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Abstract

Escherichia coli is a highly diverse organism that includes a range of commensal and pathogenic variants found across a range 
of niches and worldwide. In addition to causing severe intestinal and extraintestinal disease, E. coli is considered a priority 
pathogen due to high levels of observed drug resistance. The diversity in the E. coli population is driven by high genome plastic-
ity and a very large gene pool. All these have made E. coli one of the most well-studied organisms, as well as a commonly used 
laboratory strain. Today, there are thousands of sequenced E. coli genomes stored in public databases. While data is widely 
available, accessing the information in order to perform analyses can still be a challenge. Collecting relevant available data 
requires accessing different sources, where data may be stored in a range of formats, and often requires further manipulation 
and processing to apply various analyses and extract useful information. In this study, we collated and intensely curated a col-
lection of over 10 000 E. coli and Shigella genomes to provide a single, uniform, high-quality dataset. Shigella were included as 
they are considered specialized pathovars of E. coli. We provide these data in a number of easily accessible formats that can 
be used as the foundation for future studies addressing the biological differences between E. coli lineages and the distribution 
and flow of genes in the E. coli population at a high resolution. The analysis we present emphasizes our lack of understanding 
of the true diversity of the E. coli species, and the biased nature of our current understanding of the genetic diversity of such a 
key pathogen.

DATA SUMMARY
(1)	 The complete aggregated metadata of 10 146 high-quality 

genomes isolated from human hosts (https://​doi.​org/​10.​
6084/​m9.​figshare.​13270073, File F1).

(2)	 A PopPUNK database that can be used to query any 
genome and examine its context relative to this collec-
tion (deposited in Figshare – https://​doi.​org/​10.​6084/​
m9.​figshare.​12650834.​v1).

(3)	 A BIGSI index of all the genomes that can be used to 
easily and quickly query the genomes for any DNA 

sequence of 61 bp or longer (deposited in Figshare – 
https://​doi.​org/​10.​6084/​m9.​figshare.​12666497.​v1).

(4)	 Description and complete profiling of the 50 largest 
lineages that represent the majority of publicly available 
human-isolated Escherichia coli genomes (https://​doi.​
org/​10.​6084/​m9.​figshare.​13270073, File F2). Phyloge-
netic trees of representative genomes of these lineages, 
presented in this paper, are also provided (https://​doi.​
org/​10.​6084/​m9.​figshare.​13270073, files ​tree_​500.​nwk 
and ​tree_​50.​nwk).

(5)	 The complete pan-genome of the 50 largest lineages, 
which includes the following.
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(a) A fasta file containing a single representative 
sequence of each gene of the gene pool (https://​
doi.​org/​10.​6084/​m9.​figshare.​13270073, File F3).
(b) Complete gene presence/absence across all 
isolates (https://​doi.​org/​10.​6084/​m9.​figshare.​
13270073, File F4).
(c) The frequency of each gene within each of the 
lineages (https://​doi.​org/​10.​6084/​m9.​figshare.​
13270073, File F5).
(d) The representative sequences from each line-
age for all the genes (https://​doi.​org/​10.​6084/​m9.​
figshare.​13270073, File F6).

INTRODUCTION
Escherichia coli is a globally distributed, highly diverse 
organism with a very large gene pool [1–3]. While some vari-
ants of E. coli are found in the guts of healthy individuals, in 
animals and in the environment, others cause severe intestinal 
and extraintestinal life-threatening disease [4]. The diversity 
between E. coli strains is driven by high genome plasticity; 
genes are regularly gained and lost, leading to high variability 
in gene content between lineages and isolates [2, 5–7]. The 
combination of these factors, a large gene pool, genome plas-
ticity, global distribution and ubiquity across niches, make 
E. coli an important genetic storehouse for the spread and 
wider dissemination of genes, including those that confer 
resistance and virulence. Indeed, E. coli has been designated 
a priority pathogen by the World Health Organization due 
to its high levels of drug resistance [8]. Therefore, E. coli is a 
highly relevant organism to study in today’s world, with the 
increasing spread of antimicrobial resistance (AMR), and for 
understanding the emergence of new, globally disseminated, 
bacterial pathogens of relevance to human and animal health.

Eight pathogenic variants of E. coli, termed ‘pathotypes’, 
have been defined based on their site of infection and by 
distinguishing phenotypic and molecular markers [4]. These 
are broadly divided into diarrhoeagenic pathotypes, which 
infect the gastrointestinal tract, and extraintestinal variants, 
termed extraintestinal E. coli (ExPECs), which infect other 
bodily sites, most notably the urinary tract and the blood. 
The diarrhoeagenic pathotypes include enteropathogenic  
E. coli (EPEC), enterotoxigenic E. coli (ETEC), enterohaem-
orrhagic E. coli (EHEC), enteroaggregative E. coli (EAEC), 
enteroinvasive E. coli (EIEC), diffusely adherent E. coli 
(DAEC) and adherent invasive E. coli (AIEC) [4]. Shigella 
is defined as a separate genus consisting of four different 
species, Shigella sonnei, Shigella flexneri, Shigella boydii 
and Shigella dysenteriae, for clinical and historical reasons: 
however, lineages of all Shigella species fall within the  
E. coli species phylogeny. Based on molecular definitions, 
they can be considered diarrhoeagenic E. coli [9, 10] with 
Shigella often classified as an EIEC, as they are clinically 
and diagnostically similar [4]. EPECs, ETECs and Shigella 
are prevalent in the developing world, where they cause 

fatal diarrhoea among infants and children [11, 12]. ETECs, 
EAECs and Shigella are the most common causes for travel-
lers’ diarrhoea [13]. EHECs are the only diarrhoeagenic  
E. coli that are a cause for concern in developed countries, 
as their major reservoir is in the gastrointestinal tracts of 
cattle [14, 15]. EHEC infections cause severe diarrhoea, 
and complications of an infection can cause haemolytic 
uraemic syndrome, a life-threatening condition that can 
lead to kidney failure [4, 14].

