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Abstract

In the ciliate Paramecium tetraurelia, differentiation of the somatic nucleus from the zygotic nucleus is characterized by
massive and reproducible deletion of transposable elements and of 45,000 short, dispersed, single-copy sequences. A
specific class of small RNAs produced by the germline during meiosis, the scnRNAs, are involved in the epigenetic regulation
of DNA deletion but the underlying mechanisms are poorly understood. Here, we show that trimethylation of histone H3
(H3K27me3 and H3K9me3) displays a dynamic nuclear localization that is altered when the endonuclease required for DNA
elimination is depleted. We identified the putative histone methyltransferase Ezl1 necessary for H3K27me3 and H3K9me3
establishment and show that it is required for correct genome rearrangements. Genome-wide analyses show that scnRNA-
mediated H3 trimethylation is necessary for the elimination of long, repeated germline DNA, while single copy sequences
display differential sensitivity to depletion of proteins involved in the scnRNA pathway, Ezl1- a putative histone
methyltransferase and Dcl5- a protein required for iesRNA biogenesis. Our study reveals cis-acting determinants, such as
DNA length, also contribute to the definition of germline sequences to delete. We further show that precise excision of
single copy DNA elements, as short as 26 bp, requires Ezl1, suggesting that development specific H3K27me3 and H3K9me3
ensure specific demarcation of very short germline sequences from the adjacent somatic sequences.
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Introduction

Ciliates provide extraordinary model organisms with which to

gain understanding into the organization of eukaryotic genomes.

The differentiation of the somatic nucleus from the zygotic nucleus

is characterized by massive and reproducible rearrangements at

the DNA level [1]. In Paramecium tetraurelia, as in all ciliates,

germline and somatic functions are separated between two distinct

nuclei that coexist in the same cytoplasm. During vegetative

growth, the diploid germline micronucleus (MIC) remains

transcriptionally silent, while the highly polyploid somatic

macronucleus (MAC) supports gene expression. During sexual

events, the MAC is fragmented and eventually lost, whereas the

MIC undergoes meiosis and transmits the germline genome to the

new MIC and MAC of the next generation. During the

differentiation of the zygotic MAC, germline-specific regions up

to several kbp in length, often containing repetitive sequences, are

imprecisely eliminated leading to germline chromosome fragmen-

tation or intra-chromosomal deletions. Moreover, and this is a

critical point for the present study, 45,000 single-copy, short and

non-coding Internal Eliminated Sequences (IES) are excised

precisely from intergenic and genic regions. These « DNA introns

» are found throughout the germline genome, appear to be

remnants of ancestral insertions of transposable elements (TEs) [2],

and are invariably flanked by two 59- TA -39 dinucleotide repeats,

one of which is left after excision. All DNA elimination events rely

on the domesticated piggyBac transposase, PiggyMac (Pgm), which

is essential to introduce DNA cleavages at each IES boundary [2,3].
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Precision of IES excision is critical for the assembly of functional

genes in the somatic genome and the survival of sexual progeny.

Yet the weak consensus found at IES ends is not sufficient to

determine the excision pattern across the whole genome [2,4]. The

molecular mechanisms underlying the specific recognition of such

a large number of different germline sequences remain poorly

understood. A class of small RNAs that resemble the metazoan

piRNAs, called the scnRNAs, is produced by the meiosis-specific

Dicer-like proteins Dcl2 and Dcl3 [5,6]. scnRNAs are required to

promote IES excision [7]. In the current ‘‘genome scanning’’

model, scnRNAs are produced from most of the germline genome

during MIC meiosis and are then filtered by pairing interactions

with nascent transcripts in the maternal MAC, resulting in the

selective inactivation of those able to find a perfect match, and

thus in the selection of MIC-specific scnRNAs [8]. Once selected

by this ‘‘scanning’’ procedure, MIC-specific scnRNAs would be

exported to the developing zygotic MAC to target homologous

sequences, thereby recruiting the excision machinery [9]. This

RNA-mediated genomic subtraction can explain the epigenetic

inheritance of alternative rearrangement patterns, such as

retention of a given IES in the MAC [10,11], deletion of a given

gene [12] or mating type determination [13] across sexual

generations. The scnRNA pathway is conserved in the distantly

related ciliate Tetrahymena thermophila, where scnRNA-mediated

tri-methylation of histone H3 on lysine 9 and lysine 27 (H3K9me3

and H3K27me3) [14–17] is thought to guide the recruitment of an

endonuclease [18,19] initiating the deletion of germline sequences.

As observed in small RNA-guided heterochromatin formation in

other organisms [20,21], the data obtained so far support the idea

that heterochromatin formation occurs downstream of the

scnRNA pathway and leads to the imprecise elimination of long,

repetitive germline sequences, which are nearly all found in

intergenic regions in Tetrahymena [22]. Recently, a class of 26-30

nt long, IES-specific Paramecium sRNAs, called iesRNAs, was

reported [6]. iesRNAs accumulate during late MAC development

and require the Dicer-like protein Dcl5 for their biogenesis. Dcl5

depletion leads to partial impairment of excision of a small fraction

of IESs. The precise role of iesRNAs in IES excision remains to be

elucidated.

The chromatin modifications that may guide the Pgm

endonuclease to specific germline sequences are not yet charac-

terized in Paramecium. The vast majority of IESs are shorter than

150 bp and some are as short as 26 bp; they are thus not even as

long as the DNA wrapped around a single nucleosome. Excision of

these 45,000 DNA segments must require a marking mechanism

of considerable precision, allowing the demarcation of these very

short, numerous, interspersed germline sequences from adjacent

retained somatic sequences. The present study was designed to test

the involvement of histone H3 methylation in the DNA

elimination process, with a special interest for its role on IES

excision. We show here that the putative histone methyltransferase

(HMT) Ezl1 is required for the accumulation of H3K27me3 and

H3K9me3 in the developing somatic macronucleus. Re-sequenc-

ing the genome following Ezl1 depletion showed that EZL1 is

required for correct genome rearrangements. We found that

scnRNA-mediated H3K27me3 and H3K9me3 is necessary for the

elimination of a fraction of germline DNA, including transposable

elements and long IESs. Strikingly, the putative HMT Ezl1 is also

required for the precise excision of about 70% of the 45,000 short,

unique copy IESs, providing evidence that it may contribute to the

precise demarcation of short germline sequences. Our genome

wide study shows that IESs display differential sensitivity to

depletion of the scnRNA pathway, Dcl5 or Ezl1 proteins and

identifies cis acting determinants, such as DNA length that might

act in concert with epigenetic signals to define germline specific

sequences.

Results

Dynamic localization of histone H3 tri-methylation on
K27 and on K9 in the developing MAC

Indirect immunostaining experiments were performed to

determine the in situ localization of H3K27me3 and H3K9me3

during various stages of the Paramecium life cycle (Fig. S1-S2-S3).

No H3K27me3 (Fig. S2) and H3K9me3 (Fig. S3) could be

detected in the transcriptionally active MAC or in the transcrip-

tionally inactive MIC during vegetative growth. The sexual

process of autogamy (self-fertilization), which is induced by

starvation, starts with meiosis of the MIC and proceeds through

the development of new zygotic MACs. H3K27me3 was

transiently found in the MIC during the first meiotic division

and detected in the fragments of the maternal MAC by the end of

meiosis (Fig. S2), whereas no H3K9me3 signal was observed at

these stages (Fig. S3). After karyogamy, the diploid zygotic nucleus

divides twice and two of the products differentiate into new MICs

and the other two into new MACs (Fig. S4). H3K27me3 and

H3K9me3 were detected at early stages of MAC development and

the signals persisted throughout the course of MAC development

(Fig. 1A, Fig. S2-S3-S4). The enrichment of H3K27me3 in the

developing MAC compared to vegetative MAC was confirmed by

Western blot analysis on purified nuclei (Fig. S2B). A Pgm-GFP

fusion protein was detected together with H3K27me3 and

H3K9me3 in the developing MAC, indicating that both histone

marks are present when genome rearrangements occur (Fig. S2C

and S3B).

The staining in the developing MAC, initially diffuse and evenly

distributed (Fig. 1A a-b, Fig. S2-S3), gradually condensed into a

punctuate pattern (Fig. 1A c-d, Fig. S2-S3). This is reminiscent of

the heterochromatin bodies detected in Tetrahymena, which

comprise H3K9me3, H3K27me3 [15,16] and the chromodomain

protein Pdd1p [23]. Yet the H3K27me3 and H3K9me3 foci we

observed are located inside the nucleus and are not preferentially

found at the periphery of the developing MAC as observed in

Author Summary

The unicellular eukaryote Paramecium tetraurelia provides
an extraordinary model for studying the mechanisms
involved in zygotic genome rearrangements. At each
sexual cycle, differentiation of the somatic nucleus from
the zygotic nucleus is characterized by extensive remod-
eling of the entire somatic genome, which includes the
precise excision of 45,000 short noncoding germline DNA
segments to reconstitute functional open reading frames.
Exploiting the unique properties of the Paramecium
genome, we show that the enhancer of zeste like protein
Ezl1 is necessary for histone H3 trimethylation on lysines
27 and 9 and is required for the precise excision of 31,000
of these single copy, dispersed germline DNA segments
that can be as short as 26 bp in length. This implies that
histone marks usually associated with heterochromatin
may contribute to the precise demarcation of segments
that are even shorter than the length of DNA wrapped
around a single nucleosome. A quantitative analysis of
high throughput sequencing datasets further shows that
the underlying genetic properties of the germline DNA
segments might act in concert with epigenetic signals to
define germline specific sequences.
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Tetrahymena. As development proceeds, the number of these

intensely labeled foci diminishes and the single remaining spot

found in a DNA-poor region of the macronucleus eventually

disappeared (Fig. 1B, Fig. S2-S3-S4).

The domesticated transposase PiggyMac is required for
H3K27me3 and H3K9me3 foci formation

To obtain further insight into the possible role of H3K27me3

and H3K9me3 in genome rearrangements, we knocked-down by

RNA interference (RNAi) the domesticated transposase Pgm that

is required for the introduction of DNA-double strand breaks at

the boundaries of germline-limited segments [2,3]. Immunofluo-

rescence experiments revealed that the H3K27me3 and

H3K9me3 signals progressively increased in the developing MACs

and are detected in all Pgm-depleted and control cells (Fig. 2A and

Fig. S4). Western blot analysis showed that the amount of

H3K27me3 is not altered in Pgm-depleted cells as compared to

control cells (Fig. S2B). Since depletion of Pgm does not affect the

biogenesis and accumulation of H3K27me3 and H3K9me3 in the

developing MACs, it suggests that the endonuclease Pgm must act

downstream of H3K27me3 and H3K9me3, in agreement with the

scanning model.

