithms and lots of built-in functions. In this 
work, OpenCV Python version 4.5.1.48 is employed. This system makes 
extensive use of various powerful computer vision libraries. It was used 
to capture video frames, display output results, draw rectangles, circles, 
and other shapes, convert RGB to grayscale, and a variety of other tasks 
to ensure more accuracy in the system outcome.

Dlib [19] is a modern cross-platform C++ library known for data 
structure handling, machine learning, and image processing. Dlib ver-
sion 19.22.0 is employed in this system for more accurate and consistent 
face detection and as the shape predictor, using a 68-point facial land-
mark detection model.

CMake [20] is an open-source tool for package testing and building 
software. In this work, CMake version 3.18.4.post1 organizes all the 
library packages installed to support the system.

SciPy [21] is a mathematical and scientific tool for the Python-based 
system. The most advanced scientific Python library is SciPy, which of-
fers a practical module for computing the EAR and yawning in this 
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Table 1. The estimated cost, dimensions, and weight of the complete embedded system.
Component Unit Price (in BDT) Quantity Total cost (in BDT) Dimension (mm) Weight (g)
Nvidia Jetson Nano 9,000 1 9,000 100 × 79 × 28 mm 249.5 g
Acrylic case 750 1 750 140 × 100 × 20 mm 100 g
Cooling fan 300 1 300 40 × 40 × 20 mm 40 g
Camera 2,200 1 2,200 73 × 32 × 67 mm 75 g
32GB UHS-1 SD card 1,100 1 1,100 – –
Arduino Uno R3 500 1 500 68.6 × 53.4 mm 25 g
AD8232 sensor 800 1 800 28 × 37 × 3 mm 21 g
16 × 2 LCD 310 1 310 85 × 29.5 × 13.5 mm 35 g
Power bank 800 1 800 130 × 71 × 14.1 mm 228 g
Buzzer 15 3 45 – 1.6 g
Breadboard 55 1 55 165 × 53 × 10 mm 79 g
jumper wires 3 10 30 – –
Subtotal = 15,890 BDT (185 USD) Full system dimension ≈ 170 × 120 × 40 mm Total weight ≈ 880 g
paper. Scipy version 1.4.1 has been used, which provides various valu-
able functions for this system.

NumPy [22] is a Python-based open-source project that makes nu-
merical computing easier. In terms of processing speed, NumPy outper-
forms other Python libraries. This system calculates the eye aspect ratio 
and lip distance using NumPy version 1.18.5. NumPy’s inter-operability 
is its most essential feature.

Imutils package contains valuable functions for image processing. 
These functions are used in this system to process the frames. Imutils 
version 0.5.4 is incorporated in this system.

Keras is a Python interface to an open platform framework for neural 
networks. It is served as the interface for TensorFlow. Keras version 
2.6.0 is used to train the face mask detection of this system.

Scikit-learn is a Python-based machine learning library that is sim-
ple and efficient for data analysis. It is developed to interact with 
the Python numerical and scientific libraries NumPy and SciPy. It in-
cludes SVMs, random forests, gradient boosting, k-means, and DBSCAN, 
among other classification, regression, and clustering techniques. It is 
used to build the face mask classifier of the proposed system.

The Arduino Integrated Development Environment (IDE) is a cross-
platform application written in C and C++ for Windows, macOS, 
and Linux [23]. It is used to write and upload programs to Arduino-
compatible boards. This tool is used to write the heart rate detection 
codes and upload the codes onto the board.

The PyCharm Community Edition 2020.3.5 is used as an IDE for 
Intel chipset machines run on Windows OS.

3.3. Hardware components

Nvidia Jetson [24] is a family of embedded computing boards. 
Nvidia’s Tegra processor (or SoC) includes an ARM-64 architecture cen-
tral processing unit in the Jetson TK1, TX1, and TX2 models (CPU). 
Jetson is a low-power system that helps machine learning and computer 
vision applications run faster. This system uses the Jetson Nano devel-
oper kit, which has 128 core Nvidia Maxwell GPU, Quad-core ARM A57 
1.43GHz processor, 4 GB 64-bit LPDDR4 RAM with 25.6GBps trans-
fer speed. All of these high-end specifications consume only 5 watts of 
power. As a result, this developer kit is ideal for AI applications. This 
serves as the computer vision module’s central hardware unit.

Logitech C270 HD WEBCAM is used as the camera module. It cap-
tures real-time images in 720 pixels and 30 fps widescreen format. The 
module has a 55-degree field of view and auto light correction that 
helps the system get to a perfect frame. It has a firm mounting option 
and 5 feet long cable that helps place the camera module in suitable 
places. This camera module captures real-time frames and sends them 
to the core program in the Nvidia Jetson Nano developer kit.

Arduino Uno R3 is used in this work for the heart rate module’s 
controller. Arduino Uno is a microcontroller board with 14 digital I/O 
pins and six analog inputs. It is widely used to control and run electronic 
and IoT devices globally.
5

AD-8232 [25] heart rate measurement kit is used to measure the 
heartbeat in this system. This heart rate measuring kit has an inbuilt 
noise reduction chip to detect and deduct the noises while measuring 
the heart rate.

Liquid-crystal displays (LCDs) are flat-panel displays that modulate 
light using liquid crystals and polarizers. A 16 × 2 LCD module displays 
the real-time heart rate.

A wired 2,000 Hz electronic buzzer alarm is used to generate alarms 
in this system. It is built with ABS (Acrylonitrile butadiene styrene) 
material, and the operable voltage is 5V. It generates a 2 kHz beep 
sound that was required by the system.

Baseus CRNBQ-01 in-car DC-to-AC power inverter is used to power 
the Nvidia Jetson Nano with the barrel jack input. This inverter uses DC 
power from the car and generates 5V/5A power suitable for the Nvidia 
Jetson Nano developer kit.

A 10,000 mAH power bank of Xiaomi is used to power the Arduino 
Uno. An Arduino Uno takes almost 500 mAH to run for 2 hours and 
40 minutes [26]. So, a 10,000 mAH power bank can easily power the 
Arduino Uno for continuous 53 hours approximately.

Finally, the expected cost, size, and weight of the entire embedded 
system are shown in Table 1. All of the components were purchased in 
November 2021 from the local market in Dhaka, Bangladesh.

3.4. EAR (eye aspect ratio) and yawn detection

The EAR (eye aspect ratio) is a metric that determines eye openness 
or closeness. The proposed system uses the eye aspect ratio [27] to de-
termine the active and fatigue or sleeping states. The EAR is computed 
using the Euclidean vertical and horizontal distance between the upper 
and lower eyelids. The EAR value of an open eye is higher than that of 
a closed eye. The system uses the percentage of eye closure (PERCLOS) 
[28] metric values to measure the alertness of drivers. PERCLOS is a fa-
tigue detection metric that calculates eye closure rate over the pupil in 
real-time. It is established on slow eyelid closures or drops rather than 
regular eye blinks. This approach can ignore regular eye blinks and pre-
cisely detect sluggish eyelid closures or eyelid drops caused by fatigue 
driving using the PERCLOS measurement.