The transition from non-pathogenic or non-antimicrobial-
resistant variants of E. coli to pathogenic or antimicrobial-
resistant, is primarily driven by horizontal gene transfer, 
through the acquisition of virulence factors or resistance 
genes on plasmids and other mobile genetic elements 
[4, 16–19]. The availability of thousands of E. coli genomes 
in public databases provides the opportunity to examine 
the E. coli lineages and their gene pool on a scale and reso-
lution that was not previously possible. Here, we collated 
over 10 000 E. coli and Shigella isolate genomes, collected 
from a combination of publications and public databases, 
and assembled and annotated the entire collection to a 
high quality. Shigella were included as they are phyloge-
netically part of the E. coli species, and are referred to as  
E. coli throughout. We provide all the aggregated associated 
metadata, a database to query newly sequenced genomes 
against the assemblies and a searchable index to query a 
DNA sequence of interest. Additionally, we characterized 

Significance as a BioResource to the community

As of today, there are more than 140 000 Escherichia 
coli genomes available on public databases. While data 
are widely available, collating the data and extracting 
meaningful information from it often requires multiple 
steps, computational resources and expert knowledge. 
Here, we collate a high-quality and comprehensive set of 
over 10 000 E. coli genomes, isolated from human hosts, 
into a set of manageable files that offer an accessible 
and usable snapshot of the currently available genome 
data, linked to a minimal data quality standard. The data 
provided include a detailed synopsis of the main line-
ages present, including their antimicrobial and virulence 
profiles, their complete gene content, and all the associ-
ated metadata for each genome. This includes a data-
base that enables the user to compare newly sequenced 
isolates against the assembled genomes. Additionally, 
we provide a searchable index that allows the user to 
query any DNA sequence against the assemblies of 
the collection. This collection paves the path for many 
future studies, including those investigating the differ-
ences between E. coli lineages, following the evolution of 
different genes in the E. coli pan-genome and exploring 
the dynamics of horizontal gene transfer in this impor-
tant organism.
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the most-common lineages present in this dataset, including 
their resistance and virulence profiles. Finally, we defined 
the complete gene content of these lineages, enabling many 
future studies examining the biological differences between 
the lineages and unravelling routes of gene movement in 
the population.

METHODS
Data collection
A collection of 18 156 E. coli (including Shigella) genomes, 
isolated from human hosts, were downloaded and curated 
to create a final collection of 10 146 genomes, as summarized 
in Fig. 1. For an initial collection of human E. coli genomes 
for which complete metadata is available, whole-genome 

sequences were downloaded from the National Center for 
Biotechnology Information (NCBI) using genome acces-
sions from publications (detailed in File F1 [3, 20–28]). 
The complete metadata were extracted directly from these 
publications and these were combined. These genomes 
were supplemented to include other genomes available 
from public databases, not associated with publications, 
for which only partial associated metadata were available. 
These were predominantly sourced from EnteroBase and 
from Public Health England (PHE) routine surveillance 
BioProject (PRJNA315192), downloaded on September 
17 2018 [3, 29]. As public read repositories also contain 
pre-publication data, all publicly available genomes were 
filtered to include only those for which explicit approval 
was obtained for use by the submitter.

Fig. 1. Workflow for constructing the genome collection. Steps taken to obtain a curated, comprehensive and high-quality collection of 
genomes that includes reads, assemblies and annotation files for each included genome. QC steps are shown in red hexagons, numbers 
in white rectangles indicate the number of genomes remaining after each QC step. (NCTC: National Collection of Type Cultures.) [20, 21, 
22, 23, 24, 25, 26, 70, 71]



4

Horesh et al., Microbial Genomics 2021;7:000499

Reads
Reads were downloaded from the Sequence Read Archive 
using fastq-dump (v2.9.2). Reads that had been sequenced 
by Illumina were trimmed using trimmomatic (v0.33) [30] 
with the TruSeq3-PE-2 adaptors, a minimum length of 36 bp, 
and parameters LEADING=10, TRAILING=10, SLIDING 
WINDOW=4 : 15 and quality encoding Phred33. When reads 
were unavailable (3093 genomes), assemblies were shredded 
into artificial reads using the script available at https://​github.​
com/​sanger-​pathogens/​Fastaq.

Kraken (v0.10.6) was used on the reads to determine what 
organism had been sequenced [31]. If fewer than 30 % of 
reads were assigned to E. coli or Shigella spp., the genome 
was removed (200 genomes, based on a distribution of these 
values, Fig. S1, available with the online version of this article). 
Reads were also mapped to an E. coli reference strain cq9 
(GCF_003402955.1) and quality-control (QC) statistics were 
calculated. Samples were removed (1255 genomes) according 
to the distributions of QC values across all reads (percentage 
of reads mapped to the reference >60 %, percentage of bases 
mapped that were mismatches was >0.03, percentage of 
heterozygous SNPs <3 %; Fig. S1).

Assembly
Reads were assembled by velvet (v1.2.09) [32] using the 
prokaryotic assembly pipeline (v2.0.1) with default setting 
[33]. Assembled genomes were filtered to remove those with 
more than 600 contigs or those that had a total combined 
contig length of less than 4 Mb or larger than 6 Mb (1152 
genomes, based on a distribution of these values; Fig. S1).

Mash distances were calculated between all the assemblies 
[34]. Mash uses a minimized database of k-mers, i.e. words 
of size k, to represent each genome (based on the MinHash 
sketch). Mash returns the proportion of shared k-mers, the 
Jaccard distance, between every two genomes as a measure 
of their genomic distance. A network was constructed so 
that every genome is represented in a node and two genomes 
were connected only if their Mash distance was smaller than 
0.04 [equivalent to 96 % average nucleotide identity (ANI)] 
[34]. Isolates from the same species should have an ANI of 
approximately 95–96 %, i.e. Mash distance smaller than 0.04 
[35]. Therefore, genomes were removed (189 genomes) if they 
were disconnected from the largest connected component, 
which should represent the E. coli and Shigella species.