We noticed that the H3K27me3 and H3K9me3 signals

remained diffuse as development proceeds in Pgm-depleted cells

and no foci could be detected (Fig. 2A and Fig. S4). The

endonuclease Pgm is thus required for H3K27me3 and H3K9me3

foci formation, even though it is not yet clear whether these foci

are a prerequisite for or the consequence of DNA double strand

break formation.

The scnRNA pathway, but not iesRNAs, is required for
H3K27me3 and H3K9me3 accumulation in the early
developing MAC

The scanning model posits that MIC-specific scnRNAs guide

the loading of histone marks specifically on DNA segments that

are eliminated in the developing MAC. We therefore expected

that the co-silencing of the two Dicer-like genes, DCL2 and

DCL3, that results in failure to generate scnRNAs [5,6], would

also abolish the establishment of H3K27me3 and H3K9me3

chromatin in the developing MAC. We examined the effects of

DCL2/3 co-silencing on H3K27me3 and H3K9me3 by immu-

nofluorescence staining. No detectable H3K27me3 or H3K9me3

signal was observed in Dcl2/3 depleted cells at an early stage when

the developing MAC of control cells stained intensely (Fig. 2B,

Fig. S4). As development proceeds, H3K27me3 and H3K9me3

signals in developing MACs start to be observed in Dcl2/3-

depleted cells (Fig. S4) but Western blot analysis showed that the

total amount of H3K27me3 is greatly reduced in DCL2/3-

knockdowns (KD) relative to control (Fig. S2B).

We then investigated the effects of silencing DCL5, a gene

required for iesRNA biogenesis, on H3K27me3 and H3K9me3.

In contrast to what is observed in DCL2/3 KD, H3K27me3

and H3K9me3 signals were not altered in DCL5 KD, as

assessed by immunofluorescence staining (Fig. 2C) and this was

further confirmed by Western blot analysis for H3K27me3

(Fig. S2B).

We conclude that the generation of scnRNAs, but not iesRNAs,

is required for establishment and accumulation of these chromatin

modifications in the developing MAC. These results suggest that

scnRNAs and K9 and K27 methylation participate in the same

pathway leading to genome rearrangements. To support this

hypothesis, it is necessary to demonstrate that K27 and K9

methylation is required for DNA elimination.

Figure 1. Dynamic localization of H3K27me3 and H3K9me3 in
the developing somatic macronuclei (MAC). A. Immunofluores-
cence of cells at different stages of nuclear differentiation are shown,
aligned with their schematic representations on the left: (a) 10 hrs; (b)
20 hrs; (c) 30 hrs; (d) 40 hrs. The time points refer to hours after T = 0 hr
that is defined as the time when cells begin fragmentation of the
maternal MAC, as evaluated by cytological observation. See Figure S4
for details on progression of autogamy and quantification of the
number of stained cells at each time point. Overlay of Z-projections of
magnified views of H3K27me3- or H3K9me3- specific antibodies (in
green), and Hoechst (in red) on selected stacks are presented. Dashed
white circles indicate the two developing MACs (M) and the MICs (m)
when visible. The other Hoechst-stained nuclei are fragments from the
old vegetative MAC. The grey to black color represents the intensity of
H3K27me3 or H3K9me3 staining. The scale bar is 5 mm. See Figures S2
and S3 for the entire images and a description of the staining
throughout the life cycle. B. Selected stack of the images shown above
(A panel d). Scale bar is 5 mm.
doi:10.1371/journal.pgen.1004665.g001
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Identification of SET-domain containing proteins and
functional analysis of 5 EZL genes reveal that EZL1 is
essential

To eliminate K9 and K27 methylation, we sought to identify

the gene(s) responsible for these modifications [24]. We searched

for SET domain containing proteins encoded in the P. tetraurelia
MAC genome [25]. Among 34 putative HMTs (Fig. S5, Table

S1), we identified putative H3K27-specific HMTs of the Enhancer

of zeste family, named EZL1 to EZL4 (Fig. 3A) but no member of

the H3K9-specific HMTs of the Suvar39/EHMT/SETDB8/

SETMAR group could be identified in ciliate genomes. Alignment

of the predicted Ezl proteins revealed conservation of key residues

implicated in binding the methyl donor, the target lysine, and

catalysis (Fig. S6).

The expression patterns of EZL genes during the life cycle were

examined using microarray data [26] and confirmed by RT–PCR

analysis (Fig. 3B-C). Little or no expression is observed during

vegetative growth but the genes are specifically expressed during

the sexual phase of the life cycle, although they show markedly

different patterns. EZL2 and EZL4 are silent during vegetative

growth but EZL4 is specifically expressed after meiosis, whereas

EZL2 becomes expressed at the onset of MAC development.

EZL1 is turned on to high levels immediately upon meiosis, and

this is true also, to a lesser extent, for EZL3a and EZL3b.

Expression of the EZL1 gene is very transient, preceding PGM

and DCL5 expression, and detection of IES excision products

(Fig. 3D). This expression pattern is similar to that seen for the

Dicer-like genes DCL2 and DCL3 [5](Fig. 3B).

To test the function of EZL genes, we knocked down their

expression by RNAi during autogamy. After EZL1 KD, 97% of

post-autogamous progeny were unable to resume vegetative

growth, whereas no lethality was observed after KD of any other

EZL gene (Fig. 3E). The transcription of EZL1 is induced during

meiosis, largely before programmed genome rearrangements take

place in developing new MACs. This pattern led us to consider the

possibility that this protein may be involved in a meiotic function.

We checked the progression of meiosis by Hoechst staining during

autogamy of EZL1 KD cells. We observed that meiotic divisions I

and II occur normally, since there were cells with 4 then 8 haploid

nuclei in the population (Fig. S4). There was no arrest until new

MACs differentiate from mitotic copies of the zygotic nucleus. To

control for possible off-target silencing artifacts, two non-overlap-

ping fragments of EZL1 were used independently to induce RNAi,

and similar results were obtained with both constructs (Fig. 3E).

For one construct, the efficiency of EZL1 KD was checked by

semi-quantitative RT-PCR of total RNA extracted throughout

autogamy from control and EZL1 KD cells (Fig. S7): a significant

decrease of EZL1 mRNA accumulation was observed at early time

points in EZL1 KD cells, without affecting the onset of induction

of other EZL genes. Therefore, EZL1 gene expression is essential

during development for the production of viable sexual progeny.

In an EZL1 KD, the transcription of the PGM gene and of all

EZL genes is switched on normally during autogamy, indicating

that these genes are not induced in response to EZL1 induction

but more likely as part of a general transcription program during

MAC development. In contrast to control cells, the levels of these

mRNAs do not decrease at later time-points in an EZL1 silencing

experiment (Fig. S7), suggesting that the completion of MAC

development is a signal for transcriptional switch-off. Alternatively,

EZL1 histone methylation could be required for silencing

transcription of these genes.

The Ezl1 protein is required for H3K27me3 and H3K9me3
in the developing MAC

To gain further insight into the role of EZL1, we examined the

subcellular localization of Ezl1. A GFP fusion was constructed by

inserting the GFP coding sequence into the EZL1 gene,

downstream of the start codon. Expression of the fusion gene

was under the control of the natural EZL1 up- and downstream

sequences. After microinjection of the construct into the MAC, no

fluorescence could be detected during vegetative growth of

transformed clones (Fig. S8A). When autogamy was induced,

GFP fluorescence first appeared transiently in the MIC during

meiosis I and in the MAC before it became fragmented. When

fragmentation of the maternal MAC was complete, GFP

fluorescence started to decrease and progressively relocalized to

the new MACs as they developed (Fig. 4A and Fig. S8). Eventually

all of the fusion protein was concentrated to the new MACs. The

localization pattern of GFP-Ezl1 fusion is very similar to that

observed for H3K27me3 and H3K9me3 (Fig. 1 and Fig. S2-S3).

Hence, the GFP-Ezl1 fusion colocalized with H3K27me3 and

H3K9me3 foci in the new developing MACs (Fig. 4B). Moreover,

although the GFP-Ezl1 fusion protein properly localized in the

new developing MACs in PGM and DCL2/3 KD cells, foci

formation was prevented in the former and strongly reduced in the

latter (Fig. S8B).

Figure 2. Depletion of the Pgm endonuclease and of the Dicer-Like 2 and 3 proteins alter H3K27me3 and H3K9 me3 localization.
Immunolabeling with H3K27me3- or H3K9me3- antibodies (in green) and staining with Hoechst (in red) (A) in ND7 (control) or PGM KD cells at 30 hrs,
(B) in ND7 (control) or DCL2/3 KD cells at 6 hrs, (C) in ND7 (control) or DCL5 KD cells at 6 hrs. See Figure S4 for progression of autogamy. Dashed white
circles indicate the two developing MACs and the MICs when visible. Note that the H3K27me3 antibodies decorate the oral apparatus (‘‘control’’
panel in Fig. 2B). Scale bar is 5 mm.
doi:10.1371/journal.pgen.1004665.g002

Local Effect of Enhancer of Zeste-Like
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We therefore investigated the effects of EZL1 KD on

