$0.18 \times 0.14 \times 0.06 \; \rm mm$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-[1-(2-Hydroxy-5-methylphenyl)ethylidene]benzenesulfonohydrazide

Musalem Laila, Hapipah M. Ali, Subramaniam Puvaneswary, Ward T. Robinson and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 10 July 2008; accepted 11 August 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.132; data-to-parameter ratio = 16.1.

The two independent molecules in the asymmetric unit of the title compound, $C_{15}H_{16}N_2O_3S$, are each linked by an N- $H \cdots O_{sulfonyl}$ hydrogen bond into a linear chain that runs along the shortest axis of the triclinic unit cell. The hydroxy groups are engaged in intramolecular hydrogen bonding and the amino N atom shows pyramidal coordination.

Related literature

For 2'-(2-hydroxyphenyl-1-ethylidene)benzenesulfonohydrazide, which adopts a hydrogen-bonded chain structure, see: Ali *et al.* (2007).

Experimental

Crystal data

$C_{15}H_{16}N_2O_3S$	$\alpha = 63.192 \ (1)^{\circ}$
$M_r = 304.36$	$\beta = 88.577 \ (1)^{\circ}$
Triclinic, $P\overline{1}$	$\gamma = 86.345 \ (1)^{\circ}$
a = 5.1547 (1) Å	V = 1428.19 (4) Å ³
b = 17.0321 (2) Å	Z = 4
c = 18.2635 (1) Å	Mo $K\alpha$ radiation

μ	=	0.24	mı	n ⁻
Т	=	100	(2)	Κ

Data collection

Bruker SMART APEX	12657 measured reflections
diffractometer	6415 independent reflections
Absorption correction: multi-scan	5603 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.018$
$T_{\min} = 0.958, \ T_{\max} = 0.986$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.042 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.132 & \text{independent and constrained} \\ S &= 1.04 & \text{refinement} \\ 6415 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.54 \text{ e } \text{ Å}^{-3} \\ 399 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.58 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1 $ $0 \cdot \cdot \cdot N1$	0.84(3)	1.80 (2)	2 562 (2)	151 (4)
$O4-H4o\cdots N3$	0.85(3)	1.79 (2)	2.563 (2)	150 (3)
$N2-H2n\cdots O2^{i}$	0.88 (1)	2.18 (1)	3.040 (2)	168 (2)
$N4-H4n\cdots O5^{ii}$	0.88 (1)	2.07 (1)	2.942 (2)	173 (2)

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

We thank the Science Fund (12–02-03–2031, 12–02-03–2051) and the University of Malaya (PJP) for supporting this study. We are grateful to the University of Malaya for the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2092).

References

- Ali, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, 01617-01618.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2008). publCIF. In preparation.

Acta Cryst. (2008). E64, o1769 [doi:10.1107/S1600536808025932]

N'-[1-(2-Hydroxy-5-methylphenyl)ethylidene]benzenesulfonohydrazide

M. Laila, H. M. Ali, S. Puvaneswary, W. T. Robinson and S. W. Ng

Comment

2'-(2-Hydroxyphenyl-1-ethylidene)benzenesulfonohydrazide adopts a hydrogen-bonded chain structure; the chain runs along the *a*-axis of the monoclinic unit cell and the repeat distance is the length of the this axis, *i.e.*, 5.18 Å (Ali *et al.*, 2007). An additional methyl group in the molecule (Scheme I) does not result in any significant difference in both structure and packing (Fig. 1). The two independent molecules are each linked by an N-H···O sulfonyl hydrogen-bond into a linear chain that runs along the shortest axis of the triclinic unit cell; the repeat distance is 5.15 Å. The hydroxy groups are engaged in intramolecular hydrogen bonding (Table 1.).

Experimental

The Schiff base was prepared by refluxing by benzene sulfanohydrazide (0.40 g, 0.64 mmol) and 5-methyl-2-hydroxy-acetophenone (0.10 g, 0.64 mmol) in ethanol for 2 h. The product was filtered and recrystallized from ethanol.

Refinement

Carbon-bound hydrogen atoms were generated geometrically (C—H 0.95 to 98 Å), and were treated as riding, with U(H) 1.2 to 1.5 times $U_{eq}(C)$. The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints (N–H 0.88±0.01, O–H 0.84±0.01 Å); their temperature factors were freely refined.