Coding sequences (CDSs)
Predicted CDSs were predicted using Prokka with a custom 
training file (v1.5, available at https://​doi.​org/​10.​6084/​m9.​
figshare.​13270073). Prodigal (v2.6) was trained using a random 
selected set of 100 genomes from the entire dataset using the ‘​
prodigal.​py’ script available in Panaroo [36, 37]. The training 
file was used as the input for Prokka to predict the CDSs in the 
entire dataset. All the genomes were then annotated using the 
same standardized training properties defined in the training 
file. There was a linear relationship between the size of the 

genome and the number of genes called. Genomes that deviated 
from linear correlation by 500 genes were removed (Fig. S1).

Constructing the BIGSI index
Each assembly was converted to a non-redundant list of k-
mers through the construction of De Bruijn graphs (k=31) 
using mccortex v1.0 [38]. All assemblies had between 105 
and 106 unique k-mers. The parameters chosen for the BIGSI 
index were h=1 and m=28 000 000, as detailed in the berke-
leyDB config file (available at https://​doi.​org/​10.​6084/​m9.​
figshare.​12666497, file ​config_​10K_​00.​yaml) and following 
steps were performed using BIGSI (https://​github.​com/​iqbal-​
lab-​org/​BIGSI) [39]. A single hash function (h=1) was applied 
to each k-mer and each assembly was stored as a fixed length 
(m=28 000 000) Bloom filter (bit-vector). To reduce the overall 
build time of the index, individual Bloom filters were merged 
in batches of 500 into matrices using the 'bigsi merge_blooms' 
command, where the input '--from_files' was a tab separated 
file where the first column provides the absolute path to the 
bloom filter and the second is the assembly name. These 
merged blooms files were then used to build the BIGSI 
index using 'bigsi large_build' command where the provided 
'from_file' input was a file that contains two columns, sepa-
rated by tab, where the first column details the absolute path 
to the merged bloom matrices and the second contains all 
the corresponding assemblies in that merged bloom file, 
separated by commas. The BIGSI index of the assemblies in 
this resource, index10k, can be found at https://​doi.​org/​10.​
6084/​m9.​figshare.​12666497.

Multilocus sequence typing (MLST)
The sequence type (ST) for each genome was determined by 
running ‘mlst_check’ (https://​github.​com/​sanger-​pathogens/​
mlst_​check) according to the Achtman MLST scheme down-
loaded from PubMLST on January 22nd 2019 [40]. Shigella 
are included in the Achtman E. coli MLST scheme.

Defining lineages using PopPUNK
PopPUNK (Population Partitioning Using Nucleotide 
k-mers) (v. 1.1.3) was used to group the assemblies into 
PopPUNK clusters or lineages [41]. PopPUNK uses Mash, 
a k-mer based whole-genome comparison approach, to infer 
the pairwise core and accessory distances between every two 
assemblies. The database was constructed with parameters k-
min=18, k-max=30 and step_size=3, as these values produced 
the correct line fit for estimating the core and accessory 
distances, as detailed in https://​poppunk.​readthedocs.​io/​
en/​latest/​troubleshooting.​html#​kmer-​length. The estimated 
core and accessory distances between the assemblies were 
clustered using a two-dimensional Gaussian mixture model 
(GMM) to identify cut-offs for the within lineage core and 
accessory distances. The model fitting was applied using six 
different values of total number of clusters for the GMM (k=5, 
8, 11, 14, 17 and 20). The scores generated by PopPUNK for 
all these values were compared. A value of k=11 was chosen 
as it had the overall lowest entropy, i.e. highest confidence 
in assigning each distance to a cluster, and comparably high 
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overall score. PopPUNK then constructs a network between 
all assemblies where each node is an assembly, and two assem-
blies are connected only if their core and accessory distance 
is below the within lineage core and within lineage accessory 
distances. All assemblies which are connected to each other 
in this network are defined as a lineage.

Phylogenetic analysis
The core-gene phylogeny was inferred from the core-gene 
alignment generated using Roary for each lineage [42], and 
a tree from the SNPs in the core-gene alignment, extracted 
using SNP-sites [43] (v2.3.2), was reconstructed using Fast-
Tree [44]. Treemer (v0.3) [45] was used to select ten genomes 
from each lineage as representatives of that lineage (Table S1). 
Similarly, Treemer was used to choose a single representa-
tive genome from each of the 50 lineages to generate a tree 
containing only 50 genomes. In both cases, the core-gene 
phylogeny was inferred from the SNPs of the core-gene align-
ment generated using Roary on the representative genomes 
[42]. A maximum-likelihood tree from the informative SNPs, 
chosen using SNP-sites [43] (v2.3.2), was reconstructed using 
RAxML (v8.2.8)[46] with 100 bootstrap replicates.

Phylogroup assignment
ClermonTyping (v1.4.1) was used to assign the E. coli phylo-
group of the 500 representative E. coli genomes [47]. Cler-
monTyping uses an in silico PCR approach of marker genes, 
following the Clermont phylotyping scheme presented by 
Clermont et al. [48]. This is supplemented by a Mash-based 
mapping to a curated collection of E. coli genomes, for which 
the phylogroup is known. A lineage was assigned to the phylo-
group according to the most common phylogroup assignment 
of the ten representative strains. The exception was lineage 
10, which was assigned to phylogroup D by ClermonTyping 
as the marker gene arpA was not detected in the in silico 
PCR using primer ArpAgpE; however, the assignment did 
not correspond with the phylogeny and this was corrected 
to phylogroup E.