H3K27me3 and H3K9me3. Immunofluorescence staining with

H3K27me3- and H3K9me3- specific antibodies showed little or

no signal in Ezl1-depleted cells, whereas in control cells

H3K27me3 and H3K9me3 increased as development proceeded

and completely disappeared at the latest time point (Fig. 4C and

Fig. S4). For more accuracy, we quantified the fluorescence

intensities throughout the volume of the developing new MACs in

Figure 3. Identification and functional analysis of EZL genes. A. Phylogenetic analysis of the EZH/EZL SET domain proteins. The part of the
Maximum-likelihood (ML) tree shown in Figure S5 and which includes the EZH/EZL proteins, is depicted. Statistical supports (aLRT values) are
indicated on the nodes by colored circles (color code is indicated in the figure). Species abbreviations: Amac = Allomyces macrogynus (Fungi); Atha =
Arabidopsis thaliana (Virdiplantae); Aque = Amphimedon queenslandica (Metazoa); Bflo = Branchiostoma floridae (Metazoa); Dmel = Drosophila
melanogaster (Metazoa); Hsap = Homo sapiens (Metazoa); Mbre = Monosiga brevicolis (choanoflagellata); Nvec = Nematostella (Metazoa); Ptet =
Paramecium tetraurelia (Ciliata); Spun = Spizellomyces punctatus (Fungi); Tthe = Tetrahymena thermophila (Ciliata); Ttra = Thecamonas trahens
(Apusozoa). B. Expression patterns of EZL genes during the life cycle. EZL, DCL2, DCL3, DCL5 and PGM gene expression levels, as determined by
microarray expression data during autogamy time-course experiments [26]. The vegetative time point (V) consists of 4 samples from mass cultures
containing only log-phase cells showing no sign of meiosis. The meiosis time point (M) consists of 4 samples containing 20-39% of cells undergoing
meiosis, and little or no fragmentation of the maternal MAC. The fragmentation (F) time point consists of 4 samples that contained a similar
proportion of meiotic cells (20-29%) as the M time point, but also contained 37-43% of cells with a fragmented maternal MAC. The D1 time point
groups 3 samples with 35-56% of cells with fragmented maternal MACs and 35-51% of cells that already contained clearly visible new MACs. D2
consists of 3 samples with 73-98% of cells with visible new MACs, and the D3 samples were taken ,10 hours after the D2 samples. C. Detection of
EZL and PGM mRNA during autogamy by RT-PCR. Total RNAs were extracted at each time point (see Fig. S7), were reverse transcribed and cDNAs
were amplified by PCR with gene specific primers and, as a loading control, with primers for the T1b gene, which encodes a component of the
secretory granules [55]. D. PCR detection of IES 51A4578 circles with divergent primers on genomic DNA at each time point shown in Figure S7 after
ICL7 (control) or EZL1 silencing. E. Lethality of post-autogamous progeny following EZL gene silencing. The gene targeted in each silencing
experiment is indicated. Two non-overlapping fragments (#1 and #2) of EZL1 gene were used independently. The ND7 or ICL7 genes were used as
control (CTL) RNAi targets, since their silencing has no effect on sexual processes [27]. Autogamy was also performed in standard K. pneumoniae
medium (none). Cells were starved in each medium to induce autogamy and, following 3-4 days of starvation, autogamous cells were transferred
individually to K. pneumoniae medium to monitor growth of sexual progeny. The total number of autogamous cells analyzed for each RNAi and the
number of independent experiments (in parenthesis) are indicated. Death in progeny after EZL1 silencing was observed after less than three cell
divisions. The absence of lethality observed after EZL2, EZL3a, EZL3b, EZL4 KDs should be taken with caution as the level of KDs was not measured.
doi:10.1371/journal.pgen.1004665.g003
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control and EZL1 KD cells at different developmental time points

(see Materials and Methods). The quantification indicated that

H3K27 and H3K9 methylation was nearly abolished in the

developing new MACs of EZL1 KD cells (Fig. 4D-E). This was

further confirmed for H3K27me3 by Western blot analysis (Fig.

S2B). Together these data show that EZL1 encodes a development

specific putative HMT necessary for H3K27me3 and H3K9me3

in the developing zygotic MAC.

The Ezl1 protein is required for imprecise deletion of
MIC-specific sequences

EZL1 KD led to phenotypes consistent with an essential

function for Ezl1 during MAC development since: (1) no viable

sexual progeny were isolated from Ezl1-depleted cells, a phenotype

described in KDs defective in DNA elimination [3,5,27–29]; (2) no

H3K27me3 and H3K9me3 were detected in developing new

MACs.

Figure 4. EZL1 is required for H3K27me3 and H3K9me3 in the developing somatic MAC. A. GFP-EZL1 localization in the developing new
somatic MAC. Overlay of Z-projections of magnified views of GFP-EZL1 (in green) and Hoechst (in red) on selected stacks at different stages of
development of the somatic MAC (a-d) are presented. See Figure S8 for the entire images and a description of the staining throughout the life cycle.
Dashed white circles indicate the two developing MACs (M) and the MICs (m) when visible. The other Hoechst-stained nuclei are fragments from the
old vegetative MAC. The grey to black color represents the GFP-EZL1 intensity. Scale bar is 5 mm. B. Co-localization of GFP-EZL1 fusion protein and
H3K27me3 or H3K9me3. GFP-EZL1 transformed cells were immunolabeled with H3K27me3- or H3K9me3- antibodies and stained with Hoechst at 40
hrs during autogamy. Overlay of Z-projections of magnified views of GFP-EZL1 (in green), H3K27me3- or H3K9me3- specific antibodies (in blue), and
Hoechst (in red) on selected stacks are presented. Dashed white circles indicate the two developing MACs (M). Scale bar is 5 mm. C. Immunolabeling
with H3K27me3- or H3K9me3- antibodies (in green) and staining with Hoechst (in red) in ND7 (control) or EZL1 knockdown cells at 30 hrs. See Figure
S4 for progression of autogamy and quantification of the number of stained cells at each time point. Dashed white circles indicate the two
developing MACs (M) and the MICs (m) when visible. Scale bar is 5 mm. D. Quantification of H3K27me3 or H3K9me3 fluorescence intensities in the
developing MACs. At each time point, the mean of fluorescence intensities was calculated for ten individual cells after control or EZL1 silencing (see
Materials and Methods). Errors bars represent the standard deviation.
doi:10.1371/journal.pgen.1004665.g004
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Different assays were used to monitor genome rearrangements

in autogamy time course experiments, after EZL1 KD. We first

tested the role of the EZL1 gene in the imprecise DNA elimination

mechanism that is responsible for the deletion of MIC transpos-

able elements during MAC development. We analyzed by

Southern blot hybridization the germline region located down-

stream of the surface antigen G gene, which contains a Sardine

transposon that is eliminated imprecisely during MAC develop-

ment, leading to chromosome fragmentation [2]. At this locus, in

control RNAi experiments, only the rearranged forms originating

from both the maternal and new MACs could be detected

(Fig. 5A). In contrast, after EZL1 KD, non-rearranged forms

accumulated throughout autogamy in the new MACs, relative to

the rearranged forms present in the fragments of the maternal

MAC (Fig. 5A). EZL1 KD thus led to retention of the MIC

sequences and impaired germline chromosome fragmentation.

We further tested the role of Ezl1p in the imprecise elimination

mechanism also responsible for maternally inherited deletions of

non-essential cellular genes, which can be induced experimentally

[12]. The variant cell line 51DND7 has a wild type MIC but

carries a maternally inherited MAC deletion of the ND7 gene. We

therefore used this strain to monitor the effect of EZL1 KD on

maternal inheritance of MAC deletions. Phenotypic testing was

used to assess reversion of the ND7 MAC deletion in post-

autogamous cell populations. We observed the occurrence of

trichocyst discharge indicating that the ND7 gene was at least

partially maintained in the new MAC after EZL1 KD but not in

the controls. ND7 was transiently amplified before deletion from

the new developing MACs and, at later time points, only the

rearranged forms, originating from both the old and new MACs,

could be detected in control silencing (Fig. 5B). In contrast, full-

length ND7 gene product accumulated at late time points after

EZL1 KD. Thus, like imprecise deletion of MIC specific regions,

maternally inherited elimination of the ND7 gene is blocked in

EZL1 KD cells, and the non-rearranged germline locus is retained

in the developing new MACs.

To expand these results genome wide, we sequenced DNA

isolated from newly developed MACs following EZL1 silencing.

DNA isolated from newly developed MACs at the same

developmental stage from a cell culture grown without RNAi

was also sequenced as a control (Table S2). We compared the

sequence complexity of different datasets by mapping the reads in

each dataset to contigs previously assembled from new MACs after

Pgm depletion [2], which is currently the best representation of the

un-rearranged germline genome. As shown in Table S3, EZL1

reads have the same sequence complexity as the PGM reads, while

the control dataset has about 13 Mb less sequence complexity. Of

note, the total sequence complexity in the MIC is expected to be

larger than the 89 Mb that we analyzed since our analysis only

used PGM contigs larger than 1 kb.

If we compare the complexity of regions not covered by the

control sample, which correspond to the part of the MIC genome

that is not collinear with MAC chromosomes, PGM and EZL1

datasets again show a similar complexity. We also performed a

qualitative evaluation of Sardine retention by mapping reads from

each dataset to the known cloned copies of this transposable

element [2](Fig. S9). Consistent with our Southern blot analysis

(Fig. 5A), we found that all characterized Sardine copies are

retained after EZL1 silencing. This global analysis supports the

conclusions made at the molecular level for two individual loci:

EZL1, like PGM, is required for the imprecise elimination of

germline-limited sequences.

The Ezl1 protein is required for the excision of a subset of
IESs

We then investigated the role of the EZL1 gene in IES excision.

Excision was first analyzed by PCR on genomic DNA, extracted

after EZL1 or control silencing at a time when IES excision is

normally finished. In control RNAi experiments, the 10 IESs

analyzed were completely excised from the new developing MACs

as expected (Fig. S10). In contrast, IES-retaining forms accumu-

lated in the new MACs of PGM or EZL1 KD cells. We observed

that EZL1 KD impaired the excision of 7 out of 10 tested IESs,

whereas PGM KD impaired the excision of all IESs (Fig. S10).

Consistent with the lack of excision for affected IESs, we could not

detect the formation of excised IES circles by PCR upon EZL1

KD (Fig. S7)[30]. Altogether these data indicate that the EZL1

gene is required for IES excision and, most likely, EZL1p acts

upstream of the introduction of DNA double-strand breaks.

Based on our PCR analyses, not all IESs are affected following

EZL1 KD. To observe the effects of Ezl1p depletion genome-

wide, we used the EZL1 DNA-seq dataset. A retention score (RS)

was calculated for each IES in the reference set [2]: reads that map

to IES ends were classified as IES-containing or as MAC junction-

containing reads, representing retained and excised IESs respec-

tively. The RS is the ratio of IES-containing to total classified

reads, and RS values vary from 0 for no IES retention to 1 for

complete IES retention. As expected (Fig. 6A), the RS distribution

of the control dataset is close to 0 (mean 0.008), whereas a

Gaussian distribution was observed for the PGM dataset [2] with a

mean RS of 0.77. Even if Pgm is responsible for complete excision

of all IESs [2,3], the mean RS never reaches 1 owing to the

presence of rearranged DNA in the PGM sample coming from the

fragments of the maternal MAC still present in the cytoplasm.