Figures

Fig. 1. Thermal ellipsoid plot of the asymmetric unit of (I) (Barbour, 2001) at the 70% probability level. Dashed line indicates H-bonding.

N'-[1-(2-Hydroxy-5-methylphenyl)ethylidene]benzenesulfonohydrazide

Crystal data	
$C_{15}H_{16}N_2O_3S$	Z = 4
$M_r = 304.36$	$F_{000} = 640$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.415 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 5.1547 (1) Å	Cell parameters from 7775 reflections
b = 17.0321 (2) Å	$\theta = 2.2 - 30.4^{\circ}$

c = 18.2635(1) Å	$\mu = 0.24 \text{ mm}^{-1}$
$\alpha = 63.192 (1)^{\circ}$	T = 100 (2) K
$\beta = 88.577 (1)^{\circ}$	Block, colorless
$\gamma = 86.345 \ (1)^{\circ}$	$0.18\times0.14\times0.06~mm$
V = 1428.19 (4) Å ³	

Data collection

Bruker SMART APEX diffractometer	6415 independent reflections
Radiation source: fine-focus sealed tube	5603 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.018$
T = 100(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 1.3^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -6 \rightarrow 6$
$T_{\min} = 0.958, T_{\max} = 0.986$	$k = -22 \rightarrow 22$
12657 measured reflections	<i>l</i> = −23→22

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.132$	$w = 1/[\sigma^2(F_o^2) + (0.0741P)^2 + 1.3P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\text{max}} = 0.001$
6415 reflections	$\Delta \rho_{max} = 0.54 \text{ e} \text{ Å}^{-3}$
399 parameters	$\Delta \rho_{min} = -0.58 \text{ e } \text{\AA}^{-3}$
4 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
1.00270 (8)	0.59346 (3)	0.36837 (3)	0.01389 (12)
0.23309 (8)	0.87206 (3)	0.94073 (3)	0.01512 (12)
1.1834 (3)	0.79133 (9)	0.43334 (9)	0.0198 (3)
1.2673 (3)	0.59821 (9)	0.38815 (8)	0.0181 (3)
0.9214 (3)	0.51803 (9)	0.36199 (9)	0.0190 (3)
0.1038 (3)	0.73122 (10)	0.80833 (9)	0.0238 (3)
-0.0223 (3)	0.84056 (10)	0.94695 (9)	0.0206 (3)
0.3106 (3)	0.90879 (9)	0.99282 (9)	0.0196 (3)
0.8800 (3)	0.66835 (10)	0.45822 (10)	0.0153 (3)
0.8209 (3)	0.59890 (11)	0.44147 (10)	0.0150 (3)
	x 1.00270 (8) 0.23309 (8) 1.1834 (3) 1.2673 (3) 0.9214 (3) 0.1038 (3) -0.0223 (3) 0.3106 (3) 0.8800 (3) 0.8209 (3)	x y 1.00270 (8) 0.59346 (3) 0.23309 (8) 0.87206 (3) 1.1834 (3) 0.79133 (9) 1.2673 (3) 0.59821 (9) 0.9214 (3) 0.51803 (9) 0.1038 (3) 0.73122 (10) -0.0223 (3) 0.84056 (10) 0.3106 (3) 0.90879 (9) 0.8800 (3) 0.66835 (10) 0.8209 (3) 0.59890 (11)	x y z 1.00270 (8) 0.59346 (3) 0.36837 (3) 0.23309 (8) 0.87206 (3) 0.94073 (3) 1.1834 (3) 0.79133 (9) 0.43334 (9) 1.2673 (3) 0.59821 (9) 0.38815 (8) 0.9214 (3) 0.51803 (9) 0.36199 (9) 0.1038 (3) 0.73122 (10) 0.80833 (9) -0.0223 (3) 0.84056 (10) 0.94695 (9) 0.3106 (3) 0.90879 (9) 0.99282 (9) 0.8800 (3) 0.55980 (11) 0.44147 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