Identification of antimicrobial and virulence genes
A collection of AMR genes was obtained from ResFinder 
(https://​bitbucket.​org/​genomicepidemiology/​resfinder_​db/​
src/​master/; downloaded on 06/03/19) [49]. Virulence genes 
were downloaded from the VirulenceFinder database (https://​
bitbucket.​org/​genomicepidemiology/​virulencefinder_​db/​
src; downloaded 24/08/18). Read files of genomes (real 
where available or otherwise artificially generated from the 
assemblies) were queried for the presence of these known 
AMR or virulence genes using ariba (v2.14) with default 
settings [50]. A gene was marked as present only if 80 % of 
the entry sequence in the database was covered, otherwise it 
was marked as absent.

Pathotype assignments
Pathotypes were assigned according to the presence of 
specific marker virulence genes according to the pathotype-
associated markers presented in table 1 in the reference by 

Robins-Browne et al. [51], refined by the source of isolation: 
if the source of isolation was blood or urine the assignment 
was ExPEC; if any variant of Shiga-toxin was present the 
assignment was STEC (Shiga toxin-producing E. coli); if eae 
was present the assignment was aEPEC (atypical EPEC)/
EPEC; if both Shiga-toxin and eae were present the assign-
ment was EHEC; if either aatA, aggR or aaiC were present 
the assignment was EAEC; if est or elt were present the 
assignment was ETEC; if ipaH9.8 or ipaD, characteristic of 
the invasive virulence plasmid pINV, were present the assign-
ment was EIEC. A pathotype was assigned to a lineage if at 
least half of the isolates of the lineage were assigned to the 
same pathotype. Shigella lineages were assigned Shigella as 
their pathotype.

Pan-genome analysis
A pan-genome analysis using Roary [42] was applied on each 
lineage separately using the default identity cut-off of 0.95, 
with paralog splitting disabled [42]. The outputs of the pan-
genome analysis of each lineage were combined to generate 
a final collection of gene clusters of the entire dataset in the 
following steps.

(1)	 Gene cluster definitions, from the Roary analysis within 
each lineage, were assumed to be the best approximation 
of the representation of the genes that are well defined 
within a closely related group of genomes. Note that 
each gene cluster has multiple members (nucleotide 
sequences) from that lineage (Fig. S2, step 1). A rep-
resentative sequence was chosen for each gene cluster 
as the sequence that had the modal length within that 
gene cluster. If there was no mode, a sequence with the 
median length was chosen.

(2)	 A pan-genome analysis using Roary was applied on all 
lineages in an all-against-all manner using an identity 
threshold of 0.95 and with paralog splitting disabled, 
leading to a total of 1081 Roary analyses. This generated 
gene clusters for each possible lineage pair. Note that, 
similar to step 1, each gene cluster can have multiple 
members (nucleotide sequences), but this time from 
both lineages used in each respective comparison (Fig. 
S2, step 2).

(3)	 A ‘combined Roary graph’ was constructed, with the 
gene clusters from the original Roary outputs from step 
1 (a Roary analysis on a single lineage only) as nodes 
(Fig. S2, step 3).

(4)	 Gene cluster of lineage A was connected to a gene clus-
ter of lineage B if there was a gene clustering in their 
combined Roary analysis (step 2) where (i) 80 % of the 
members of the gene cluster of A were in the new com-
bined clustering, and (ii) 80 % of the members of the 
gene cluster of B were also in the combined clustering 
(Fig. S2, step 4).

(5)	 Following corrections, the connected components of the 
combined Roary graph were the final set of gene clusters 
in the entire dataset (Fig. S2, step 6).

https://bitbucket.org/genomicepidemiology/resfinder_db/src/master/
https://bitbucket.org/genomicepidemiology/resfinder_db/src/master/
https://bitbucket.org/genomicepidemiology/virulencefinder_db/src
https://bitbucket.org/genomicepidemiology/virulencefinder_db/src
https://bitbucket.org/genomicepidemiology/virulencefinder_db/src
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The following corrections were applied to add or remove 
connections between gene clusters in the combined Roary 
graph (Fig. S2, step 5).

(a) Density-based clustering groups data points based on their 
density in space, while assuming that data points that belong 
to the same group are in a region of a high density and are 
separated from another group by a region of low density. The 
distance metric used for density-based clustering was the 
proportion of shared edges (Jaccard index) between every two 
nodes in the combined Roary graph. This identified spurious 
connections between genes that were not supported by most 
pairwise Roary analyses (Fig. S2). This was applied using 
the ‘dbscan’ method of the Python package sci-kit learn [52] 
with parameters epsilon=0.5 and min_samples=6. Connec-
tions between a gene cluster of lineage A and a gene cluster 
of lineage B that did not belong to the same dbscan cluster 
were removed.

(b) To correct for under-splitting, all representative nucleotide 
sequences of each gene cluster of the combined Roary graph 
were aligned to each other using mafft (v7.310) [53] with 
default settings. If the alignment of two sequences showed 
more than 20 % mismatches along the length of the longer 
sequence, the connection between them in the combined 
Roary graph was removed (see Fig. S2, step 5 b).

(c) To correct for over-splitting, the representative protein 
sequences of all the gene clusters of the original Roary outputs 
were aligned to each other using blastp (version 2.9). Repre-
sentative sequences which were more than 95 % identical over 
80 % of their length were merged (See Fig. S2, step 5 c).

(1)	 Following corrections, the connected components of the 
combined Roary graph were the final set of gene clusters 
in the entire dataset (Fig. S2, step 6).

File F6, available at https://​doi.​org/​10.​6084/​m9.​figshare.​
13270073, contains the representative sequences from the 
original Roary outputs (step 1) for each gene in the final gene 
clusters (step 6).

Statistical analysis
Statistical analyses were performed in R (v3.3+). Ape (v5.3) 
[54] and ggtree (v1.16.6) [55] were used for phylogenetic 
analysis and visualization. The ggplot2 (v3.2.1) package was 
used for plotting [56]. All scripts used in the analysis are 
available at https://​github.​com/​ghoresh11/​ecoli_​genome_​
collection.