The complete EAR and yawn detection process consists of several 
steps. The system recognizes specific parts on a face to calculate the eye 
aspect ratio and lip distance. Before the system can detect the points, it 
first detects the faces. Face detection includes head and shoulder detec-
tion. Thus, the sequential process involves head and shoulder detection, 
face localization, eye and lip localization, point detection, and finally, 
the eye aspect ratio and lip distance calculation.

3.4.1. Face detection

The first step of the proposed driver drowsiness identification system 
is to detect faces using the onboard camera module. Here, the camera 
works as an input device to capture the image of the driving person. The 
system can quickly detect faces from a live video stream using computer 
vision’s most famous libraries, OpenCV and Dlib. Grabbing the frames 
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Fig. 4. A generic face recognition system.

Fig. 5. An overview of HOG algorithm for human detection [29].

from the video stream is a part of face extraction. Fig. 4 shows a generic 
face recognition process. This method starts from the head and shoulder 
detection then gradually to the face recognition. This process eliminates 
the background from the particular image and ignores any other foreign 
particle apart from the face region. Dlib and OpenCV both have frontal 
face detection capability. This system uses the Dlib library package of 
Python to detect the driver’s face from the video stream input.

There are two different methods of detecting faces built into the Dlib 
library.

• Using HOG + Linear SVM face detector.
• Using Max margin (MMOD) CNN face detector.

In this work, the “HOG + Linear SVM face detector” has been used 
to give computationally accurate and efficient results. In [29], a human 
detection algorithm is presented that had efficient and excellent results. 
This detection process is represented by a dense grid of oriented gradi-
ents (HOG) histograms. This recognition method is powerful enough to 
classify human faces using a linear support vector machine (SVM) ap-
proach. Fig. 5 shows an overview of the detection process. In order to 
use the HOG + Linear SVM method for face detection with the help of 
Python, Dlib’s function, “dlib.get_frontal_face_detector()” has been used 
in this work.

3.4.2. Face localization

After successfully detecting the face, the system localizes the de-
tected face. Face landmarks are detected as part of the face localization 
process. The detection of facial landmarks is a subset of picture shape 
predictors. The facial landmarks of the face region are listed below:

• Eyes
• Eyebrows
• Lips
• Nose
• Jawline

After localizing these landmarks on the face region, one can eas-
ily extract the eye region by the particular landmarks located around 
the eyes using the shape predictor method. In order to assist the ma-
chine learning algorithm, the Dlib library was written in C++. The 
algorithm returns 68 distinct characteristic points for each individual 
in the provided frames using the “dlib.shape predictor” (“shape predic-
tor 68 landmarks.dat”) function [30]. This article discusses how to get 
the frames using the “dlib.get_frontal_face_detector” function. In [31], 
a semi-automatic process was introduced for the landmark points, and 
that article presented and analyzed the results of different 300 faces in 
“The Wild Challenge (300-W)”. It was the first facial landmark chal-
6

Fig. 6. The 68 landmark facial landmarks coordinate from the iBUG-300W 
dataset [31].

Fig. 7. Open and closed eyes with automatically recognized landmarks with 
EAR drop graph.

lenge with existing methods compared. Fig. 6 shows the detected 68 in-
dividual landmark points with specific numbers. These landmark points 
are used to calculate the eye aspect ratio and the lip distance in this 
research.

3.4.3. EAR and lip distance calculation

The eye aspect ratio (EAR) is calculated with the help of vertical 
distance and horizontal distance of both left and right eye landmarks. 
Fig. 7 shows the landmark points of an eye. These six points are the gen-
eralized points to calculate the EAR. Point P1 and point P4 are generally 
considered as the horizontal points. Points P2, P3, P5 and P6, these four 
points are considered as vertical measurement points of an eye.

According to the points in Fig. 7, the vertical distance of an eye is 
calculated as:

𝑉𝑊𝑒𝑦𝑒
= ||𝑊𝑃2

−𝑊𝑃6
||+ ||𝑊𝑃3

−𝑊𝑃5
|| (1)

In (1), the vertical and horizontal distances are expressed as VWeye

and HWeye
, respectively, and WPi

denotes the point’s weight. Conversely, 
the horizontal distance of an eye can be found as:

𝐻𝑊𝑒𝑦𝑒
= ||𝑊𝑃1

−𝑊𝑃4
|| (2)

Next, with the help of (1) and (2), the eye aspect ratio is calculated. 
The equation for EAR is represented by (3) as:

𝐸𝐴𝑅 =
𝑉𝑊𝑒𝑦𝑒

2𝐻
(3)
𝑊𝑒𝑦𝑒
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Fig. 8. Eye landmarks and lip landmarks.

68 distinct points, as in Fig. 6, were determined with the face local-
ization process. Eye and lip landmark points will be used to compute 
the EAR and lip distance. Fig. 8 shows the meticulous eye and lip land-
marks from all 68 points.

The EAR is calculated separately for both left and right eyes. Each 
eye has six distinct landmark points from the face localization, as de-
picted in Fig. 8. For the left eye the weights of the distinct points are, 
[WP37

, WP38
, WP39

, WP40
, WP41

, WP42
]. For the right eye the correspond-

ing points are, [WP43
, WP44

, WP45
, WP46

, WP47
, WP48

]. Consequently, the 
EAR equation for the left eye can be found as:

𝐸𝐴𝑅𝑙𝑒𝑓𝑡 =
||𝑊𝑃38

−𝑊𝑃42
||+ ||𝑊𝑃39

−𝑊𝑃41
||

2||𝑊𝑃37
−𝑊𝑃40

|| (4)

The EAR equation for the right eye is,

𝐸𝐴𝑅𝑟𝑖𝑔ℎ𝑡 =
||𝑊𝑃44

−𝑊𝑃48
||+ ||𝑊𝑃45

−𝑊𝑃47
||

2||𝑊𝑃43
−𝑊𝑃46

|| (5)

In (4) and (5), 𝑊𝑃𝑥
denote corresponding weights of various eye 

landmark points. An extensive experiment in different lighting condi-
tions has been carried out to determine the perfect threshold values 
of the EAR for the active, drowsy and sleepy states classification. Four 
male volunteers participated in this study, and their ages ranged from 
23 to 29. Informed consent was obtained from the participants. The vol-
unteers acted as if they were drowsy or sleeping to get the data. Fig. 9
demonstrates the experiment’s EAR values’ range for active, fatigue, 
and sleep states. The EAR values lie between 0.38-0.30, 0.255-0.18, and 
0.155-0.03 for active, fatigue, and sleep states, respectively. The experi-
ment produced a non-overlapping graph, which aids in determining the 
boundary for all three states’ classification.