Figure 5. EZL1 is required for imprecise DNA elimination. A.
Fragmentation of germline DNA downstream of the G51 gene is
analyzed by Southern blot hybridization of PstI-digested total genomic
DNA run on an 0.8% agarose gel after ICL7 (control) or EZL1 KD. ICL7 is
a non essential gene that encodes an infraciliary lattice centrin [56]. The
subtelomeric tel51G probe [3] is shown as a grey rectangle above the
line. The black square represents telomeric repeats of the MAC
chromosome. B. Maternal inheritance of macronuclear deletion is
analyzed after ICL7 (control) or EZL1 RNAi, using a cell line reproducibly
deleting the ND7 gene from the MAC genome at each sexual
generation. PCR analysis was performed on the same DNA samples as
in (A) with primers (black arrows) located upstream and downstream of
the ND7 open reading frame.
doi:10.1371/journal.pgen.1004665.g005
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Figure 6. Genome-wide effects of EZL1, DCL2/3 or DCL5 KD on IES excision. A. IES retention scores after PGM, EZL1, DCL2/3, or DCL5 KD.
Histograms of IES retention scores, as defined in Materials and Methods, for control (grey), PGM (red), EZL1 (green) and DCL5 (blue) silencing and
DCL2/3 co-silencing (yellow) datasets. B. EZL1 retention scores display a strong bias for IES size. IESs were grouped by size, each group corresponding
to a peak in the genome-wide IES size distribution [2]. Each box summarizes the EZL1 retention score distribution for the group. The median EZL1
retention score (horizontal line inside the box) and the first (top of box) and third (bottom of box) quantiles are shown. Stars beneath the median
value of a group indicate that the retention score distribution of that group is significantly different from the retention score distribution of the
previous group. One star, p,0.05, two stars, p,1e-10, three stars, p,2.2e-16. The groups contain: 15,857; 485; 6,354; 3,514; 3,108; 3,642; 2,459; 1,934;
1,532; 1,111; 795; 594; 410; 1,176; 780; 398; 198; 89; 64; 47; 183; 63; 135 IESs, respectively. C. Venn diagram of significantly retained IESs after PGM,
EZL1, DCL2/3 or DCL5 silencing.
doi:10.1371/journal.pgen.1004665.g006

Local Effect of Enhancer of Zeste-Like

PLOS Genetics | www.plosgenetics.org 8 September 2014 | Volume 10 | Issue 9 | e1004665



Consistent with previous work [2], excision of all IESs appears to

be affected in a similar manner following PGM KD. In the EZL1

dataset however, the mean RS is 0.32 and the distribution is

bimodal with 8,085 IESs that have an RS close to 0, the rest of the

IESs displaying a wide distribution of retention scores (mean 0.39)

with a mode of 0.5 (Fig. 6A).

We used a statistical test (see Materials and Methods) to

compare the retention scores in the EZL1 or PGM datasets to the

retention scores in the control dataset in order to identify

significantly retained IESs. In the PGM dataset, 44,028 IESs

(97.9%) are significantly retained compared to control and in the

EZL1 dataset, 31,481 IESs (70.1%) are significantly retained with

a mean RS of 0.42. A biological replicate from an independent

EZL1 silencing experiment showed good correlation of retention

scores (Spearman correlation coefficient: 0.887, p, 2.2 10216).

Based on these data, we can define two classes of IESs: those that

are significantly retained after EZL1 KD and those that are not.

Importantly, our PCR analyses are completely coherent with our

genome-wide analysis (Table S4).

We then wondered what distinguishes the two classes of IESs.

Our PCR analyses indicated that long IESs were retained in the

new developing MAC following EZL1 KD (Fig. S10 and Table

S4). To confirm this observation genome-wide, IESs were

grouped according to their size [2] and the distribution of

retention scores for each group represented in a box plot

(Fig. 6B). The IES were grouped as previously described to follow

the periodic distribution of IES size with peaks every ten base

pairs [2]. The first 5 groups (26-72 bp) have retention score

distributions that are significantly different from each other: the

larger the IES size, the higher the retention score. Starting with

the 5th group (.72 bp), the median does not change much, which

indicates that IESs of these sizes are similarly affected by Ezl1p

depletion. For the largest IESs (.1 kb), the retention score

distribution is significantly shifted to higher values. Among those,

there is one group composed of 28 IESs, which have been shown

to derive from Tc1/mariner TEs named Anchois [2]. All of them

are retained after EZL1 inactivation (Table S5). Roughly 50% of

IESs are over 52 bp in length and among them, 89.9% are

significantly retained after EZL1 KD, while only 40% of the IESs

shorter than 52 bp in length are significantly retained. This

robust correlation between IES size and retention score is not

observed for the PGM dataset (Fig. S11), indicating that it is a

property specific to Ezl1p depletion.

We searched for features other than size that could be

associated with EZL1 retained IESs. We compared IESs of the

same size (26-32 bp) and did not find any meaningful

correlation for a large number of criteria, including the

consensus present at IES ends and the scnRNA density on

IESs. We did observe that EZL1-retained IESs have: (i) a

slightly higher GC content, (ii) a more frequent location within

gene coding sequences (Fig. S12). It is intriguing that these two

properties can also be important determinants in nucleosome

positioning [31–33].

The Dcl2 and Dcl3 proteins are required for the excision
of a subset of IESs that are highly sensitive to Ezl1
depletion

Since DCL2 and DCL3 genes, like EZL1, are required for

establishing H3K27me3 and H3K9me3 in the developing MAC

(Fig. 2 and 4), we hypothesized that depletion of Dcl2 and Dcl3

proteins would impair DNA elimination in a similar manner to

that of Ezl1 depletion. To address this question, we sequenced

DNA isolated from newly developed MACs following DCL2/3 co-

silencing. When compared to the PGM and EZL1 datasets, the

total sequence complexity was similar in the DCL2/3 dataset

(Table S3) and analysis of Sardine retention showed that all

characterized Sardine copies are retained following DCL2/3 co-

silencing (Fig. S9). This global analysis confirmed that the Dcl2

and Dcl3 proteins are required for the imprecise elimination of

germline-limited sequences [5].

Analysis of the effects of DCL2/3 KD on IES excision led to a

surprising finding. Compared to PGM or EZL1 silencing, most

IESs are weakly or not at all retained after DCL2/3 co-silencing

(Fig. 6A). Only 3,272 IESs (7.3%) are significantly retained in the

DCL2/3 dataset with a mean RS of 0.24. The small number of

significantly retained IESs and their low RS might be explained

in part by incomplete silencing. Yet, the possibility that there are

still low amounts of Dcl2 and Dcl3 proteins that would provide

sufficient scnRNAs for IES excision is unlikely because very little

if any scnRNAs can be detected in typical DCL2/3 KDs [5,6].

Moreover, we found 3,160 IESs significantly retained for a

biological replicate [6] and a good correlation of RS was

observed for the two biological replicates (Spearman correlation

coefficient 0.616, p, 2.2 10216) despite use of different silencing

constructs. Furthermore, the RS measured for the DCL2/3

dataset are in agreement with our PCR analyses (Fig. S10 and

Table S4). Based on our PCR analyses, we noticed that all

mcIESs are significantly retained in the DCL2/3 dataset and that

all IESs retained after DCL2/3 KD are retained in the EZL1

dataset. The latter was confirmed genome-wide: almost all

significantly retained IESs in the DCL2/3 dataset are signifi-

cantly retained in the EZL1 dataset (3,269/3,272) (Fig. 6C).

Furthermore, IESs retained upon DCL2/3 KD are among the

most retained IESs in the EZL1 dataset (Fig. S13). Only the

largest IESs are retained in the DCL2/3 dataset; 50% of the IESs

larger than 1 kb are significantly retained (Fig. S11). Among

those, 19/28 Anchois IESs are significantly retained after DCL2/

3 KD (Table S5). Altogether our data indicate that IESs retained

upon DCL2/3 KD correspond to a small subset of EZL1

retained IESs (Fig. 6C).

The Dcl5 protein does not play a major role in the
imprecise deletion of MIC-specific sequences and affects
the excision of only a subset of IESs that are sensitive to
Ezl1p depletion

The Dicer-like protein Dcl5 was reported to be required for

efficient excision of at least a fraction of IESs [6]. We therefore

compared the effects of Dcl5 depletion on DNA elimination, using

the previously published DCL5 dataset [6] (Table S2), to those

observed after Ezl1 depletion. Compared to the PGM and EZL1

datasets, the total sequence complexity was much lower in the

DCL5 dataset (Table S3) and analysis of Sardine transposon

retention showed that none of the characterized Sardine copies are

retained following DCL5 silencing (Fig. S9). This global analysis

indicates that, in contrast to Pgm, Ezl1 or Dcl2/3 proteins, the

Dcl5 protein is unlikely to play a major role in the imprecise

elimination of germline-limited sequences.

We then measured the retention score for each IES using our

criteria for statistical significance (see Materials and Methods) and,

consistent with previous work [6], most IESs are weakly or not at

all retained after DCL5 silencing (Fig. 6A). Only 3,024 IESs

(6.7%) are significantly retained in the DCL5 dataset with a mean

RS of 0.21. Almost all significantly retained IESs in the DCL5

dataset are strongly retained in the EZL1 dataset (Fig. 6C). IESs

retained upon DCL5 KD correspond to a small subset of EZL1

retained IESs, which is furthermore different than the subset of

IESs retained upon DCL2/3 KD.
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Discussion

H3K27 and H3K9 tri-methylation and the histone methyl-

transferase Ezl1 appear to participate in the regulatory pathway

that controls developmental genome rearrangements in Parame-
cium. Indeed, H3K27me3 and H3K9me3 appear transiently in

the developing somatic macronucleus when genome rearrange-

ments occur, and, as in Tetrahymena, the EZL1 gene is required

for correct genome rearrangements and encodes a development

specific putative HMT necessary for H3K27me3 and H3K9me3

in the developing new MAC.

scnRNA-mediated H3K27 and H3K9 methylation is
required for deletion of transposable elements

The work presented here demonstrates that the putative HMT

Ezl1 is required for the elimination of transposable elements, of

their more recent relics in the form of long IESs and of germline

DNA regions that encompass several kb in length, which might

altogether represent at least 25% of the germline genome. We

have shown that H3K27me3 and H3K9me3 signals are abolished

after Ezl1 depletion and that scnRNAs are necessary for the

deposition of these histone marks in the developing somatic MAC.