RESULTS
E. coli genomes
A total of 18  156 E. coli genomes, isolated from human hosts, 
were collected from a variety of sources and required multiple 
processing steps, which are detailed in Methods and summa-
rized in Fig. 1. Shigella, which are phylogenetically part of 
the E. coli species, were also included and are referred to as  
E. coli throughout. In short, genome identifiers from publica-
tions where complete metadata were available were collected, 

and combined with identifiers of genomic data from public 
databases for which only limited metadata were available. 
Genomes were downloaded, assembled and their CDSs were 
predicted and annotated. Importantly, to ensure the accuracy 
of the data, multiple QC measures were applied, reducing the 
initial dataset and thereby ensuring a final collection of high-
quality genomes (Fig. 1). Only genomes for which we received 
explicit approval for them to be used by the submitter were 
kept, removing any doubts regarding the ability to use this 
data for high-resolution analyses. The curated high-quality 
final genome collection comprises 10 146 genomes on which 
all the subsequent analysis was performed. This makes this 
dataset unique as it can be used as a reliable, well-described 
and curated reference for the diversity of the majority of 
publicly available human-isolated E. coli genomes.

The vast majority of available E. coli genomes are from devel-
oped countries, collected in surveillance in clinical settings. 
The clinical samples are mostly generated by agencies that 
conduct regular investigations of E. coli isolates in outbreaks 
and routine surveillance programmes. These include PHE 
(5207 genomes), the Food and Drug Administration (FDA) 
(883 genomes), and the Centers for Disease Control and 
Prevention (CDC) (561 genomes) (Fig. S3). This explains 
the bias in the available genomic data with 70 and 15 % of the 
original samples originating from the UK or the USA, respec-
tively. The remaining genomes originated mostly from other 
countries in Europe, with only a small fraction of genomes 
being currently available from Asia, Africa, South America 
or Oceania.

A total of 38 % of the samples considered here were taken from 
faeces, blood and urine. The remaining samples were recorded 
as being from unknown or other human sources (File F1). 
Isolates from Africa and Asia were exclusively from faecal 
samples, whereas isolates from Europe and North America 
included those causing both intestinal and extraintestinal 
disease (Fig. S3). Where available, the pathotype description 
was as described in the original publication. Within these 
isolates, the representation of diarrhoeal-disease-causing  
E. coli pathotypes, EPECs and ETECs, was very low with 
only 3 and 2 % of the genomes belonging to these pathotypes, 
respectively.

Six STs represent more than 50 % of the genomes in 
the collection
MLST is based on the variation of seven housekeeping 
genes, the combination of which define a ST. A total of 993 
different known STs were identified in the collection. A total 
of 87 STs (9 %) alone accounted for 80 % of the isolates (Fig. 
S4). Six STs, 11, 131, 73, 10, 95 and 21, accounted for 50 % of 
the isolates included here. A total of 790 STs (~80 % of the 
STs) were represented by five isolates or fewer. Many of the 
former represent important STs linked to human disease. For 
instance, ST11 (30 % of all genomes) is associated with EHEC 
serotype O157:H7, a major foodborne pathogen that can be 
contracted by eating contaminated foods, specifically beef 
products, as it lives in the colon of cattle and is an important 

https://paperpile.com/c/kuRWt5/XddMO
https://doi.org/10.6084/m9.figshare.13270073
https://doi.org/10.6084/m9.figshare.13270073
https://github.com/ghoresh11/ecoli_genome_collection
https://github.com/ghoresh11/ecoli_genome_collection
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cause of haemolytic uraemic syndrome in humans [14]. The 
collection also includes STs of non-O157 EHECs, including 
STs 17 (2  %) and 21 (2  %). STs 131 (8  %), 73 (4  %) and 95 (3  %) 
are all STs known to be associated with extraintestinal disease 
[20, 21, 57]. ST10 (3 %) is a broad-host-range ST, isolates 
of which have been observed in multiple host species, and 
include all known E. coli pathotypes [58].

The dataset can be divided into lineages of closely 
related isolates
As E. coli is a highly diverse organism, relying on MLST for 
subtyping can lead to new ST definitions within a group of 
closely related isolates due to variation in one of these genes, 
or otherwise to connections between unrelated isolates due to 
recombination. Therefore, we grouped the genomes into line-
ages of closely related isolates using a whole-genome-based 
approach. PopPUNK extracts and compares words of size k, 
named k-mers, from whole genomes to measure the deviation 
in core-gene sequence termed as the core distance, and the 
deviation in gene content, termed as the accessory distance, 
between two genomes [41]. In E. coli, the core distance, as 
estimated by PopPUNK, correlates with the pairwise SNP 
distance between all the core genes of the two genomes 
being compared, and the accessory distance correlates with 
the proportion of shared accessory genes between every two 
genomes (the Jaccard distance) [41]. Genomes that had both 
low core and accessory distances were considered to be in 
the same PopPUNK cluster, defined here as a lineage, as they 
were highly similar in both their core and accessory genomes.

Based on the rules described above, this grouping produced 
1154 lineages. As expected, the distribution of lineage sizes 
was similar to that defined by MLST with a few large line-
ages representing most of the population (Fig. S4). A single 
lineage, lineage 1, contained 34 % of all genomes (File F2). 
This lineage was mostly comprised of ST11, i.e. O157:H7 
EHEC. Similarly, lineage 2 contained 8 % of all genomes 
and consisted mostly of ST131, a global multidrug-resistant 
(MDR) ExPEC lineage. The third largest lineage, lineage 3, 
contained 5 % of all genomes and mostly consisted of isolates 
belonging to ST73 (File F2).