With the help of this graph, the threshold range (THrange) was deter-
mined. The range is,

𝑇𝐻𝑟𝑎𝑛𝑔𝑒 =
⎧⎪⎨⎪⎩
𝐸𝐴𝑅 ≥ 0.28 ;𝐴𝑐𝑡𝑖𝑣𝑒
0.17 <𝐸𝐴𝑅 ≤ 0.27 ;𝐹𝑎𝑡𝑖𝑔𝑢𝑒
𝐸𝐴𝑅 ≤ 0.17 ;𝑆𝑙𝑒𝑒𝑝

(6)

Experimental results confirm that, on average, a regular eye blink 
takes 100-300 ms [10]. In this work, we used 1000 ms or 1 second of 
time rate to avoid normal eye blinks for EAR-based fatigue detection. 
The proposed system detects drowsiness when the EAR value, as ex-
pressed in (6), crosses the threshold for a continuous period of 1000 ms.

Lip distance is used to classify the yawn, another form of fatigue 
sign. Interested points to calculate the lip distance are shown in Fig. 8
as “Lip landmark points.” The distance is calculated by subtracting the 
7

Fig. 9. Range of EAR values in all three states.

Fig. 10. Top and lower lips landmark points.

mean of the top lip weights from the mean of the lower lip weights. 
Fig. 10 shows the distinct points of both top and lower lips. It is worth 
mentioning that, the top lip and lower lip both contain eight distinct 
points each.

The mean of each lip is calculated by adding the weights of those 
points together. Equation (7) is used to sum up all of the top lip’s inter-
esting point weights.

𝑇 𝑜𝑝𝑙𝑖𝑝𝑊 =
53∑
𝑖=50

𝑊𝑃𝑖
+

64∑
𝑖=61

𝑊𝑃𝑖
(7)

Equation (8) is used for summing all the respective point weights of 
the lower lip.

𝐿𝑜𝑤𝑒𝑟𝑙𝑖𝑝𝑊 =
59∑
𝑖=56

𝑊𝑃𝑖
+

68∑
𝑖=66

𝑊𝑃𝑖
(8)

Next, the mean of top and lower lips is calculated as:

𝑇 𝑜𝑝𝑙𝑖𝑝_𝑚𝑒𝑎𝑛 =
𝑇 𝑜𝑝𝑙𝑖𝑝𝑊

8
(9)

𝐿𝑜𝑤𝑒𝑟𝑙𝑖𝑝_𝑚𝑒𝑎𝑛 =
𝐿𝑜𝑤𝑒𝑟𝑙𝑖𝑝𝑊

8
(10)

Finally, the lip distance is measured as:

𝐿𝑖𝑝𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ||𝑇 𝑜𝑝𝑙𝑖𝑝_𝑚𝑒𝑎𝑛 −𝐿𝑜𝑤𝑒𝑟𝑙𝑖𝑝_𝑚𝑒𝑎𝑛|| (11)

In (11), 𝑇 𝑜𝑝𝑙𝑖𝑝_𝑚𝑒𝑎𝑛 and 𝐿𝑜𝑤𝑒𝑟𝑙𝑖𝑝_𝑚𝑒𝑎𝑛 are obtained from (9) and (10), 
respectively.

3.5. Face mask detection

People use face masks to protect themselves after the new coron-
avirus disease outbreak. With everyone being asked to wear masks in 
public and crowded places, e.g., religious sites, public transport, air-
ports, etc., there has been a need to detect the face mask automatically 
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Fig. 11. Illustration of data preprocessing steps.

using artificial intelligence and computer vision techniques. The pro-
posed system uses face mask detection as an additional feature to cope 
with this pandemic situation. The system uses a convolutional neural 
network (CNN) to train the face mask classifier. The proposed frame-
work for the face mask classifier is separated into three modules, where 
the first module is “Data Preprocessing,” the second module is “Model 
Training,” and the third module is “Retrieval.” We analyzed the data 
and transformed it into a comprehensible form for the training module 
in data preprocessing. This classifier distinguishes between two classes, 
i.e., “with mask” and “without a mask.”

3.5.1. Dataset

The open-source dataset used for training the model was acquired 
from Kaggle [32]. There are 5,988 images in the dataset, divided into 
two groups, “with mask” and “without a mask.” There are 2,994 photos 
in each class. Following a study of the data samples, we realized that 
there were enough samples for model training but not enough samples 
to identify occlusion. Then, to deal with occlusions, we added some 
more instances. We created the added samples on our own to deal with 
the occlusion. In this paper, two videos have been employed to extract 
frames for samples. We used an open-source video-to-JPG converter to 
extract the frames. This resulted in the total dataset consisting of 6,200 
samples. Then we split the resulting dataset into train, test, and valida-
tion datasets. As a result, we end up with 4,464 training samples, 620 
test samples, and 1116 validation images, all belonging to two different 
categories for final training.

3.5.2. Data preprocessing

The dataset we used to train our model had 6,200 images after the fi-
nalizing steps. In both classes, all of the samples were color images with 
128×128 pixels in size. They had three channels, red, green, and blue. 
The dataset folder had two sub-folders to denote the two distinct classes. 
We first retrieved the subfolder categories and added numerical labels 
in this preprocessing module. The samples were then converted from 
color to grayscale images. The channel size was lowered from three to 
one, and the feature vector contained far fewer elements than color im-
ages. The feature vector for a single 128 × 128 color image has 49,152 
elements. A single 128 × 128 grayscale image shrinks the feature vector 
element size from 49,152 to 16,384, which is three times less than the 
color image. The cv2.COLORBRG2GRAY function from OpenCV [18] 
transformed the color image to grayscale. We inserted the numerical 
values of gray images into NumPy [22] arrays. We added the equiva-
lent target vector to our feature vector. Then finally saved the feature 
and target vectors for the “Model Training” module. Fig. 11 illustrates 
the visual representation of the utilized data preprocessing module.
Fig. 12. Architecture of the customiz
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3.5.3. Model training

In this work, a customized convolutional neural network with Ten-
sorFlow on the backend has been used for the model training of face 
mask detection. The convolutional and max-pooling layers can cope 
with random distortion and translation in the convolutional neural net-
work. Additionally, the max-pooling layers can simplify the process by 
offering abstraction for the objects in the pooling. The input layer was 
a set of grayscale images, all resized in 128 × 128 pixels in one single 
channel. The input layer is then processed with six successive convo-
lutional and four max-pooling layers. The first convolutional layer had 
64 filters of size 3×3, and the max-pooling layer filter is of size 2 × 2. 
Then the applied second, third and fourth convolutional layers had 128 
filters of size 3 × 3, and the max-pooling layer filter is 2 × 2. Finally, 
the sixth convolutional layer had 512 filters of size 3 × 3, and the max-
pooling layer filter is of size 2 × 2. We incorporate Rectified Linear Unit 
(ReLU) and 𝑡𝑎𝑛ℎ as the activation functions between each convolutional 
and max pooling frameworks. After the fourth max-pooling layer, we 
introduced a layer in the network to flatten the output of the last max-
pool layer and then passed it onto the two fully connected dense layers. 
These dense layers had 325 neurons. The activation function was the 
ReLU. Before the output layer, we had a final dense layer using the soft-
max activation function. We used Adam optimizer categorical loss and 
accuracy as the cross-entropy measure to train the final network during 
network training. The architecture of the employed customized CNN 
network is shown in Fig. 12. It is interesting to note that, the number 
of layers and the hyperparameters of the employed customized CNN 
framework have been selected using the validation subset of images of 
the dataset [32].