We also provide evidence that the Dcl5 protein necessary for

iesRNA biogenesis does not play a major role in the elimination of

transposable elements. Therefore, our results support the idea that

scnRNAs guide the putative HMT Ezl1 to specific germline

sequences in the developing somatic macronucleus. Consistent

with the idea that the Ezl1 protein acts downstream of scnRNAs,

analysis of small RNA sequencing datasets showed that scnRNA

biogenesis is not affected upon Ezl1 depletion as compared to

control RNAi or wild type (A. de Vanssay and O. Arnaiz, personal

communication). Deposition of H3K27me3 and H3K9me3 would

allow the recruitment, or activation of the excision machinery,

followed by elimination of marked DNA segments (Fig. 7A),

consistent with our observations that the Ezl1 protein acts

upstream of the Pgm endonuclease. Our study provides evidence

that RNAi-mediated heterochromatin formation is necessary for

elimination of germline DNA in Paramecium, as is the case in

Tetrahymena [1]. Ciliates use a similar, sRNA-dependent mech-

anisms for heterochromatin formation as other eukaryotes [20,21],

except that it goes a step further with the physical elimination of

the targeted sequences during development of the somatic nucleus.

Very much like metazoan piRNAs, the scnRNA pathway controls

the silencing of ‘genomic parasites’ such as TEs, thereby ensuring

the integrity of the genome [34,35].

Short, dispersed, single copy germline sequences display
differential sensitivity to depletion of the scnRNA
pathway, Dcl5 or Ezl1 proteins

While all IESs are ultimately excised by the Pgm endonuclease

[2], IESs appear to differ in their recognition mechanism. Only

about a third of IESs (5 out of 13 tested), called mcIESs, are

sensitive to the presence of homologous sequences in the maternal

MAC [11]. Interestingly, genome-wide analyses of the effects of

depletion of Dicer-like 2 and 3 proteins showed that they are both

required for excision of Tc1/mariner TEs and of mcIES, but not

of non-mcIESs ([6] and this study). The evidence obtained so far is

consistent with the idea that Dcl2/3 retained IESs correspond to

mcIESs, but unfortunately, it is not possible to experimentally

determine the genome-wide set of mcIESs. Surprisingly however,

Figure 7. Model for the action of the histone methyltransferase Ezl1 in programmed genome rearrangements and schematic
representation of partially overlapping pathways involved in IES excision. A. To take into account the length bias of DNA sequences
retained after Ezl1 depletion, we propose that efficient excision of germline-limited DNA segments (orange) is regulated by the position of
methylated nucleosomes. For long DNA segments (.150 bp in length) that are covered by at least one nucleosome, the putative HMT Ezl1 would be
targeted to the eliminated sequences and would catalyze the trimethylation of H3 K27 and K9. These histone marks would attract, or activate, the
excision machinery, thereby the excision of marked DNA segments. DNA segments whose size is comprised between 52 bp and 150 bp would be
partly or entirely included within one nucleosome and histone H3 methylation would be essential for their recognition and excision. The smallest
DNA segments (26-52 bp in length), however, would be either wrapped around a nucleosome and histone methylation might be needed for efficient
excision, or located within the linker DNA and histone methylation might be dispensable for their excision. B. Schematic representation of partially
overlapping pathways involved in IES excision. While all IESs are ultimately excised by the Pgm endonuclease, there appears to be different classes of
IESs. Some IESs (30%) require neither EZL1 nor DCL2/3 for complete excision; others (7%) require EZL1 and DCL2/3; while the majority require only
EZL1 (66%).
doi:10.1371/journal.pgen.1004665.g007
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only a small fraction of IESs (less than 10%) are retained after

depletion of the Dicer-like 2 and 3 proteins. Even though it

remains possible that we underestimate the total number of IESs

retained in DCL2/3 KD either for technical reasons or because

the ablation of the scnRNA pathway is compensated by another

unidentified small RNA pathway, our data indicate that the

fraction of mcIESs in the genome might be smaller than initially

thought.

More importantly, our data indicate that most IESs are

correctly excised in the absence of scnRNAs. IESs, even those

that are not under maternal control, normally do produce

scnRNAs during MIC meiosis [5,6,13] and, when introduced

into the maternal MAC, give rise to non-coding transcripts like

any other sequence [7], suggesting that the genome scanning

process should inactivate their scnRNAs. Our conclusion is thus

that excision of non-mcIESs simply does not depend on scnRNAs.

None of the shortest (,28 bp) IESs tested, which are also the

oldest [2], was found to be a mcIES, raising the possibility that

non-mcIES represent the endpoint of IES evolution. In support of

this view, our data indicate that recognizable TEs and young

(longer) IESs display higher retention scores after depletion of

Dicer-like 2 and 3 proteins, indicating that they indeed depend on

their own scnRNAs for recognition and elimination.

In addition to these two classes of IESs, genome wide analysis of

the effects of Ezl1 depletion provided evidence for additional

classes of IESs, showing differential sensitivity to the different

factors studied here. In order to group IESs into functionally

similar classes, we have quantitated the requirement of each of the

45,000 IESs for each of the factors analyzed (Fig. 6C). Our data

show that a large fraction of IESs are retained after Ezl1 depletion.

One surprising finding is that the set of EZL1 retained IESs is not

the same as the set of IESs retained upon DCL2/3 KD. We also

showed that IESs retained upon DCL5 KD correspond to a small

subset of EZL1-retained IESs, which does not correspond to IESs

retained upon DCL2/3 KD. Even though IESs retained after

DCL2/3 KD or after DCL5 KD are all included in EZL1 retained

IESs, our results argue that EZL1 is necessary for correct excision

of most IESs, without the need of scnRNAs or iesRNAs. Because

the excision of IESs, whether they are maternally controlled or

not, EZL1 sensitive or not, is still dependent on the Ptiwi01/09

proteins [27], it remains possible that these proteins may be

alternatively loaded with a different type of small RNA.

EZL1 encodes a putative histone methyltransferase necessary

for H3K27me3 and H3K9me3 and for excision of about 70% of

IESs, suggesting that H3K27me3 and H3K9me3 are required for

their excision, as discussed below. DCL2/3 KD also leads to

diminution of H3K27me3 and H3K9me3 signals at early stages of

MAC development (Fig. 2) and yet, only approximately 10% of

IESs are retained after DCL2/3 KD. The excision of IESs in

DCL2/3 KD might be explained by H3K27me3 and H3K9me3

detected at late stages of MAC development in DCL2/3 KD, but

not in EZL1 KD (Fig. S4). The low amount of H3K27me3

detected by Western blot appears to be compatible with the fact

that IESs cover 3.2 Mb and thus represent about 3% of the

sequence complexity of the MIC genome [2]. Yet we cannot

formally exclude the possibility that the Ezl1 protein has an

additional role in DNA elimination independently of histone H3

methylation. One can imagine, for instance, that the Ezl1 protein

is also necessary for methylation of lysine residues within proteins

involved in DNA elimination.

We now understand that IES excision involves partially

overlapping pathways given our observations of different classes

of IESs. This led us rethink the simple model according to which

scnRNAs -produced by the Dcl2/3 proteins- lead to the loading of

chromatin modifications- H3K27me3/HK9me3 through the

action of the putative histone methyltransferase Ezl1- and

recruitment of the Pgm endonuclease. Indeed, a small subset of

IESs require DCL2/3 and EZL1 (7%), while the majority of IESs

require only EZL1 (63%), and some IESs require neither EZL1

nor DCL2/3 for complete excision (30%) (Fig. 7B). The relative

position of the Dcl5 protein in this process is not yet clear.

Whether the existence of overlapping pathways reflects distinct

protein complexes, complexes containing some different compo-

nents, nucleosome positioning and/or unidentified determinants

remains to be investigated. Future studies combining genetic and

biochemical approaches will be necessary to first describe and then

determine the functional significance of the amazing level of

complexity that is beginning to emerge.

Local effect of the putative histone methyltransferase
Ezl1

In Drosophila and in mammals, Enhancer of zeste proteins are

catalytic subunits of Polycomb complexes, which target

H3K27me3 and maintain repression of numerous developmental

genes. Domains enriched in H3K27me3 cover large regions of the

genome, usually exceeding 10 kb [36]. One unexpected finding of

our study is the putative HMT Ezl1p is required for the excision of

very short DNA segments, as Ezl1 depletion leads to retention of

31,481 IESs (70,1%). Since the vast majority of IESs are shorter

than 150 bp in length, the Ezl1 protein might not necessarily

trigger the formation of heterochromatin on eliminated sequences.

Instead, we imagine that Ezl1 acts locally and is responsible for

trimethylation on lysines 27 and 9 on one or a few nucleosomes

that overlap with the IES. The quantitative genome-wide analysis

of IES retention showed that all IESs are not equal: IESs are

retained to a different extent after Ezl1 depletion and we could not

identify any features in the IES sequences that distinguish IESs

that are significantly retained from those that are not. However,

our analysis revealed a strong correlation between IES size and

retention score, as 90% of IESs longer than 52 bp are retained

after Ezl1 depletion. We propose that the excision process is

regulated by the presence of methylated nucleosomes and depends

on the relative positions of IES ends with respect to the methylated

nucleosomes. As illustrated in Figure 7A, the positioning of

nucleosomes might play a major role in IES excision. We reasoned

that longer sequences have a higher probability to be associated

with modified nucleosomes and would thus be more sensitive to

Ezl1 depletion and loss of methylated H3. Any IES over 52 bp in

length would be either entirely or partially covered by one

nucleosome. This might reflect the length of the linker DNA in the

developing somatic MAC, which is not known, but would be

consistent with linker ranging from 20 to 90 bp in general [37].

Strikingly, small IESs between 26 and 52 bp in length have a wide

range of retention scores. 34% of the smallest IESs (26-32 bp)

required Ezl1 to be excised and we imagine those small IESs are

either within, or partially covered by, one modified nucleosome.

IESs that are not retained after Ezl1 depletion might be located in

the linker region between nucleosome core particles or in

nucleosome-free regions and alternative mechanisms would ensure

their correct and precise excision. In S. cerevisiae, the chromatin

remodeler SWR1 binds in vitro long nucleosome-free DNA and

the adjoining nucleosome core particle, allowing discrimination of

gene promoters over gene bodies. SWR1 binding is enhanced on

acetylated nucleosomes, but recognition of nucleosome-free and

nucleosomal DNA is dominant over interaction with acetylated

histones [38]. Such hierarchical cooperation between DNA and

posttranslational histone modifications might participate in guid-

ing the excision machinery. Precise mapping of nucleosomes and
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of histone marks along the genome will be needed to explore this

possibility. An exciting challenge for the future is to understand the

mechanisms by which histone modifications position the excision

machinery for precise DNA cleavage.