Fifty PopPUNK lineages represent more than 75 % 
of the genomes, and are representative of the 
currently known E. coli population structure
We focused the further analysis of the dataset on the 50 
lineages that had at least 20 isolates. Together these lineages 
included 7693 genomes (76 % of the collection) and 271 
different STs (27 % of those described by this collection). 
To examine the population structure and diversity of the 50 
largest lineages, the phylogeny was reconstructed by selecting 
ten genomes from each lineage that captured most of the 
diversity of that lineage (see Methods; Table S1), leading to 
a total of 500 genomes representing the dataset. Their core 
genome was extracted and the phylogenetic tree from the 
core-gene alignment was inferred. The phylogenetic analysis 
confirmed that PopPUNK separated the genomes into clearly 
distinct lineages based on their core genome (Fig. 2). The 

exception to this was lineage 12, which was split into two 
closely related groups. One group was more closely related 
to lineage 28, whereas the other was closer to lineage 35. The 
core and accessory distances estimated by PopPUNK showed 
that indeed, the core distance between PopPUNK clusters 
12, 28 and 35 was low; however, they sufficiently deviated in 
their accessory gene content to be defined as three distinct 
PopPUNK lineages.

Population genetics studies on E. coli have defined the exist-
ence of eight deep-branching phylogenetic groups, termed 
‘phylogroups’ (A, B1, B2, D, E, F, C and G) [59–62]. While 
the collection assembled here is biased towards particular STs 
and we only included lineages with 20 genomes or more, it is 
evident from Fig. 2 that the collection of genomes spans all  
E. coli phylogroups [18 from B1, 13 from B2, 4 from A, 5 from 
D, 4 from F, 3 from E, 1 from C, and 2 of Shigella representing 
S. sonnei (45) and S. flexneri (30)] and, therefore, is repre-
sentative of the known species diversity [48, 63].

Associated metadata shows a consistent source of 
isolation per lineage
The lineages broadly divide into those enriched for isolates 
collected from faecal samples, and those collected from blood 
and urine samples (see File F2, Fig. S5). Only lineages 26, 
34 and 48 of the intestinal isolate lineages were enriched for 
samples collected from Africa and Asia. These lineages mostly 
represented EPEC and ETEC isolates that had been collected 
from faecal samples in developing countries as part of the 
the Global Enteric Multicenter Study (GEMS) collection, 
in contrast to the other lineages containing faecal samples 
that include STECs or EHECs that had been collected in the 
high-income settings [12]. Lineage 12, which consisted of 
78 % isolates from ST10, was the only lineage that spanned 
all continents and consisted of all sample types (faecal, blood, 
urine or unknown).

Where sampling date was available, 39 % of the genomes in 
the collection were collected in the last 10 years. A number 
of lineages included older, historically important isolates 
from the Murray collection [22] (Fig. S5). Notably, lineage 
30, which contains S. flexneri isolates, had a higher propor-
tion of isolates collected before 1980 relative to the rest of the 
collection (Wilcox summed rank test, P <0.05, Bonferroni 
corrected).

Lineages vary substantially in their genome size
The number of genes in a single isolate and the size of the 
genome varied significantly between the lineages (Fig. S6). 
The weighted-mean number of genes across all lineages was 
4869 genes and the weighted-mean genome length was 5.2 
Mbp. Isolates from the Shigella lineages 30 and 45 had the 
smallest genomes, with a genome size of only 4.3 and 4.7 
Mbp. Lineages 12, 40 and 48 had the second smallest genome 
lengths with a mean genome length of ~4.85 Mbp. However, 
lineages 5, 6, 8, 15 and 48, all from phylogroup B1, had a 
mean of over 5100 genes per isolate (200 genes more than the 
dataset mean). The number of predicted genes and genome 
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size were affected by the phylogroup. Lineages in phylogroups 
E, F and B1 tended to have larger genomes with a few excep-
tions. Lineages from phylogroup C, B2 and A tended to 
have smaller genomes. Phylogroup D had a wider range of 
observed genome sizes.

Multidrug resistance was predicted for more than 
half of the isolates in 16 of 50 lineages
A total of 153 known resistance gene alleles were identified in 
the collection. The number of known resistance genes within 
each isolate ranged from none to a maximum of 18 in a single 
isolate, predicted to confer resistance to up to ten different 
antimicrobial classes (Fig. 3a, File F1).

Multidrug resistance in an isolate has been defined as 
resistance to three classes of antibiotics or more [64]. All 
but five lineages (lineages 21, 36, 43, 47 and 49) had at least 
one isolate that was MDR. We defined an MDR lineage as 
a lineage where half of the isolates or more were MDR. A 

total of 16 of the 50 lineages investigated were MDR (Fig. 3a, 
File F2). Importantly, this metric is affected by the sampling 
bias; lineages are MDR because isolates with clinical signifi-
cance are being sequenced, and it does not inform on the 
true diversity of AMR genotypes within these lineages in the  
E. coli population. Indeed, E. coli isolated from humans have 
been shown to possess more resistance genes [65]. Half of 
these lineages were isolated predominantly from blood and 
urine samples, i.e. ExPECs (lineages 2, 20, 44, 40, 17, 7, 37 and 
9). These included lineages 2 and 20, which contain isolates of 
the global ExPEC lineage ST131. Three of the ExPEC MDR 
lineages belonged to phylogroup D (lineages 19, 7 and 37). 
Three other MDR lineages predominantly contained EPEC 
isolates from the GEMS collection (lineages 26, 34 and 48) 
[12, 23]. The source of isolation of the remaining five lineages 
(lineages 32, 35, 18, 16 and 24) was predominantly unknown 
(Fig. S5).

Fig. 2. Population structure of the lineages. Core-gene phylogeny of 10 representatives from each of the 50 largest PopPUNK lineages, 
selected using Treemer [45]. The solid coloured outer ring indicates the phylogroup assignment of the representatives of that lineage. 
The tree was plotted using iTOL [72]. Colours on the tips are used to distinguish between the PopPUNK lineages.

https://paperpile.com/c/kuRWt5/fIfSu
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Forty-three of fifty lineages are dominated by a 
single E. coli pathotype
Consistent with the collection of E. coli isolates being from 
human hosts and mostly from clinical samples, 439 known 
virulence genes were observed in our dataset. The isolates 
had a median of 9 known virulence genes in a single genome, 
with a maximum value of 26 virulence genes present in a 
single isolate.