3.5.4. Retrieval

In the retrieval module, we use the pre-trained deep neural network 
classifier that we trained and saved in the previous training module to 
compare and classify unseen frames provided by the user. This module 
captures the real-time video frames as the user input. Then it passes 
those frames to the loaded pre-trained classifier. Next, the pre-trained 
classifier subsequently classified each frame, delivering the results to 
this retrieval module. The numerical class values are then decoded, and 
the actual text label is added to each frame by this module. Finally, the 
labeled frame is shown in real-time as predicted results for each frame. 
The faces are detected in a rectangle box in the output frame, and the 
predictions are displayed in text forms. This module uses OpenCV [18] 
to capture video frames from the input device and display the output 
on the user’s screen. Fig. 13 illustrates the abstraction of the retrieval 
module of the utilized sketch-based image retrieval system.

3.6. Heart rate detection

The number of heartbeats in a minute is known as heart rate or 
heartbeat per minute (BPM) [42]. The heartbeat is often above a thresh-
old value while awake and fully active. The type of exercise usually 
dictates a healthy person’s heart rate [43]. In a fatigue or sleeping con-
dition, a person’s heart rate is lower than in an awake or active state 
[44]. This system detects fatigue by analyzing any drop in heartbeats 
below the threshold. HRV (heart rate variability) is observed from the 
interval of RR in an electrocardiogram (ECG). The ECG signal shows 
ed convolutional neural network.



A. Rahman, M.B.H. Hriday and R. Khan Heliyon 8 (2022) e11204
Fig. 13. Illustration of the Retrieval Module.

Fig. 14. R peaks and RR interval between two successive R-waves.

different results during stress and fatigue. Fig. 14 shows the R-peak of 
the QRC signal on the electrocardiogram. It also shows the RR interval, 
which is the interval between two successive R-waves.

The AD8232 heart rate sensor used in this work picks the time delay 
in milliseconds between two successive R-peaks, which means the time 
of a RR interval. The sensor eliminates noise from the signal and then 
detects the RR interval in milliseconds. The module controlling the core 
program in Arduino Uno then extracts the time signal and converts it 
into BPM, as shown in Fig. 3. The BPM can be calculated by dividing a 
minute with the RR interval in the same unit. The formula to calculate 
the BPM from the AD8232 heart rate sensor’s signal is expressed as:

𝐵𝑃𝑀 = 60000
𝑆𝑒𝑛𝑠𝑜𝑟𝑠𝑖𝑔𝑛𝑎𝑙_𝑖𝑛_𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠

(12)

The heart rate sensor gives a signal in milliseconds. One minute is 
equal to 60,000 milliseconds. That is why the formula divides 60,000 by 
the analog signal from the sensor to calculate the real-time bpm in (12). 
This system uses a 500-millisecond delay interval to avoid unwanted 
noises between two R-peaks. So, for the proposed system with a 500 ms 
delay time, the heart rate equation becomes:

𝐵𝑃𝑀 = 30000
𝑆𝑒𝑛𝑠𝑜𝑟𝑠𝑖𝑔𝑛𝑎𝑙_𝑖𝑛_𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠

(13)

According to (13), this system requires 30,000 as the numerator of 
the formula to eliminate the 500-millisecond delay time. Fig. 15 demon-
strates how the amplitude of the ECG graph dramatically decreases 
when recorded in a fatigue condition compared to the awake state.

There is a clear difference in heart rate between active and fatigued 
states. The data of the BPM study of male and female drivers’ heart 
rates for active and fatigue states are shown in [34]. Table 2 shows the 
results of the BPM study on male and female drivers’ heart rates.

As per Table 2, the highest BPM value in the fatigue state is 65. 
It does not overlap with the active state for either males and females. 
Hence, 65 BPM can be treated as the threshold value for classifying 
fatigue states. Accordingly, the threshold values for heart rate detection 
of active and fatigue states is determined as:

𝑇𝐻𝐻𝑒𝑎𝑟𝑡_𝑅𝑎𝑡𝑒 =

{
𝐵𝑃𝑀 ≥ 68 ∶𝐴𝑐𝑡𝑖𝑣𝑒
𝐵𝑃𝑀 ≤ 67 ∶ 𝐹𝑎𝑡𝑖𝑔𝑢𝑒

(14)

Finally, this system uses 67 as the threshold value to get more flexi-
bility, which has been expressed in (14).
9

Fig. 15. ECG graphs of active and fatigue states.

Table 2. BPM analysis of male and female drivers.
States Male Female
Active 75 < BPM < 100 70 < BPM < 95
Fatigue 50 < BPM < 65 45 < BPM 63

Fig. 16. Schematic diagram of the complete embedded system.

3.7. Fusion

The embedded system is comprised of sections 3.4, 3.5, and 3.6. The 
three sub-modules of this comprehensive embedded system are ear and 
yawn detection, face mask detection, and heart rate monitoring. The 
complete schematic diagram of the system is shown in Fig. 16.

Fig. 17 shows the complete heart rate module with all hardware 
components. This module has individual power sources and is entirely 
independent of classifying the states.

Fig. 18 shows the complete computer vision module of this system. It 
contains the Nvidia Jetson Nano developer kit with a cooling unit, one 
webcam, and one 5V-4A barrel jack adapter to ensure constant power 
to the system.

Fig. 19 shows the general control flow of the embedded system. The 
actual control flows from system initialization to state detection and 
alarm generation are shown in this illustration.
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Fig. 17. Complete heart rate module with all the components.

Fig. 18. Entire computer vision module with all the components.

Fig. 19. Embedded system’s control flow.

Fig. 20 depicts the complete embedded system combining the heart 
rate sensor and computer vision module. The reason behind this fusion 
is to build a reliable, flexible, and durable system that can overcome 
some system failures. The system does not get the required frames to 
localize the face when the driver wears a face mask. At that period, 
the heart rate module can successfully classify any signs of fatigue from 
the BPM values. The heart rate module can run for approximately 53 
hours without being recharged. That is considered to be enough driving 
time to charge the module. However, the computer vision module takes 
power from the car’s battery using the DC-to-AC power inverter and can 
constantly operate until the vehicle is cruising. The Nvidia Jetson Nano 
10
Fig. 20. Complete embedded system.

is attached with a cooling fan to deal with the heat so that it does not 
stop. Finally, the proposed driver drowsiness detection system achieved 
more reliability and flexibility in many critical conditions with these 
fusions.