N3	0.3956 (3)	0.74366 (11)	0.91380 (10)	0.0163 (3)
N4	0.4405 (3)	0.78638 (11)	0.96235 (10)	0.0159 (3)
C1	1.0427 (4)	0.80153 (13)	0.49302 (12)	0.0165 (4)
C2	1.1112 (4)	0.86743 (13)	0.51253 (13)	0.0200 (4)
H2	1.2525	0.9023	0.4851	0.024*
C3	0.9752 (4)	0.88270 (13)	0.57162 (13)	0.0205 (4)
Н3	1.0244	0.9282	0.5840	0.025*
C4	0.7677 (4)	0.83279 (13)	0.61327 (12)	0.0189 (4)
C5	0.7016 (4)	0.76637 (13)	0.59405 (12)	0.0173 (4)
Н5	0.5617	0.7313	0.6225	0.021*
C6	0.8335 (4)	0.74898 (12)	0.53418 (11)	0.0151 (4)
C7	0.6197 (4)	0.84927 (15)	0.67793 (14)	0.0243 (4)
H7A	0.4382	0.8351	0.6783	0.037*
H7B	0.6264	0.9114	0.6656	0.037*
H7C	0.6985	0.8120	0.7318	0.037*
C8	0.7526 (4)	0.67782 (12)	0.51600 (11)	0.0152 (4)
C9	0.5429 (4)	0.61962 (13)	0.56463 (13)	0.0208 (4)
H9A	0.4909	0.5847	0.5376	0.031*
H9B	0.3926	0.6559	0.5682	0.031*
H9C	0.6077	0.5800	0.6199	0.031*
C10	0.9242 (4)	0.68803 (12)	0.27615 (11)	0.0153 (4)
C11	0.7132 (4)	0.68724 (14)	0.23050 (12)	0.0200 (4)
H11	0.6139	0.6367	0.2489	0.024*
C12	0.6499 (4)	0.76133 (14)	0.15765 (12)	0.0219 (4)
H12	0.5065	0.7616	0.1258	0.026*
C13	0.7956 (4)	0.83520 (14)	0.13098 (12)	0.0224 (4)
H13	0.7512	0.8859	0.0811	0.027*
C14	1.0053 (4)	0.83500 (14)	0.17703 (13)	0.0242 (4)
H14	1.1050	0.8855	0.1584	0.029*
C15	1.0708 (4)	0.76134 (14)	0.25038 (12)	0.0206 (4)
H15	1.2136	0.7612	0.2823	0.025*
C16	0.2653 (4)	0.66099 (14)	0.81883 (12)	0.0194 (4)
C17	0.2155 (4)	0.61764 (15)	0.77206 (13)	0.0230 (4)
H17	0.0730	0.6380	0.7348	0.028*
C18	0.3706 (4)	0.54571 (14)	0.77928 (13)	0.0222 (4)
H18	0.3328	0.5170	0.7470	0.027*
C19	0.5829 (4)	0.51392 (14)	0.83316 (13)	0.0209 (4)
C20	0.6317 (4)	0.55738 (13)	0.87953 (12)	0.0189 (4)
H20	0.7759	0.5367	0.9161	0.023*
C21	0.4775 (4)	0.63059 (13)	0.87480 (12)	0.0171 (4)
C22	0.7530 (4)	0.43515 (15)	0.84084 (15)	0.0273 (5)
H22A	0.9231	0.4364	0.8630	0.041*
H22B	0.7753	0.4369	0.7867	0.041*
H22C	0.6709	0.3810	0.8779	0.041*
C23	0.5394 (4)	0.67411 (13)	0.92575 (11)	0.0162 (4)
C24	0.7550 (4)	0.63615 (13)	0.98790 (12)	0.0196 (4)
H24A	0.7488	0.6660	1.0229	0.029*
H24B	0.9226	0.6446	0.9596	0.029*
H24C	0.7344	0.5731	1.0217	0.029*