A combination of the source of isolation as well as the detec-
tion of a set of marker virulence genes were used to find 
the most prevalent predicted pathotype within each lineage 
(see Methods). A total of 44 of 50 lineages were identified as 
predominantly containing one of the E. coli pathotypes, i.e. 
at least half of the isolates of the lineages were predicted to 
belong to one of the pathotypes (Fig. 3b). Lineage 12, which 
mostly consists of E. coli isolates typing as ST10, was the only 
lineage that contained isolates assigned to multiple different 
pathotypes with no single dominant pathotype (11 % ExPEC, 

29 % EAEC, 24 % EPEC, 9 % STEC, 2 % EHEC, 1 % ETEC and 
24 % unassigned). The remaining six lineages that were not 
assigned an E. coli pathotype, predominantly from B1 (21, 
42, 43, 49 B1; 38, F; and 51, D), had relatively few virulence 
genes, as well as few AMR genes.

Of the isolates included here, phylogroups B2, F and D predomi-
nantly contained ExPEC isolates. Lineages 27 and 18 were the 
only lineages in phylogroup B2 that contained 67 % EHEC isolates 
and 33 % aEPEC/EPECs (lineage 27) and 100 % STEC isolates 
(lineage 18) (Fig.  3b). All phylogroup E lineages contained 
predominantly EHEC isolates. Phylogroups A and B1 had more 
diversity of pathotypes, containing lineages that were assigned 
to the range of diarrhoeagenic pathotypes (EPEC, EHEC, EAEC 
and EIEC). Lineage 24 of phylogroup B1 contained 38 % isolates 
that were stx and eae positive. These are isolates of E. coli serotype 
O104:H4 taken from the 2011 German outbreak, which were 
classified as the convergence of an EHEC and an EAEC [66]. 
Lineage 40 was the only ExPEC lineage within the B1-C-A clade.

Fig. 3. AMR and virulence profiles of the lineages. (a) Number of predicted antimicrobial classes each isolate is resistant to, based 
on genetic profile by lineage. The red line indicates the threshold for multidrug resistance (predicted resistance to three classes of 
antimicrobials or more). (b) Number of virulence genes per isolate, by lineage and coloured by the most prevalent predicted pathotype 
in the lineage. nd, Not determined.
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Final pan-genome includes a total of 55 039 genes
In order to define the gene content of this reference collection, 
an initial pan-genome analysis was applied to the lineages 
separately (see Methods), revealing a low gene diversity 
within lineages 21, 43 and 49 (Fig. S7). Therefore, these were 
not included in the detailed description of the pan-genome 
of the lineages as the low diversity was linked to these being 
collected at the same time by the FDA. The outputs of the 
47 pan-genome analyses of the remaining lineages were 
combined in order to provide a description of the gene pool 
in the entire dataset (see Methods). Briefly, a pairwise pan-
genome analysis was applied on all CDSs of every two line-
ages. The grouping of CDSs in every pairwise pan-genome 
analysis was examined to determine whether two CDSs 
from two lineages should be labelled as the same gene in the 
complete dataset.

A total of 55 039 predicted CDSs were identified in this 
dataset (Files F3–F6). As there are 47 lineages, and a varying 
number of isolates per lineage, each gene has a frequency 
within each of the 47 lineages (provided in File F5). For 
instance, the intA gene, encoding a prophage integrase, was 
observed in 20 of the lineages (Fig. 4a). In two lineages (6 
and 9), it was present in over 95 % of isolates, in another 
eight lineages it was present in intermediate frequencies 
(between 15 and 95 %) and in the final ten lineages it was 
present in fewer than 15 % of isolates. In contrast, the gene 
wzyE, a gene involved in antigen biosynthesis, is a core gene 
that was observed across all lineages in a frequency of over 
95 % (Fig. 4b). Principal component analysis on all the gene 
frequencies across the lineages showed that the first and 
second principal components explained 17.93 and 7.49 % 
of the variance and separated the lineages by phylogroup 
(Fig. 4c).

Example usage
Searching for any DNA sequence in the collection using 
BIGSI
BIGSI uses a k-mer based approach to query any DNA 
sequence of 61 bp or greater against all the assemblies of the 
collection [39]. This can be achieved as follows, using the files 
provided at ​doi.​org/​10.​6084/​m9.​figshare.​12666497:

bigsi search -c ​config_​10​K_​00.​yaml -t 0.8

​ATGA​AAAA​CACA​ATAC​ATAT​CAAC​TTCG​CTAT​TTTT​
TTAA​TAAT​TGCA​AATA​TTAT​CTACA

– where ​config_​10K_​00.​yaml provides the config file to 
the BIGSI index of the assemblies, and 0.8 is the threshold 
in k-mer similarity (equivalent to 2 mismatches per 100 
bps) used to define a match, and ‘​ATGA​AAAA​CACA​
ATAC​ATAT​CAAC​TTCG​CTAT​TTTT​TTAA​TAAT​TGCA​
AATA​TTAT​CTACA’ is the sequence being used to search 
the dataset, compiled here using BIGSI. BIGSI will return 
all the genome identifiers in the collection that have this 
sequence in at least 80 % k-mer similarity. The properties of 
these genomes can be investigated in File F1. The user will 
need to ensure the path to the index is correct (‘filename:’) 

in the ​config_​10K_​00.​yaml file. Please refer to the BIGSI 
documentation (https://​github.​com/​iqbal-​lab-​org/​BIGSI) 
for full details.