Materials and Methods

Paramecium strains, cultivation and autogamy
Unless otherwise stated, all experiments were carried out with

the entirely homozygous strain 51 of P. tetraurelia. Cells were

grown in wheat grass powder (WGP) (Pines International) infusion

medium bacterized the day before use with Klebsiella pneumoniae,

unless otherwise stated, and supplemented with 0.8 mg/mL b-

sitosterol (Merck). Cultivation and autogamy were carried out at

27uC as described [39,40].

Phylogenetic analyses
SET domain proteins were retrieved using Pfam [41] and

BLAST [42]. Multiple alignments were performed with MUSCLE

3.8 [43] and were subsequently manually improved. Maximum

likelihood (ML) analyses were performed with PHYML [44] using

the PHYML web server [45] hosted at the Montpellier bioinfor-

matics platform (http://www.atgc-montpellier.fr/phyml/).

PHYML analyses were performed using the Le and Gascuel

(LG) amino-acid substitution model [46], using two rate categories

(one constant and four c rates). Statistical support for the different

internal branches was assessed by approximate Likelihood-ratio

test (aLRT; [47]).

Gene silencing experiments
Plasmids used for T7Pol-driven dsRNA production in silencing

experiments were obtained by cloning PCR products from each gene

using plasmid L4440 and Escherichia coli strain HT115 DE3, as

previously described [48]. Sequences used for silencing of EZL2,

EZL3a, EZL3b, EZL4, DCL5 were segments 955-1519; 1402–1980;

1404–1982; 1398-1976 and 4-1998 of GSPATG00032888001;

GSPATG00012695001; GSPATG00013305001; PTETG170

0020001, GSPATG00003051001 [49], respectively. For EZL1

silencing, two non-overlapping gene fragments covering posi-

tions 991-1500 (EZL1-1) and 332-754 (EZL1-2) of

GSPATG00037872001 were used. The fragments used for

ND7 [12], ICL7a [27], DCL2, DCL3 [5] and PGM-1 [3] are

those previously published. Preparation of silencing medium and

RNAi during autogamy were performed as described in [3].

Lethality of post-autogamous cells after double silencing of

DCL2 and DCL3 or silencing of PGM was 90-100% (30–60

cells were checked in each silencing experiment). As expected,

Pgm depletion led to retention of all tested germline-limited

elements in the developing MAC genome, while Dcl2/3

depletion led to retention of well-characterized IESs (Fig. S10)

and Dcl5 depletion led to partial impairment of excision for

IESs retained in the DCL5 dataset.

Injection of GFP fusion transgenes
For the construction of in-frame GFP-EZL1 fusion, a GFP-

coding fragment adapted to Paramecium codon usage [28] was

added by PCR fusion to the 59 end of the EZL1 gene. As a result,

the GFP is fused to the N-terminus of EZL1 and the fusion protein

is expressed under the control of the EZL1 transcription signals

(promoter and 39UTR). It contains the 830-bp genomic region

upstream of the EZL1 open reading frame, the 304-bp genomic

region downstream.

Plasmids carrying the GFP-EZL1 or PGM-GFP [3] fusion

transgenes were linearized by XmnI or AflIII, respectively, and

microinjected into the MAC of vegetative 51 cells. No lethality was

observed in the post-autogamous progeny of injected cells,

indicating that the GFP-EZL1 and PGM-GFP fusions did not

interfere with normal progression of autogamy.

DNA and RNA extraction, Southern blot, RT-PCR and PCR
DNA samples were typically extracted from 200-400-ml

cultures of exponentially growing cells at ,1,000 cells/ml or of

autogamous cells at 2,000–4,000 cells/ml as previously described

[40]. Small-scale DNA samples were prepared from #1,000 cells

using the NucleoSpin Tissue kit (Macherey-Nagel). Electrophoresis

and blotting were carried out according to standard procedures.

RNA samples were typically extracted from 200–400-ml

cultures of exponentially growing cells at ,1,000 cells/ml or of

autogamous cells at 2,000–4,000 cells/ml as previously described

[40]. RNA samples were reverse-transcribed with RevertAid H

Minus Reverse Transcriptase (Thermo Scientific) using polydT

primers (Thermo Scientific) according to the manufacturer’s

instructions. It was then followed by PCR amplifications in a

final volume of 25 mL, with 10 pmol of each primer, 10 nmol of

each dNTP and 2 U of DyNAzyme II DNA polymerase (Thermo

Scientific).

PCR amplifications were performed in a final volume of 25 mL,

with 10 pmol of each primer, 10 nmol of each dNTP and 1.9 U of

Expand Long Template Enzyme mix (Expand Long Template

PCR system, Roche). PCR products were analyzed on 0.8%

agarose gels (Fig. 5). For PCR analysis of IES excision (Fig. 3, S7

and S10), PCR amplifications were performed with 1.9 U of

Expand Long Template Enzyme mix (Expand Long Template

PCR system, Roche). Oligonucleotides were purchased from

Eurofins MWG Operon (see Table S6).

Histone extraction and Western blot
Cell pellets were mechanically lysed in three volumes of lysis

solution (0.25 M sucrose, 10 mM MgCl2, 10 mM Tris pH 6.8,

0.2% Nonidet P-40) with a Potter-Elvehjem homogenizer.

Following the addition of 2.5 volumes of washing solution

(0.25 M sucrose, 10 mM MgCl2, 10 mM Tris pH7.4), the

nuclei-containing pellet was collected by centrifugation at 1000 g

for 1 min and acid extraction of histones was performed as

previously described [50]. 10 mg of histone extracts were used for

Western blot. Electrophoresis and blotting were carried out

according to standard procedures. The H3K27me3 (1:500;

Millipore, 07-449) and H3 (1:10 000; Millipore, 07-690) primary

antibodies were used. Secondary horseradish peroxidase-conju-

gated donkey anti-rabbit IgG antibody (Promega) was used at 1:10

000 dilution followed by detection by ECL (SuperSignal West Pico

Chemiluminescent Substrate, Thermo Scientific). For normaliza-

tion, the membranes probed with H3K27me3 antibody were

stripped in mild stripping buffer (glycine 200 mM, SDS 0.1%,

Tween-20 1%, pH 2.2) and probed again with H3 antibody.

Indirect immunofluorescence and fluorescence
quantification

Cells were fixed for 30 minutes in solution I (10 mM EGTA,

25 mM HEPES, 2 mM MgCl2, 60m M PIPES pH 6.9 (PHEM

1X); paraformaldehyde 1%, Triton X-100 2.5%, Sucrose 4%) and

for 10 minutes in solution II (PHEM 1X, paraformaldehyde 6.5%,

Triton X-100 1.2%, Sucrose 4%). The primary antibodies used

were rabbit polyclonal a-H3K27me3 (07-449, Millipore) and a-

H3K9me3 (07-442, Millipore) at 1:500. After incubation with the

primary antibodies, cells were washed in 1X phosphate-buffered

saline (PBS), incubated with the secondary antibodies (Alexa Fluor
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568-conjugated goat anti-rabbit IgG, A-11036, Invitrogen) at

1:500 for 1h, stained with 1 mg/mL Hoechst, washed in 1X PBS,

centrifuged on microscope slides with the CytoSpinTM 4

Cytocentrifuge (Thermo Scientific) and finally mounted in

Citifluor AF2 glycerol solution (Citifluor Ltd, London). Images

were acquired using a Zeiss LSM 710 laser-scanning confocal

microscope and a Plan-Apochromat 63x/1.40 oil DIC M27

objective. Z-series were performed with Z-steps of 0.5 mm.

To quantify the H3K27me3 and H3K9me3 signals, the Imaris

3D visualization software (Bitplane) was used. For each time point,

the fluorescence intensities of H3K27me3/H3K9me3 in the

developing MACs (signal) and in the corresponding volume of

the cytoplasm (noise) were measured. The mean value and

standard deviation of the signal to noise ratios were calculated

using ten individual cells at each time point.

DNA sequencing
DNA for deep-sequencing was isolated from post-autogamous

cells as previously described [2] and sequenced by a paired-end

strategy using Illumina GA-IIx and Hi-Seq next-generation

sequencers (Table S2).

Reference genomes
The following reference genomes [2] were used in the IES

analyses and for read mapping.

MAC reference (strain 51):

http://paramecium.cgm.cnrs-gif.fr/download/fasta/ptetraurelia_

mac_51.fa

MAC+IES reference (strain 51):

http://paramecium.cgm.cnrs-gif.fr/download/fasta/ptetraurelia_

mac_51_with_ies.fa

PGM contigs:

http://paramecium.cgm.cnrs-gif.fr/download/fasta/assemblies/

ptetraurelia_PGM_k51_ctg.fa

Macronuclear DNA reads for PiggyMac [2] and DCL5

depleted cells and for a biological replicate of the DCL2/3 co-

silencing experiment [6] were obtained from the European

Nucleotide Archive (Accession number ERA137420) (PGM) and

the GenBank Sequence Read Archive (Accession numbers:

SRX387766 (DCL2/3); SRX387766 (DCL5)).

Genome-wide analysis of IES retention
After quality filtering and removal of adapters, Illumina reads

were aligned to the reference genomes (P. tetraurelia MAC

reference genome and MAC+IES reference genome) using BWA

[51] with default parameters. Alignments were indexed with

Samtools [52].

For each sample, IES retention scores were determined as

follows, for each IES in the genome previously identified in [2].

The number of reads that contain the IES sequence (symbolised

IES+) and the number of reads that contain only the macronuclear

IES junction consisting of a TA dinucleotide (IES2) were

determined. Only reads with unambiguous alignments were

counted. Each read was counted only once to avoid over-counting

owing to paralogous matches. Reads were only counted at IES

ends, to avoid length biases resulting from IES length variation.

The retention score (RS) of an IES is then given by the following

equation:

RS = (IES+) / (IES+ + IES2)

Since RS are based on read counts, appropriate statistical tests

allowed us to discriminate IES retention as a result of gene

silencing from IES retention as a result of biases in Illumina

sequencing or errors in the IES identification pipeline (estimated

false positive rate # 4%, [2]). First, we calculated the confidence

interval (alpha = 0.95) of the control retention score value, using

the Pearson-Klopper exact method as implemented by the R

binom package version 1.0–5 [53]. Then we tested for higher

retention in the experiment, thanks to a frequency comparison test

(based on a binomial law of probability) between the experimental

retention score and the upper bound of the confidence interval in

the control. Resulting p-values were adjusted for multiple testing

using the Benjamini & Hochberg method [54]. IESs with adjusted

p-value ,0.05 are considered significantly retained in the sample.