C25	0.2788 (4)	0.94842 (12)	0.83776 (11)	0.0157 (4)
C26	0.4827 (4)	1.00410 (13)	0.81963 (13)	0.0202 (4)
H26	0.5954	1.0000	0.8617	0.024*
C27	0.5177 (4)	1.06564 (14)	0.73883 (13)	0.0225 (4)
H27	0.6577	1.1034	0.7251	0.027*
C28	0.3492 (4)	1.07231 (13)	0.67788 (13)	0.0210 (4)
H28	0.3721	1.1154	0.6229	0.025*
C29	0.1478 (4)	1.01618 (14)	0.69714 (13)	0.0215 (4)
H29	0.0333	1.0210	0.6551	0.026*
C30	0.1120 (4)	0.95307 (13)	0.77718 (12)	0.0185 (4)
H30	-0.0240	0.9138	0.7903	0.022*
H1O	1.110 (6)	0.7524 (18)	0.427 (2)	0.057 (10)*
H4O	0.165 (6)	0.752 (2)	0.8385 (17)	0.043 (8)*
H2N	0.657 (2)	0.5927 (17)	0.4337 (16)	0.025 (6)*
H4N	0.600(2)	0.8017 (16)	0.9621 (16)	0.022 (6)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0143 (2)	0.0138 (2)	0.0141 (2)	-0.00056 (16)	-0.00083 (16)	-0.00670 (17)
S2	0.0133 (2)	0.0169 (2)	0.0150 (2)	-0.00203 (16)	-0.00012 (16)	-0.00687 (18)
01	0.0216 (7)	0.0193 (7)	0.0200 (7)	-0.0062 (6)	0.0044 (5)	-0.0098 (6)
O2	0.0157 (6)	0.0183 (7)	0.0186 (7)	-0.0004 (5)	-0.0014 (5)	-0.0068 (6)
03	0.0213 (7)	0.0173 (7)	0.0206 (7)	-0.0016 (5)	-0.0016 (5)	-0.0103 (6)
O4	0.0222 (7)	0.0268 (8)	0.0248 (8)	0.0032 (6)	-0.0080 (6)	-0.0140 (7)
05	0.0145 (6)	0.0248 (7)	0.0205 (7)	-0.0042 (5)	0.0008 (5)	-0.0080 (6)
06	0.0217 (7)	0.0225 (7)	0.0175 (7)	-0.0013 (6)	-0.0007 (5)	-0.0117 (6)
N1	0.0181 (8)	0.0142 (7)	0.0152 (7)	-0.0022 (6)	-0.0020 (6)	-0.0078 (6)
N2	0.0160 (7)	0.0160 (8)	0.0157 (7)	-0.0036 (6)	0.0015 (6)	-0.0091 (6)
N3	0.0169 (7)	0.0173 (8)	0.0162 (8)	-0.0034 (6)	-0.0004 (6)	-0.0084 (6)
N4	0.0152 (7)	0.0167 (8)	0.0166 (8)	-0.0014 (6)	-0.0026 (6)	-0.0080 (6)
C1	0.0182 (9)	0.0153 (9)	0.0140 (8)	0.0000(7)	-0.0023 (7)	-0.0049 (7)
C2	0.0217 (9)	0.0157 (9)	0.0205 (9)	-0.0026 (7)	-0.0030 (7)	-0.0060 (8)
C3	0.0239 (10)	0.0169 (9)	0.0230 (10)	0.0006 (7)	-0.0065 (8)	-0.0110 (8)
C4	0.0207 (9)	0.0191 (9)	0.0175 (9)	0.0042 (7)	-0.0052 (7)	-0.0093 (8)
C5	0.0178 (9)	0.0168 (9)	0.0170 (9)	0.0005 (7)	-0.0023 (7)	-0.0074 (7)
C6	0.0182 (9)	0.0131 (8)	0.0132 (8)	0.0004 (7)	-0.0028 (7)	-0.0053 (7)
C7	0.0257 (10)	0.0265 (11)	0.0271 (11)	0.0034 (8)	-0.0021 (8)	-0.0181 (9)
C8	0.0164 (8)	0.0135 (8)	0.0132 (8)	0.0003 (7)	-0.0024 (7)	-0.0039 (7)
C9	0.0233 (10)	0.0181 (9)	0.0222 (10)	-0.0051 (8)	0.0081 (8)	-0.0102 (8)
C10	0.0165 (8)	0.0164 (9)	0.0127 (8)	-0.0003 (7)	0.0000(7)	-0.0064 (7)
C11	0.0212 (9)	0.0202 (10)	0.0191 (9)	-0.0035 (7)	-0.0014 (7)	-0.0091 (8)
C12	0.0230 (10)	0.0260 (10)	0.0169 (9)	0.0012 (8)	-0.0050 (7)	-0.0101 (8)
C13	0.0272 (10)	0.0219 (10)	0.0145 (9)	0.0026 (8)	0.0006 (8)	-0.0057 (8)
C14	0.0290 (11)	0.0181 (10)	0.0225 (10)	-0.0055 (8)	-0.0002 (8)	-0.0061 (8)
C15	0.0217 (9)	0.0210 (10)	0.0189 (9)	-0.0029 (8)	-0.0018 (7)	-0.0086 (8)
C16	0.0186 (9)	0.0218 (10)	0.0176 (9)	-0.0035 (7)	0.0003 (7)	-0.0085 (8)
C17	0.0219 (10)	0.0283 (11)	0.0197 (10)	-0.0052 (8)	-0.0019 (8)	-0.0111 (9)