Examining the membership of newly sequenced 
genomes to the lineages in this collection
Newly sequenced genomes can be compared to the lineages 
in this collection by using the PopPUNK Database provided 
at ​doi.​org/​10.​6084/​m9.​figshare.​12650834, as follows:

poppunk --assign-query --ref-db ecoli_poppunk_db --q-files ​
list_​of_​genomes.​txt --output out

– where ecoli_poppunk_db is the PopPUNK database 
provided above, and ​list_​of_​genomes.​txt is a file containing 
the list of the new user provided assemblies being queried.

A new directory named ‘out’ is automatically created. The file ​
out_​clusters.​csv will capture the assignment of each assembly 
to the lineages defined in the PopPUNK database. The prop-
erties of these lineages can be examined in files associated 
with this article, F1 and F2. Please refer to the PopPUNK 
documentation (https://​poppunk.​readthedocs.​io/​en/​latest/) 
for full details.

Examining the distribution of a gene across the species 
phylogeny
A gene of interest can be identified in the pan-genome 
presented by using alignment tools like blast+ [67] or 
diamond [68] against the pan-genome reference file 
provided (File F3). The distribution of the gene named 
‘intA_1’, a prophage integrase, in this genome collection 
can be plotted across the phylogeny of the 47 lineages using 
the frequencies from the provided File F5 (Fig. 5a). The 
phylogeny of the specific sequences of each lineage can be 
drawn using the sequences provided in File F6 (Fig. 5b).

DISCUSSION
We have created a high-quality, extensively curated dataset 
of over 10 000 E. coli and Shigella genomes, linked this to 
resources that enable this dataset to be queried as a single 
dataset, and have provided several usage examples. Addition-
ally, we have described in detail the properties of the main 
lineages present in the collection and their gene (predicted 
CDS) content. We hope that the data provided in this article 
will make future studies on E. coli more accessible to a wider 
audience, and will facilitate the investigation of some of the 
pressing questions in E. coli genetics and evolution.

Aggregating data from diverse sources along with their asso-
ciated metadata is not trivial but, given the increasing number 
of data sources and data types, essential. Genome identifiers 
and data formats across publications and databases do not 
always match, leading to many conversions that are error 
prone and require knowledge of programming. In addition, 
computational resources are required in order to apply thou-
sands of assembly and annotation calculations. These are all 
limiting factors to research. This emphasizes the need to build 
new resources that maintain high-quality genome collections 

https://github.com/iqbal-lab-org/BIGSI
https://poppunk.readthedocs.io/en/latest/
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where users would more easily be able to both retrieve and 
apply analyses on large collections. Without such resources, 
information is widely available, but it is practically only usable 
for a small proportion of scientists with large resources and 
computational expertise. EnteroBase is a valuable resource 
that overcomes data accessibility issues by integrating, 
assembling and analysing the genomic data of specific enteric 
pathogens from the Sequence Read Archive, while providing 
researchers with relevant metadata and software [3]. However, 

as metadata is often associated with a publication, and is not 
directly linked to the database from which the genome was 
downloaded, this information is often missing. Even more, 
describing the gene content by comparing whole-genomic 
datasets is a much harder problem, which cannot realistically 
be provided in a high quality in an automated manner across 
increasing dataset sizes. Therefore, studies on E. coli in recent 
years have either been detailed and focused only on a single 
pathotype [20, 23–25] or, when utilizing a very large number 

Fig. 4. Gene frequencies across the lineages. (a, b) Examples of the frequencies of two genes across the 47 lineages, stratified by 
phylogroup. (a) The intA is present in some lineages and is observed in different frequencies across these. (b) wzyE is a core gene 
observed in a high frequency across all lineages. (c) Principal component analysis plot of the gene frequencies across all lineages, 
coloured by phylogroup. PC, Principal component.
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of genomes, the analyses were limited in their resolution 
due to the complexity of extracting the information from 
such large collections [3, 69]. Taken together, the collection 
presented here represents a detailed, high-quality and acces-
sible dataset that will enable researchers to apply compre-
hensive comparisons in future investigations on E. coli. This 
includes the PopPUNK and BIGSI databases, which can be 

used to query newly sequenced isolates or DNA sequences of 
interest and examine their diversity relative to this collection.

The analysis presented in this paper emphasizes our lack of 
knowledge on the true diversity of this important species, and 
that we should redirect our efforts towards sampling to under-
stand the diversity which has yet to be studied. The collection 

Fig. 5. Example usage of the pan-genome to examine the distribution of a single prophage integrase gene (intA_1). (a) The distribution of 
a gene can be examined across the species tree using the gene frequencies from File F5. The heatmap indicates the fraction of isolates 
of a lineage that possess the gene. (b) Phylogenetic tree of the gene sequences from each lineage. Sequences of the gene from (a) in each 
lineage can be extracted from File F6 to examine the species-wide evolution of the gene. Numbers on branch tips indicate the lineage.
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we obtained is biased towards E. coli lineages that have clinical 
significance. The vast majority of genomes were available 
from Europe and North America, such that the pathotypes 
comprising the dataset are those that predominantly affect 
these areas. Of 1154 lineages, there were only 50 that contained 
at least 20 isolates that were used for defining the gene 
content. Sampling should be increased in a directed manner 
in under-represented areas of the world, as well as sampling of 
non-clinical isolates. Using the PopPUNK database provided 
in this study, future studies can incorporate new genomes to 
the dataset provided here and compare E. coli isolates from 
other geographical locations, animals or the environment to 
the genomes presented here. The PopPUNK database could 
be expanded and updated in future versions that include these 
more targeted samples which expand on the diversity presented 
here.

Biological differences between the lineages were already revealed 
from the initial descriptions of the lineages presented in this 
study. There were clear differences in the genome size between 
the phylogroups and lineages. Higher variability in genome size 
within a phylogroup or lineage could be an indication of higher 
rates of gene gain and loss within that lineage. A larger genome 
size may also help to equip a lineage to survive in a range of 
niches. These results indicate the importance of this dataset in 
addressing some important questions regarding the differences 
between different E. coli lineages and gene flow in the E. coli 
population.
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