Data accessibility
The EZL1 KD, DCL2/3 KD and control DNA-seq datasets

have been deposited in the European Nucleotide Archive

(Accession number ERA309409). All IES retention scores may

be obtained via ParameciumDB (http://paramecium.cgm.cnrs-

gif.fr/).

Supporting Information

Figure S1 Alignment of Paramecium and human histone H3 N

terminal tails. Specificity of commercial H3K27me3 antibodies in

Paramecium. A) N terminal tails (1-31) of human and Paramecium
H3 are aligned. H3K9 epitope (in red) is present in Paramecium
H3. Considering the fact that the N terminal tail of Paramecium
histone H3 displays some amino acid differences around K27 with

respect to mammalian histone H3 (H3K27 epitope in orange), we

checked crossreactivity of the H3K27me3 antibodies and verified

the specificity by dot blot and competition assays. B) Dot blot assay

using H3 peptides. 100 pmol of each of the indicated peptides was

spotted on the membrane, and probed with the H3K27

me3 antibodies. Polyclonal antibodies raised against tri-methyl

K27 showed specific reactivity with human (HsH3K27

me3: SKAARK(Me3)SAP) or Paramecium tri-methyl K27

(PtH3K27me3: TKAARK(Me3)TAP) but not against no-methyl-

, mono-methyl, di-methyl Paramecium K27, di-mehyl, tri-methyl

Paramecium K9 (QTARK(Me3)STAGN). H3K27me3 antibodies

are specific for H3K27me3 peptides (Paramecium and human)

and do not cross react with Paramecium H3K9me3 peptide. C)

Competition assay. 0 to 100 pmol of Paramecium H3K27me3

peptides were spotted and probed with the H3K27me3 antibodies

alone or in presence of a 50-fold molar excess of the indicated

peptides. Competition with the Paramecium (PtK27me3:

TKAARK(Me3)TAP) or human (HsK27me3: SKAARK(Me3)-

SAP) tri-methyl K27 peptides completely eliminates the signal,

while competition with the un-methylated peptide (PtK27me0:

TKAARKTAP) does not.

(EPS)

Figure S2 Immunostaining and Western blot analysis with

H3K27me3 antibodies during Paramecium life cycle, co-localiza-

tion of Pgm-GFP fusion protein and H3K27me3. A) Immuno-

staining with H3K27me3 antibodies during Paramecium life cycle.

Schematic representations of key nuclear events in Paramecium
autogamy are depicted on the left: (a) vegetative growth, (b-c-d)

meiosis I, (e) meiosis II, (f-i) MAC development. The time points

refer to hours after T = 0 hr that is defined as the time when cells

begin fragmentation of the maternal MAC, as evaluated by

cytological observation. See Figure S4 for details on progression of

autogamy and quantification of the number of stained cells at each

time point. The grey to black color represents the intensity of

H3K27me3 staining. Immunolabeling with H3K27me3 antibod-

ies (in green) and staining with Hoechst (in red). Filled arrowheads

indicate MICs, empty arrowheads indicate maternal MAC,

dashed circles indicate the two developing MACs. Panels (f-i) are

the entire images of the magnified views presented in Figure 1
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(a-d). Note that H3K27me3 antibodies decorate the cilia and the

oral apparatus. Scale bar is 10 mm. Magnified views of the MICs

are presented in the right inside. Scale bar is 2 mm. B) Western

blot with H3K27me3 and H3 antibodies. Acid extracts from (a)

vegetative (Veg) or developing somatic MACs (Dev) of wild type

cells at 25 hrs during autogamy, from nuclei of (b) control or Pgm-

depleted cells, (c) control or Dcl2/3-depleted cells, (d) control or

Dcl5-depleted cells control or (e) Ezl1-depleted cells at 25 hrs

during autogamy were resolved on 15% SDS-PAGE, blotted, and

probed with the indicated antibodies. (b) is a composite of two

parts of the original image and a dotted line marks the cut/paste

sites. C) Co-localization of Pgm-GFP fusion protein and

H3K27me3. PGM-GFP transformed cells were immunolabeled

with H3K27me3 antibodies and stained with Hoechst at 10 hrs

during autogamy. Overlay of Z-projections of magnified views of

Hoechst (in red), H3K27me3-specific antibodies (in blue) and

PGM-GFP (in green) on selected stacks are presented. Dashed

white circles indicate the two developing MACs. The other

Hoechst-stained nuclei are fragments from the old vegetative

MAC. Scale bar is 5 mm.

(TIFF)

Figure S3 Immunostaining with H3K9me3 antibodies during

Paramecium life cycle, co-localization of Pgm-GFP fusion protein

and H3K9me3. A) Immunostaining with H3K9me3 antibodies

during Paramecium life cycle. Schematic representations of key

nuclear events in Paramecium autogamy are depicted on the left:

(a) vegetative growth, (b-c-d) meiosis I, (e) meiosis II, (f-i) MAC

development. The time points refer to hours after T = 0 hr that is

defined as the time when cells begin fragmentation of the maternal

MAC, as evaluated by cytological observation. See Figure S4 for

details on progression of autogamy and quantification of the

number of stained cells at each time point. The grey to black color

represents the intensity of H3K9me3 staining. Immunolabeling

with H3K9me3 antibodies (in green) and staining with Hoechst (in

red). Filled arrowheads indicate MICs, dashed circles indicate the

two developing MACs. Panels (f-i) are the entire images of the

magnified views presented in Figure 1 (a-d). Note that H3K9me3

antibodies decorate the cilia and the oral apparatus. Scale bar is

10 mm. Magnified views of the MICs are presented in the right

inside. Scale bar is 2 mm. B) Co-localization of Pgm-GFP fusion

protein and H3K9me3. PGM-GFP transformed cells were

immunolabeled with H3K9me3 antibodies and stained with

Hoechst at 10 hrs during autogamy. Overlay of Z-projections of

magnified views of Hoechst (in red), H3K9me3-specific antibodies

(in blue) and PGM-GFP (in green) on selected stacks are presented.

Dashed white circles indicate the two developing MACs. The

other Hoechst-stained nuclei are fragments from the old vegetative

MAC. Scale bar is 5 mm.

(TIFF)

Figure S4 Progression of autogamy. A) Schematic representa-

tions of key nuclear events in Paramecium autogamy are depicted.

B) and C) Progression of autogamy was followed by cytology with

Hoechst staining in time course experiments after (B) ND7

(control), or PiggyMac (PGM) or EZL1 silencing and (C) ND7

(control) silencing or DCL2 and DCL3 co-silencing. Linear charts

show quantifications of positive signals in the developing MAC

after immunolabeling with H3K27me3- or H3K9me3- antibodies

at each time point. The time-points refer to hours after T = 0 hr

that is defined as the time when cells begin fragmentation of the

maternal MAC, as evaluated by cytological observation. Because

cells enter autogamy from a fixed point of the cell cycle [57], a

minimum asynchrony of 5–6 h is observed between the first and

the last cells to undergo meiosis. VEG: vegetative, MEI: meiosis,

FRAG: fragmented maternal MAC, ANL: two visible developing

MACs, KAR: karyonide. At least 100 cells were scored for each

time point by fluorescence microscopy.

(EPS)

Figure S5 Phylogenetic analysis of SET domain proteins from

P. tetraurelia, T.thermophila and O. trifallax. An unrooted

Maximum-likelihood (ML) tree is shown. This tree has been

constructed using the SET domains encoded by the genome of a

large number of species. The full list of used sequences and studied

species can be found in Table S1 and Text S1. We identified 13

monophyletic groups that include sequences from several different

species. We named most of these groups by using the name(s) of

the Human and/or Drosophila proteins that are included in the

group. We tried to use as much as possible the nomenclatures used

in previous phylogenetic analyses of SET domain proteins [58,59].

In two cases, the monophyletic groups do not include animal

proteins and we used the name(s) of the included Arabidopsis
protein(s) to name these groups (ATXR3 and ATXR5/6). We

listed in the figure the proteins from Paramecium tetraurelia (Ptet),

Oxytricha trifallax (Otri), and Tetrahymena thermophila (Tthe),

which belong to the different monophyletic groups. The

robustness of the nodes that define the different monophyletic

groups was assessed by evaluating their statistical support (aLRT

values) in the ML analysis and by performing phylogenetic

analyses (ML and Bayesian inference) using a smaller sampling of

species (ciliates + Human + Drosophila + yeasts). This is

represented on the tree by the presence close to the name of the

group of *** (aLRT values.0,8 and groups similar in all analyses),

** (0,8.aLRT values.0,5 and groups similar in all analyses), or *

(aLRT values,0,5 and/or groups significantly different in the

analyses with a different sampling of species). We obtained strong

support for the existence of ciliate members of the EZH, ASH/

SET2/NSD and SET1 groups that also include proteins from

several other species including animals and Arabidopsis. No

member of the Suvar39/EHMT/SETDB8/SETMAR group

could be identified in the ciliate genomes. Several ciliate SET

domains cluster with either Arabidopsis ATXR3 or Arabidopsis
ATXR5/6 in groups that only include sequences from a small

number of species and none from Human or Drosophila. These

groups may therefore correspond to ancestral SET domain

proteins that have been lost in some lineages such as animals or

to divergent members of some other groups. This latter possibility

is supported by the fact that the two groups are associated to the

ASH/SET2/NSD group in the phylogenetic analyses made on the

ciliates + Human + Drosophila + yeasts dataset. The inclusion of

T. thermophila and O. trifallax proteins in the SMYD and SETD7

groups, as well as the belonging of a large number of ciliate

proteins to the SETD6 group, has to be taken with caution, given

the poor support of these groups, and may correspond to the

artefactual grouping of highly divergent sequences.

(EPS)

Figure S6 Alignment of SET domains from EZH-EZL proteins

from P. tetraurelia, T. thermophila, O. trifallax and other

organisms. Sequences were aligned using the Muscle v3.8

software. The white text on a black background denotes invariant

residues; white text on a gray background indicates conserved

residues. Highly conserved residues are highlighted with different

colors according to [60,61]: catalytic site (red), adenosylmethio-

nine (AdoMet) binding pocket (green), lysine substrate binding

pocket (blue). EZL3a and EZL3b are gene duplicates from the last

whole genome duplication [25]. Note that Ptet_EZL3a, Pte-

t_EZL3b and Ptet_EZL4 do not show all conserved residues.