4. Experiments and evaluation

In this work, the authors focus on fatigue detection in drivers with 
the help of computer vision and heart rate monitoring technology. We 
have introduced face mask detection as an additional feature in this 
pandemic circumstance. This system’s precision and reliability are es-
sential since it helps to provide a safe driving environment. At every 
stage of the system’s design approach, the authors focused on accuracy 
and reliability. The authors performed various experiments on the sys-
tem after finalizing the design and completing the construction of the 
proposed automatic device. Several lab tests and real-world vehicle tests 
are among the experiments. Experiments were carried out on Windows 
machines with Intel chipset and the Nvidia Jetson Nano developer kit. 
The specifications of the desktop PC and Jetson Nano are illustrated in 
Table 3. Eight participants enrolled in the experiments, six of whom 
were male, and two were female. Experiments were conducted under 
various lighting conditions to assess the accuracy and reliability of the 
system in a variety of challenging scenarios. The system was tested at 
varying distances and projections, apart from diverse lighting condi-
tions. The system was tested from two feet to 7 feet distance range, 
segmented into three parts. Segment I was a 2 ft. to 3 ft. distance, seg-
ment II was a 4 ft. to 5 ft. distance, and the last segment was a 6 ft. to 7 
ft. distance. The ranges were picked from open-source car data. For ev-
ery large-scale vehicle on the market, seven feet is considered sufficient 
distance from the dashboard and driving seat’s position. The camera 
module was tested in an oblique projection perspective to guarantee 
placement anywhere on the dashboard. As a result, the system can clas-
sify a driver’s state from a wide variety of distances, ranging from 2 feet 
to 7 feet, and efficiently classify states in oblique projection. The sys-
tem was also tested with and without eyeglasses, ensuring that drivers 
who wear glasses will have no issues utilizing them. The experiments 
yielded convincing results, and the system is now ready to use.

The computer vision module’s experiments and evaluation are dis-
cussed in Section 4.1. Section 4.2 discusses the experiments and eval-
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Table 3. System specification used in the experiments.
Desktop Computer Nvidia Jetson Nano

CPU Intel core i7-7700 with 3.60GHz Quad-core ARM Cortex-A57 MPCore
GPU GeForce GTX 1060 6GB GDDR5 Nvidia Maxwell architecture, 128 CUDA 

cores
RAM 16 GB 4 GB
OS 64-bit Windows 10 Pro Linux4Tegra, based on Ubuntu 18.04
Storage 240GB M.2 SATA SSD 6Gb/s 32 GB UHS-1 card

Fig. 21. The training learning curve of the CNN architecture.

Table 4. Model accuracy and loss for train, 
test, and validation set.

Sets Train Dev Test
Accuracy 98.69% 98.57% 97.90%
Loss 3.83 3.61 12.18

uation of the heart rate module. Finally, the overall performance and 
system comparisons are evaluated in Section 4.3.

4.1. Experiments and evaluation of computer vision module

The computer vision module uses a convolutional neural network 
for face mask detection. The eye aspect ratio (EAR) and lip distance 
computation are applied for the driver’s state classification. The eye 
aspect ratio and lip distance are generated using the 68 facial land-
marks detected by the Dlib shape predictor. This module was tested 
on both Windows computers with Intel chipset and the Nvidia Jetson 
Nano developer kit. Table 3 shows the system specifications used in the 
experiments.

4.1.1. Face mask experiments and evaluation

Face mask detection uses a customized convolutional neural net-
work in this work. The training of the network was conducted using 20 
epochs. Fig. 21 shows the training learning curve of the architecture. 
The rise in the accuracy of both the train and validation set is observed 
in the curves. The train-validation-test split was 80:10:10, respectively. 
So, the test size was 10%. The authors decided to run 18 epochs for 
the training. The average epoch time was 143 seconds, where the max-
imum epoch time was 145 seconds, and the lowest was 140 seconds. 
After ten epochs, the validation loss began to rise. The validation loss 
was the training monitor. As a result, the training was halted. The best 
outcome in terms of accuracy and loss trade-offs between train sets and 
validation sets was Model 10, which was chosen.

Table 4 shows the accuracy of the CNN model for train, validation, 
and test set. According to this table, the test accuracy of the proposed 
CNN architecture is 97.90%.

Next, the domain adaption technique is applied to evaluate the per-
formance of the face mask detection model, where different sources of 
datasets are employed for training and testing the proposed system. The 
customized CNN model has been trained by the source dataset [32] and 
11
Fig. 22. Training and testing curves for domain adaption technique.

Fig. 23. Successful predictions of face mask detection model in varying distance 
and with or without eyeglass.

finally, it has been evaluated by the target images of [33]. Training and 
testing accuracy and loss with the change of epochs for domain adap-
tion technique have been depicted in Fig. 22.

Fig. 23 shows the trained face mask detection model’s successful 
predictions at varying distances. Various masks were evaluated, and 
the model successfully predicted them. The model was tested from 2 
ft. to 7 ft. distance range and successfully predicted the face mask. The 
system can detect a wide variety of face masks. Even if the person wears 
eyeglasses, it can detect the face mask.

The application of this system demands prediction in oblique pro-
jection. So, an oblique projection test was performed, and the model 
showed satisfactory results in these assessments. Fig. 24 shows the suc-
cessful prediction of the face mask model in oblique projection.

This system is capable of detecting wrongly worn face masks. Fig. 25
shows wrongly worn face mask is being classified as no mask scenarios.

The face mask model was called into question in a variety of sce-
narios. The system was sorely tested in a vehicle by the volunteers. 
Fig. 26 depicts the successful identification of a face mask in a real-
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Fig. 24. Successful predictions of face mask detection model in oblique projec-
tion.

Fig. 25. Successful predictions of wrongly worn face mask.

Fig. 26. Successful predictions of face masks in real-life scenarios.

world experiment. Here the experiments were performed in varying 
lighting conditions.

The primary usable system is fully embedded, and the Nvidia Jet-
son Nano deploys the computer vision module in this research. Next, 
the face mask model was also deployed in Nvidia Jetson Nano. Fig. 27
shows the successful detection of the face mask with the Nvidia Jetson 
Nano developer kit.

4.1.2. Fatigue and sleep detection experiments and evaluations

The system can detect different types of face masks. Even if the per-
son is wearing eyeglasses, it can identify the face mask. The system 
is designed to classify the three states of a driver. They are the active 
12
Fig. 27. Successful predictions of face mask with Nvidia Jetson Nano.

Fig. 28. States classification from a regular distance.

state, the fatigue state, and the sleeping state. Yawn detection is also 
classified as fatigue state detection. The drowsiness detection system 
has passed through several experiments with varying lighting condi-
tions, distances, and projections. These experiments were performed on 
a Windows desktop computer and an Nvidia Jetson Nano, similar to face 
mask detection. Some real-life scenarios were experimented with by the 
volunteers. Fig. 28 shows the state’s classification of the computer vi-
sion module. The system can successfully classify all three states.

The same experiment was carried out for varying distances, just as 
the face mask model was assessed. Fig. 29 shows the experimental re-
sults where the distance varied from 3 feet to 7 feet. The results were 
satisfying and the system classified all the states accurately.

This system can classify all the states accurately, even if the person is 
wearing eyeglasses. At various distances, an experiment with eyeglasses 
was conducted. The system successfully classified all the states from 
even a 7-foot distance with the eyeglasses. Fig. 30 shows the results 
from an eyeglass test for varying distances.

As the application demands oblique projection, this state’s classifi-
cation was tested on oblique view projection. Fig. 31 shows the state’s 
classification on oblique view projection.

The system can detect all three states only except the yawn detection 
while wearing a face mask. This capability makes the system more rigid 
and reliable to perform in such situations. Fig. 32 shows the result of 
states classification with the face mask.
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Fig. 29. States classification from varying distances.