C18	0.0270 (10)	0.0257 (10)	0.0177 (9)	-0.0087 (8)	0.0045 (8)	-0.0124 (8)
C19	0.0213 (9)	0.0221 (10)	0.0208 (10)	-0.0073 (8)	0.0050 (8)	-0.0105 (8)
C20	0.0197 (9)	0.0197 (9)	0.0181 (9)	-0.0039 (7)	0.0011 (7)	-0.0091 (8)
C21	0.0177 (9)	0.0190 (9)	0.0157 (9)	-0.0050(7)	0.0017 (7)	-0.0083 (8)
C22	0.0288 (11)	0.0269 (11)	0.0325 (12)	-0.0031 (9)	0.0015 (9)	-0.0188 (10)
C23	0.0161 (9)	0.0169 (9)	0.0138 (8)	-0.0040 (7)	0.0009 (7)	-0.0049 (7)
C24	0.0206 (9)	0.0177 (9)	0.0191 (9)	-0.0008 (7)	-0.0034 (7)	-0.0070 (8)
C25	0.0167 (9)	0.0146 (8)	0.0136 (8)	0.0002 (7)	0.0003 (7)	-0.0047 (7)
C26	0.0182 (9)	0.0200 (9)	0.0209 (10)	-0.0019 (7)	-0.0025 (7)	-0.0075 (8)
C27	0.0191 (9)	0.0174 (9)	0.0262 (11)	-0.0029 (7)	0.0015 (8)	-0.0054 (8)
C28	0.0235 (10)	0.0184 (9)	0.0180 (9)	0.0028 (8)	0.0017 (7)	-0.0060 (8)
C29	0.0243 (10)	0.0233 (10)	0.0188 (9)	0.0019 (8)	-0.0038 (8)	-0.0115 (8)
C30	0.0184 (9)	0.0195 (9)	0.0192 (9)	-0.0012 (7)	-0.0018 (7)	-0.0099 (8)

Geometric parameters (Å, °)

S1—O3	1.4303 (14)	C11—C12	1.387 (3)
S1—O2	1.4360 (14)	C11—H11	0.9500
S1—N2	1.6455 (16)	C12—C13	1.390 (3)
S1—C10	1.7603 (19)	C12—H12	0.9500
S2—O6	1.4296 (14)	C13—C14	1.385 (3)
S2—O5	1.4355 (14)	С13—Н13	0.9500
S2—N4	1.6526 (17)	C14—C15	1.391 (3)
S2—C25	1.7591 (19)	C14—H14	0.9500
O1—C1	1.364 (2)	С15—Н15	0.9500
O1—H1O	0.84 (3)	C16—C17	1.394 (3)
O4—C16	1.355 (2)	C16—C21	1.419 (3)
O4—H4O	0.85 (3)	C17—C18	1.376 (3)
N1—C8	1.295 (2)	С17—Н17	0.9500
N1—N2	1.401 (2)	C18—C19	1.399 (3)
N2—H2N	0.879 (10)	C18—H18	0.9500
N3—C23	1.290 (3)	C19—C20	1.389 (3)
N3—N4	1.408 (2)	C19—C22	1.508 (3)
N4—H4N	0.877 (10)	C20—C21	1.405 (3)
C1—C2	1.389 (3)	С20—Н20	0.9500
C1—C6	1.416 (3)	C21—C23	1.478 (3)
C2—C3	1.384 (3)	C22—H22A	0.9800
С2—Н2	0.9500	C22—H22B	0.9800
C3—C4	1.392 (3)	C22—H22C	0.9800
С3—Н3	0.9500	C23—C24	1.500 (3)
C4—C5	1.390 (3)	C24—H24A	0.9800
C4—C7	1.511 (3)	C24—H24B	0.9800
C5—C6	1.406 (3)	C24—H24C	0.9800
С5—Н5	0.9500	C25—C30	1.389 (3)
C6—C8	1.479 (2)	C25—C26	1.393 (3)
C7—H7A	0.9800	C26—C27	1.387 (3)
С7—Н7В	0.9800	C26—H26	0.9500
С7—Н7С	0.9800	C27—C28	1.388 (3)
C8—C9	1.495 (3)	С27—Н27	0.9500