Accession numbers are given in Table S1 and Text S1. Species
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name abbreviations: Amac = Allomyces macrogynus (Fungi); Atha

= Arabidopsis thaliana (Viridiplanta); Aque = Amphimedon
queenslandica (Metazoa); Dmel = Drosophila melanogaster
(Metazoa); Hsap = Homo sapiens (Metazoa); Lgig = Lottia
gigantea (Metazoa); Mbre = Monosiga brevicolis (Choanoflagel-

lata); Nvec = Nematostella vectensis (Metazoa); Otri = Oxytricha
trifallax Ptet = Paramecium tetraurelia (Ciliata); Spun =

Spizellomyces punctatus (Fungi); Tetrahymena thermophila (Cilia-

ta); Ttra = Thecamonas trahens (Apusozoa).

(DOCX)

Figure S7 Expression patterns of EZL genes after EZL1

knockdown. A) Progression of autogamy in time course experi-

ments, in which ICL7 (control) or EZL1 genes have been knocked

down by RNAi. See Figure S4 legend. B) Detection of EZL and

PGM mRNA during autogamy by RT-PCR. Total RNAs were

extracted at each time point shown in A, were reverse transcribed

and cDNAs were amplified by PCR with gene specific primers

and, as a loading control, with primers for the T1b gene, which

encodes a component of the secretory granules [55]. C) PCR

detection of IES 51A4578 circles with divergent primers on

genomic DNA at each time point shown in (B) after ICL7 (control)

or EZL1 silencing. Panels B and C for ICL7 silencing are

reproduced from Figures 3C and 3D to facilitate comparison.

(EPS)

Figure S8 Localization of a GFP-EZL1 fusion protein. A)

Localization of a GFP-EZL1 fusion protein during vegetative

growth (a), meiosis I and II (b-e) and MAC development (f-j).

Panels (g-j) are the entire images of the magnified views presented

in Figure 4 (a-d). Filled arrowheads indicate MICs, empty

arrowheads indicate maternal MAC, dashed circles indicate the

two developing MACs. The grey to black color represents the

GFP-EZL1 intensity. Scale bar is 10 mm. B) GFP-EZL1 fusion

protein localization after PGM or DCL2/3 silencing at 40 hrs

during autogamy. Scale bar is 5 mm.

(TIFF)

Figure S9 Sardine coverage. The bar plots represent read

coverage of 8 individual copies of the Sardine transposon

(GenBank Accession No. HE774468-HE774475). The coverage

was determined by mapping reads using BWA with default

parameters, for the control (KLEB) dataset (grey), PGM silencing

(red), EZL1 silencing (green), DCL2/3 co-silencing (yellow), and

DCL5 silencing (blue) datasets. The normalized units (RPKM) are

reads per kilobase of the transposon sequence per million library

read mapped against the MAC reference genome.

(EPS)

Figure S10 PCR analysis of IES retention after EZL1, DCL2/3

or PGM silencing. PCR analysis of IES retention with primers

(black arrows, Table S6) located on either side of the IES in mass

autogamies after RNAi-mediated silencing of the indicated genes.

Total DNA samples were prepared from starved post-autogamous

cells at approximately 72 hrs. Because the maternal MAC is still

present at this stage, the excised version is amplified in all cases;

the IES-retaining fragment can be detected only if it accumulates

in the zygotic developing MACs. Control: unrelated negative

control (ND7 or ICL7 RNAi); ‘‘+ ‘‘: positive PCR control on

cloned MIC DNA, or DNA from mating-type E cells in the case of

the IES mtA. Note that i) in the case of IES 51A6649, the IES-

containing fragment is shorter in DCL/3 and EZL1 KDs than in

PGM KD and MIC DNA, due to excision of a 29-bp internal IES

[11], ii) in the case of IES 51A2591, the IES-containing fragment

also lacks a 28-bp internal IES [11] in DCL2/3 KD.

(EPS)

Figure S11 IES retention score and size in control, EZL1,

DCL2/3 or PGM datasets. IESs were grouped by size (cf. legend

of Figure 6B), and boxplots were determined to show the

distribution of A) PGM dataset retention scores, B) control

(KLEB) dataset retention scores, C) DCL2/3 dataset retention

scores and D) EZL1 silencing sample retention scores (reproduced

from Figure 6B to facilitate comparison). E) The proportion of

significantly retained IESs for PGM, DCL2/3 and EZL1 datasets

are plotted as a function of IES size, using the same size groups as

for parts A-D, corresponding to the peaks in the IES size

distribution. This representation shows, for example, that 34% of

the IESs in the smallest peak are significantly retained after EZL1

silencing. In the PGM dataset, essentially all IESs are significantly

retained except in the last few groups of largest size, and that is

because of the small number of IESs in those groups, introducing a

lot of noise in the curve. In the EZL1 dataset, the increase in

significantly retained IESs is dramatic over the first 3 groups in the

size distribution and then flattens out. The variation for the largest

size groups is very similar to the variation found for the PGM

dataset, in support of the hypothesis that this variation is noise that

arises from the small number of IESs in those groups. For the

DCL2/3 dataset, few IESs are significantly retained in any of the

groups. However, there does appear to be an increase in

significantly retained IESs for the largest IES sizes. As already

noted, the largest groups include very few IESs introducing a lot of

noise, however for the DCL2/3 dataset, the variations are

different than for the other 2 samples, in support of a real

increase in significant retention of IESs larger than , 500 bp. In

A-D, the stars indicate that the retention score distribution of a

group is significantly different from the distribution of the previous

group.

(EPS)

Figure S12 IES properties. IESs are grouped according to

sample: those with significant retention scores (EZL, DCL2/3),

those that do not have significant retention scores (nEZL, nDCL/

2/3) and ALL IESs. The left column (A,C) concerns only the IESs

in the first peak of the size distribution (, 32 bp) and the right

column (B,D) considers all IESs whatever their size. These IES

groups were examined with respect to GC content (A,B) and with

respect to the proportion of IESs that are within genes (C,D). The

number of IESs in each group is indicated in boldface type inside

the boxplots in A and B. Significant differences in GC content

(A,B) and genomic distribution (C,D) for sensitive versus insensitive

IESs are designated by asterisks (p,2.2 10 -16) and were

determined using a Mann-Whitney test (A,B) or a Chi2 test (C,D).

(EPS)

Figure S13 EZL1 retention score for DCL2/3 and DCL5

retained IESs. Boxplots show the distribution of EZL1 retention

scores for EZL1-retained IESs (green), DCL2/3-retained IESs

(yellow) and DCL5-retained IESs (blue), showing that the

significantly retained IESs in the DCL2/3 and the DCL5 datasets

are among the most retained IESs in the EZL1 dataset. Significant

differences are designated by asterisks (p,2.2 10-16) and were

determined using a Mann-Whitney test.

(EPS)

Table S1 SET domain proteins identified in the somatic MAC

genome of P. tetraurelia. Accession numbers (see ParameciumDB,

http://paramecium.cgm.cnrs-gif.fr/), names and conserved do-

mains are indicated.

(DOCX)

Table S2 Sequencing and mapping statistics. Read statistics are

provided for the samples sequenced for this study, with the
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exception of the PGM and DCL5 silencing samples, which were

previously published [2,6]; European Nucleotide Archive Acc

No. ERA137444 (PGM); GenBank Sequence Read Archive Acc

No. SRX387766 (DCL5).

(DOCX)

Table S3 Sequence complexity of control, PGM, EZL1, DCL2/

3 and DCL5 datasets. The previously published contigs assembled

from a PGM dataset [2] were used as reference, representing the

currently best available germline DNA assembly. However, only

contigs larger than 1 kb were considered, representing 91 Mb of

sequence complexity, of which 89 Mb are covered by read

mapping above our cutoff (i.e. 2 reads per kb of contig per million

mapped reads in the library). Reads from each sample were

mapped to the PGM contigs using BWA with default parameters,

to determine the complexity of the contigs covered by at least 2

reads per kilobase of contig per million reads in the library

(RPKM), giving the first row of the table (‘‘PGM’’ Reference). In

addition, a set of PGM contigs were selected that had control

(KLEB) coverage below the cutoff of 2 RPKM (‘‘PGM not KLEB’’

Reference), representing pure germline DNA not collinear with

MAC chromosomes. The coverage of these contigs by each

sample was also determined (second row of table). Note that 76

Mb is the complexity of the MAC reference genome [25] and that

the total germline complexity is at least 10 Mb greater than 91

Mb. Although the N50 of the PGM assembly that we have used as

Reference is 28,076 bp (meaning that half of the assembly is

contained in contigs larger than 28 kb), the analysis presented in

the table uses the 7,310 contigs greater in size than 1 kb out of a

total of 30,013 contigs, a choice dictated by the necessity of

obtaining good paired-end read mapping to calculate coverage.

(DOCX)

Table S4 IES retention analyzed by PCR and deep-sequencing

after control, DCL2/3, EZL1 and PGM silencing. Maternally

(mcIES) or non-maternally controlled (non-mcIES) is indicated as

‘‘+’’ or ‘‘–‘‘ respectively, based on previous studies [11]. Star(s)

following a retention score indicate that the IES is significantly

retained (cf. Materials and Methods and the legend to Figure 6B).

NA: not analyzed. No retention score can be calculated for (i)

the mtA IES since it is retained in the MAC reference genome

[13] and for (ii) IES51A1835, IES51A4404, IES51A2591 and

IES51A4578 because the control strain carries a maternally

inherited MAC deletion of the A gene. 1: S. Duharcourt and E.

Meyer, personal communication

(DOCX)

Table S5 Anchois retention score. The 28 IESs that were used

to identify the Anchois Tc1/mariner transposon [2] are provided

with their ParameciumDB Accession Numbers, size and retention

scores in the different RNAi datasets under consideration.

Retention scores followed by a star are statistically significant.

The DCL23_r sample is a biological replicate previously published

by [6] that was retrieved from the Genbank Short Read Archive

(Accession number SRX387766).

(DOCX)

Table S6 Oligonucleotides used in this study.

(DOCX)

Text S1 Accession numbers and sequences of SET domain

protein used in Figure 3 and Figures S5- S6 (94 pages).

(DOCX)
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