Fig. 30. States classification from varying distances with eyeglasses.

Fig. 31. States classification on oblique view projection.

Next, the embedded system test on Nvidia Jetson Nano was per-
formed for states classification. The Nvidia Jetson Nano’s state classifi-
cation results are shown in Fig. 33.

In this work, the proposed system detects driver drowsiness with 
the heart rate module and EAR ratio (eye openness or closeness) using 
eye landmark points while wearing face masks. On the other hand, the 
proposed system detects driver drowsiness with the heart rate module, 
EAR ratio (eye openness or closeness) and yawning using eye and lip 
landmark points without face masks. Fig. 34 illustrates various state 
classifications of the proposed system from 5 feet distance with wearing 
face masks in the lab experiments.

Next, four volunteers (three male and one female) conducted real-
life scenario experiments with the proposed system in a sedan and an 
SUV car. The car had been driven over the four distinct routes in the 
Bashundhara Residential Area of Dhaka, Bangladesh. The anticipated 
face bounding boxes were compared to the ground-truth bounding 
13
Fig. 32. States classification with the face mask in oblique projection.

Fig. 33. States classification from the Nvidia Jetson Nano.

boxes. There is no significant disparity between the ground-truth and 
predicted bounding boxes. When compared to the ground-truth results, 
the results were also accurate. Fig. 35 exhibits the ground-truth bound-
ing box in blue and the predicted bounding box in green.

Fig. 36 shows the real-life states classification results. All the states 
were classified accurately, and the predicted bounding box was close to 
the ground-truth bounding box.

All the experimental data was inscribed, and then the performance 
was evaluated. Table 5 shows the system performance in states classi-
fication for varying lighting conditions. Here, a three-light set-up was 
used to illustrate the full light conditions from the front. Two of the 
three lights represented a moderate lighting case, while only the third 
light represented a low lighting condition.

As shown in Fig. 37, the proposed system identifies various states of 
driver fatigue with the heart rate module and EAR ratio (eye openness 
or closeness) using eye landmark points while wearing face masks for 
real-life experiments in an SUV car.

4.2. Experiments and evaluation of heart rate module

The heart rate module designed in this work was tested and eval-
uated by eight volunteers, where two of them were females, and six 
of them were males. Each volunteer evaluated the heart rate module 
for up to 4 minutes. The ages of the volunteers were between 22 to 
55 years. The produced results were assessed and compared with two 
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Table 5. System performance evaluation on states classification.
Active 
Ground State

True 
classification

Active 
accuracy

Fatigue 
Ground State

True 
classification

Fatigue 
accuracy

Sleep 
Ground State

True 
classification

Sleep 
accuracy

Full light 200 191 95.5% 200 188 94% 200 195 97.5%
Moderate light 200 194 97% 200 195 97.5% 200 169 84.5%
Low light 200 172 86% 200 163 81.5% 200 180 90%
Fig. 34. States classification from 5 feet distance with wearing face masks; (a) 
Active, (b) Drowsy and (c) Sleeping states.

Fig. 35. Predicted bounding box vs. the ground-truth bounding box.

industry-standard heart rate measuring devices. The overall results were 
satisfactory. The results sometimes fluctuated due to unusual electrodes 
placement.

The authors attempted to implant the electrodes in various body lo-
cations, e.g., fingertips, arms, and chest. Finally, the authors placed the 
electrodes to get the best output during the lab experiments and real-
time drive tests, as illustrated in Fig. 38. The chest hairs were clipped 
off and the three leads were implanted below the left and right clavicles 
and lower abdomen chest regions under the garments of the users. It 
was difficult for the volunteers to demonstrate such fatigue states where 
the heart rate drops under the BPM threshold. The volunteers could 
achieve that, but that stayed for a bit of time. To prove the system’s 
accuracy, the authors tested the heart rate module with a real-time com-
parison between Huawei Watch GT-2 and the OMRON Automatic Blood 
Pressure Monitor HEM-7120. Both of them are industry-standard com-
mercial devices to get the BPM.
14
Fig. 36. In-vehicle states classification with predicted and ground-truth bound-
ing boxes.

Table 6. Root-mean-square deviation of the pro-
posed device with commercial machines in BPM.

Omron machine Huawei Watch
RMSD (BPM) 2.42 2.59

Table 6 shows the performance evaluation based on existing indus-
try standard machines. The results were satisfactory considering the 
pricing. Total 50 BPM values were compared in this work. According to 
this table, the proposed device’s root-mean-square deviations (RMSD) 
with the Omron machine and Huawei watch are 2.42 and 2.59, respec-
tively.

4.3. Overall performance evaluation

The overall performance of the complete embedded system is sat-
isfactory. Table 7 shows the comparison of this system with existing 
similar works. According to Table 7, very few automatic driver drowsi-
ness detection system uses the edge computing device Jetson Nano. 
The proposed device outperformed most of the other similar devices 
in terms of behavioral and physiological measurement, maximum dis-
tance covered, working with face mask and eyeglasses, deployment on 
an embedded platform, accuracy, etc.

This method has several strong qualities that make it distinctive and 
dependable. The entire system is contained within a single box. The 
whole setup of this embedded system is shown in Fig. 39. The Nvidia 
Jetson Nano developer kit powers the computer vision module of this 
system. The utilization of the Nvidia Jetson Nano adds to the system’s 
uniqueness and reliability.
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Table 7. System comparison with existing similar systems.
Works 
Compared

Method Behavioral and 
Physiological 
measure

Max distance 
covered

Works with 
eyeglass?

Face mask? Heart rate 
sensor?

Alarm Full embedded? Accuracy

[5] SWM No Not mentioned Not mentioned No No No No Low
[6] Computer Vision Yes 2 ft. to 3 ft. Not mentioned No No No No Moderate
[11] RNN, and CNN Only behavioral Not mentioned Yes No No Yes Smartphone 

application
High

[12] CNN, and 
Computer vision

Only behavioral Not mentioned Yes No No Yes Nvidia Jetson Nano Moderate

[13] Computer vision Only behavioral Not mentioned Yes No No Yes Raspberry Pi3 
model B

High

[14] Computer vision Only behavioral Not mentioned Not mentioned No No Yes Android smartphone 
application

High

[15] RNN, Computer 
vision, EEG, and 
gyroscope

Yes Not mentioned Not mentioned No No Yes Yes High

[35] Wireless 
wearable device

Yes Not mentioned Not mentioned No Yes No No Moderate
This system CNN, Computer 
vision, and HRV

Yes 7 feet Yes Yes Yes Yes Nvidia Jetson Nano High

Fig. 37. States classification for real-life experiments with wearing face masks; 
(a) Active, (b) Drowsy and (c) Sleeping states.

Fig. 38. The employed zone in the chest under the garments to attach the elec-
trodes for heart rate module.

Fig. 39. Illustration of full embedded setup of the proposed driver drowsiness 
detection system.

The critical system ran so well thanks to this powerful piece of tech-
nology. It can detect any signs of fatigue from a sufficient distance of 
7 feet, which is more than enough for almost every vehicle. This work 
has been tested and found to detect fatigue while the driver is wearing 
the glass successfully. In this pandemic condition, the addition of face 
mask detection made this system stand out. When compared to other 
existing systems, the system’s performance appeared promising.

5. Conclusion and future works

This paper develops an automatic driver’s fatigue detection system 
through computer vision with eye movement tracking, yawn detection, 
and heart rate monitoring. The eye aspect ratio (EAR) and lip distance 
computation are applied for the driver’s various states classification, 
e.g., active, drowsy, and sleepy. The onboard Arduino Uno and AD8232 
heart rate module have also been used, which constantly measures the 
heart rates and detects any fluctuation in BPM related to the drowsi-
ness. Next, a convolutional neural network-based face mask detection 
framework has been developed to tackle the current pandemic. Finally, 
the proposed three techniques are integrated into one system for driver 
sleepiness detection. The performance of the implemented prediction 
framework has been tested on a desktop Windows PC with various 
15
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simulated and real-life scenarios such as oblique projection, different 
lighting conditions, changing positions of the device from its user, with 
and without eyeglasses, etc. Finally, the proposed drowsiness technique 
has been deployed in an edge computing device, Nvidia Jetson Nano. 
This portable and user-friendly device can assist drivers in reducing 
road accidents as well as the pain and anguish that individuals experi-
ence in their daily lives. The designed prototype is a low-cost alternative 
to other proposed ways for detecting fatigue, and the entire system can 
easily be integrated into a variety of vehicles. Because of its portability 
and low cost, the device could be a key differentiator in reducing traffic 
accidents in developing countries like Bangladesh due to human error.

The authors plan to use a custom-built neural network to construct 
the entire detection mechanism in the future. The authors aim to cre-
ate a dataset for all of the states, both with and without the face mask. 
The entire system will be more compact and faster by employing a sin-
gle model. Drowsiness detection by brainwaves [45] is another reliable 
physiological measure that the authors want to introduce. This imple-
mentation will aid in the faster and more accurate detection of fatigue 
levels. Another future goal is to detect fatigue levels in absolutely dark 
environments using a night vision camera module. The frames will be 
put to the test using a CNN model that will be trained on night vision 
image samples. A future extension of this work is to use smart textile-
woven ECG electrodes.
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[24] A.A. Süzen, B. Duman, B. Şen, Benchmark analysis of Jetson TX2, Jetson Nano and 
Raspberry Pi using Deep-CNN, in: International Congress on Human-Computer In-
teraction, Optimization and Robotic Applications (HORA), 2020, pp. 1–5.

[25] A.S. Prasad, N. Kavanashree, ECG monitoring system using AD8232 sensor, in: In-
ternational Conference on Communication and Electronics Systems (ICCES), 2019, 
pp. 976–980.

[26] M.M. Ahmed, M.O. Qay, A. Abu-Siada, S.M. Muyeen, M.L. Hossain, Cost-effective 
design of IoT-based smart household distribution system, Designs 5 (2021) 1–18.

[27] D. Borza, R. Itu, R. Danescu, In the eye of the deceiver: analyzing eye movements as 
a cue to deception, J. Imaging 4 (2018) 1–20.

[28] S.T. Lin, Y.Y. Tan, P.Y. Chua, L.K. Tey, PERCLOS threshold for drowsiness detection 
during real driving, J. Vis. 12 (2012).

[29] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, 
2005, pp. 886–893.

[30] G. Bezerra, R. Gomes, Recognition of occluded and lateral faces using mtcnn, dlib 
and homographies, 2018, pp. 1–4.

[31] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, M. Pantic, 300 faces in-the-wild chal-
lenge: the first facial landmark localization challenge, in: International Conference 
on Computer Vision Workshops, 2013, pp. 397–403.

[32] A.R. Tanzil, Facemask dataset, [Online]. Available: https://www .kaggle .com /
datasets /ashiqurrahmantanzil /facemask -dataset. (Accessed 8 July 2022).

[33] Larxel, Face mask detection, [Online]. Available: https://www .kaggle .com /
datasets /andrewmvd /face -mask -detection. (Accessed 8 July 2022).

[34] M.J. Nelson, J.S. Bahl, J.D. Buckley, R.L. Thomson, K. Davison, Evidence of al-
tered cardiac autonomic regulation in myalgic encephalomyelitis/chronic fatigue 
syndrome: a systematic review and meta-analysis, Medicine (Baltimore) 98 (2019) 
1–21.

[35] B. Warwick, N. Symons, X. Chen, K. Xiong, Detecting driver drowsiness using wire-
less wearables, in: International Conference on Mobile Ad Hoc and Sensor Systems, 
2015, pp. 585–588.

[36] G. Zhang, K.W. Yau, X. Zhang, Y. Li, Traffic accidents involving fatigue driving and 
their extent of casualties, Accid. Anal. Prev. 87 (2016) 34–42.

[37] E. Petridou, M. Moustaki, Human factors in the causation of road traffic crashes, 
Eur. J. Epidemiol. 16 (2000) 819–826.

[38] R.D. Kocalevent, A. Hinz, E. Brähler, B.F. Klapp, Determinants of fatigue and stress, 
BMC Res. Notes 4 (2011) 238–242.

http://refhub.elsevier.com/S2405-8440(22)02492-6/bibE5E7CEB93E376B931C7EFE54C0687AE0s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibE5E7CEB93E376B931C7EFE54C0687AE0s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibE5E7CEB93E376B931C7EFE54C0687AE0s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibE7A1F1C75A276A8A7A053300027020DBs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibE7A1F1C75A276A8A7A053300027020DBs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibFE1B5BF7A9C3BE911E28AE6B58B7169Ds1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibFE1B5BF7A9C3BE911E28AE6B58B7169Ds1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibFE1B5BF7A9C3BE911E28AE6B58B7169Ds1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibA44567E464B073A0F41B44C0C5F24DCBs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibA44567E464B073A0F41B44C0C5F24DCBs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibDD6F524D4CE3468144F0F5765643B047s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibDD6F524D4CE3468144F0F5765643B047s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibDD6F524D4CE3468144F0F5765643B047s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib19D9F776C3C24A399482B1F83585A029s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib19D9F776C3C24A399482B1F83585A029s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib19D9F776C3C24A399482B1F83585A029s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibEF51FB97CB5AEDE4FC63585BC67F7E94s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibEF51FB97CB5AEDE4FC63585BC67F7E94s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibEF51FB97CB5AEDE4FC63585BC67F7E94s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibEF51FB97CB5AEDE4FC63585BC67F7E94s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibB960E1483D757244ECB9C91F796CC382s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibB960E1483D757244ECB9C91F796CC382s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibB960E1483D757244ECB9C91F796CC382s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibFD770C85C9EADE546408A4137A6336CEs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibFD770C85C9EADE546408A4137A6336CEs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibFD770C85C9EADE546408A4137A6336CEs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib25D1214A58A8F1D14A55F6C7762D0E7Es1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib25D1214A58A8F1D14A55F6C7762D0E7Es1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib25D1214A58A8F1D14A55F6C7762D0E7Es1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibBAB322007FCD7E1A744728EEC760304Bs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibBAB322007FCD7E1A744728EEC760304Bs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibC75C16E70E46CB4F8C3FD27EFD8D18ECs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibC75C16E70E46CB4F8C3FD27EFD8D18ECs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibC75C16E70E46CB4F8C3FD27EFD8D18ECs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib59F4663E9C3810ED3423F3A37BA766A4s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib59F4663E9C3810ED3423F3A37BA766A4s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib59F4663E9C3810ED3423F3A37BA766A4s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib7B99CB5741A0CB9DE72CEBAFEFA8C337s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib7B99CB5741A0CB9DE72CEBAFEFA8C337s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib7B99CB5741A0CB9DE72CEBAFEFA8C337s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibBCAA53BCDD01EDAC60C7C1595E1F8A1As1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibBCAA53BCDD01EDAC60C7C1595E1F8A1As1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib94756EA97E399882B121DA8BB2DE55E2s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib94756EA97E399882B121DA8BB2DE55E2s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib94756EA97E399882B121DA8BB2DE55E2s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib204151369B0775E8003DDA9F100DCCC8s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib272CEADB8458515B2AE4B5630A6029CCs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib272CEADB8458515B2AE4B5630A6029CCs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib10EA590D34CD351CFF2CE4D34F754A02s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib10EA590D34CD351CFF2CE4D34F754A02s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib2EA9510C37F7F89E4941FF75F62F21CBs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib75F5750F6DD6AFBEC57B0928A0EC306Bs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib75F5750F6DD6AFBEC57B0928A0EC306Bs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib75F5750F6DD6AFBEC57B0928A0EC306Bs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib2E789E727E3647C51AB3F348CB67DABCs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib2E789E727E3647C51AB3F348CB67DABCs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib2E789E727E3647C51AB3F348CB67DABCs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibA5FE26D5D09B736A77F4345E9F80B951s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibA5FE26D5D09B736A77F4345E9F80B951s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibA5FE26D5D09B736A77F4345E9F80B951s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib8E830115E3CD98893BA1EE087BA6B92Cs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib8E830115E3CD98893BA1EE087BA6B92Cs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibD8FF99616FC9DF8A54A32EEC86BA8109s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibD8FF99616FC9DF8A54A32EEC86BA8109s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib46B7E23AE5CF9A5C4AAB8CE49831E5DCs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib46B7E23AE5CF9A5C4AAB8CE49831E5DCs1
https://www.kaggle.com/datasets/ashiqurrahmantanzil/facemask-dataset
https://www.kaggle.com/datasets/ashiqurrahmantanzil/facemask-dataset
https://www.kaggle.com/datasets/andrewmvd/face-mask-detection
https://www.kaggle.com/datasets/andrewmvd/face-mask-detection
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib333587AFCEF426A40714E28CB52E41A7s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib333587AFCEF426A40714E28CB52E41A7s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib333587AFCEF426A40714E28CB52E41A7s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib86F7E712FEE555230865F3456254C75Cs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib86F7E712FEE555230865F3456254C75Cs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib8B58A4BCA02E306BF259A3F6C46C8AEBs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib8B58A4BCA02E306BF259A3F6C46C8AEBs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib9DF044A91297E42AA9D1898794ABBDEFs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib9DF044A91297E42AA9D1898794ABBDEFs1


A. Rahman, M.B.H. Hriday and R. Khan Heliyon 8 (2022) e11204
[39] World Health Organization, Global Status Report on Road Safety 2018, World 
Health Organization, Geneva, Switzerland, 2018.

[40] Y. Albadawi, M. Takruri, M. Awad, A review of recent developments in driver 
drowsiness detection systems, Sensors 22 (2022) 1–41.

[41] Y. Ito, W. Ohyama, T. Wakabayashi, F. Kimura, Detection of eyes by circular Hough 
transform and histogram of gradient, in: International Conference on Pattern Recog-
nition, 2012, pp. 1795–1798.

[42] R. Avram, et al., Real-world heart rate norms in the Health eHeart study, Nat. Dig. 
Med. 2 (2019) 1–10.

[43] A.K. Reimers, G. Knapp, C.D. Reimers, Effects of exercise on the resting heart rate: a 
systematic review and meta-analysis of interventional studies, J. Clin. Med. 7 (2018) 
1–30.

[44] R. Nelesen, Y. Dar, K. Thomas, J.E. Dimsdale, The relationship between fatigue and 
cardiac functioning, JAMA Intern. Med. 168 (2008) 1–15.

[45] Z. Ren, et al., EEG-based driving fatigue detection using a two-level learning hierar-
chy radial basis function, Front. Neurorobot. 15 (2021) 1–12.
17

http://refhub.elsevier.com/S2405-8440(22)02492-6/bib99E3196018D3409CB0226A8B7F41C5CBs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib99E3196018D3409CB0226A8B7F41C5CBs1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib9651E8663FE1127B87EADCB33B398BF4s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib9651E8663FE1127B87EADCB33B398BF4s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibD02BBAD397B00EF9CE7D87B0DCEDDBB6s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibD02BBAD397B00EF9CE7D87B0DCEDDBB6s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibD02BBAD397B00EF9CE7D87B0DCEDDBB6s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib24F1064F9267F93637BCEE6D38206414s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib24F1064F9267F93637BCEE6D38206414s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib2F86E0E641C05CF1444AF6E7E37C99A9s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib2F86E0E641C05CF1444AF6E7E37C99A9s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib2F86E0E641C05CF1444AF6E7E37C99A9s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibC2252B7D44A6E169AB5165FE32A3A196s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bibC2252B7D44A6E169AB5165FE32A3A196s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib7577F2426D1EC70091058D110D962531s1
http://refhub.elsevier.com/S2405-8440(22)02492-6/bib7577F2426D1EC70091058D110D962531s1

	Computer vision-based approach to detect fatigue driving and face mask for edge computing device
	1 Introduction
	2 Related works
	3 The method and proposed system
	3.1 System overview
	3.2 Software tools
	3.3 Hardware components
	3.4 EAR (eye aspect ratio) and yawn detection
	3.4.1 Face detection
	3.4.2 Face localization
	3.4.3 EAR and lip distance calculation

	3.5 Face mask detection
	3.5.1 Dataset
	3.5.2 Data preprocessing
	3.5.3 Model training
	3.5.4 Retrieval

	3.6 Heart rate detection
	3.7 Fusion

	4 Experiments and evaluation
	4.1 Experiments and evaluation of computer vision module
	4.1.1 Face mask experiments and evaluation
	4.1.2 Fatigue and sleep detection experiments and evaluations

	4.2 Experiments and evaluation of heart rate module
	4.3 Overall performance evaluation

	5 Conclusion and future works
	Declarations
	Author contribution statement
	Funding statement
	Data availability statement
	Declaration of interests statement
	Additional information

	References