С9—Н9А	0.9800	C28—C29	1.386 (3)
С9—Н9В	0.9800	C28—H28	0.9500
С9—Н9С	0.9800	C29—C30	1.386 (3)
C10—C15	1.387 (3)	С29—Н29	0.9500
C10—C11	1.391 (3)	С30—Н30	0.9500
O3—S1—O2	120.83 (8)	C11—C12—H12	119.9
O3—S1—N2	104.70 (8)	С13—С12—Н12	119.9
O2—S1—N2	106.84 (8)	C14—C13—C12	120.07 (19)
O3—S1—C10	108.61 (9)	C14—C13—H13	120.0
O2—S1—C10	107.30 (9)	С12—С13—Н13	120.0
N2—S1—C10	107.97 (9)	C13—C14—C15	120.38 (19)
O6—S2—O5	120.70 (9)	C13—C14—H14	119.8
O6—S2—N4	104.46 (8)	C15—C14—H14	119.8
O5—S2—N4	106.50 (9)	C10-C15-C14	118.93 (18)
O6—S2—C25	109.14 (9)	С10—С15—Н15	120.5
O5—S2—C25	107.40 (9)	С14—С15—Н15	120.5
N4—S2—C25	108.03 (9)	O4—C16—C17	117.22 (18)
C1—O1—H1O	104 (3)	O4—C16—C21	122.92 (17)
С16—О4—Н4О	105 (2)	C17—C16—C21	119.85 (19)
C8—N1—N2	118.12 (16)	C18—C17—C16	120.71 (19)
N1—N2—S1	112.74 (12)	С18—С17—Н17	119.6
N1—N2—H2N	118.6 (17)	С16—С17—Н17	119.6
S1—N2—H2N	110.1 (17)	C17—C18—C19	121.38 (18)
C23—N3—N4	118.41 (16)	C17—C18—H18	119.3
N3—N4—S2	111.80 (12)	С19—С18—Н18	119.3
N3—N4—H4N	115.8 (17)	C20—C19—C18	117.66 (19)
S2—N4—H4N	110.0 (17)	C20—C19—C22	121.06 (19)
O1—C1—C2	117.07 (17)	C18—C19—C22	121.29 (18)
O1—C1—C6	123.00 (17)	C19—C20—C21	123.01 (18)
C2—C1—C6	119.92 (18)	C19—C20—H20	118.5
C3 - C2 - C1	120.50 (19)	C21—C20—H20	118.5
С3—С2—Н2	119.8	C20—C21—C16	117.39 (17)
C1—C2—H2	119.8	C20—C21—C23	120.48 (17)
C2—C3—C4	121.39 (18)	C16—C21—C23	122.13 (18)
С2—С3—Н3	119.3	C19—C22—H22A	109.5
С4—С3—Н3	119.3	С19—С22—Н22В	109.5
C5—C4—C3	117.86 (18)	H22A—C22—H22B	109.5
C5—C4—C7	120.74 (19)	С19—С22—Н22С	109.5
C3—C4—C7	121.40 (18)	H22A—C22—H22C	109.5
C4—C5—C6	122.59 (19)	H22B—C22—H22C	109.5
С4—С5—Н5	118.7	N3—C23—C21	115.90 (17)
С6—С5—Н5	118.7	N3—C23—C24	123.93 (17)
C5—C6—C1	117.73 (17)	C21—C23—C24	120.16 (17)
C5—C6—C8	120.05 (17)	C23—C24—H24A	109.5
C1—C6—C8	122.22 (17)	C23—C24—H24B	109.5
С4—С7—Н7А	109.5	H24A—C24—H24B	109.5
С4—С7—Н7В	109.5	C23—C24—H24C	109.5
H7A—C7—H7B	109.5	H24A—C24—H24C	109.5
С4—С7—Н7С	109.5	H24B—C24—H24C	109.5

H7A—C7—H7C	109.5	C30—C25—C26	121.68 (18)
Н7В—С7—Н7С	109.5	C30—C25—S2	120.18 (15)
N1—C8—C6	115.73 (17)	C26—C25—S2	118.14 (15)
N1—C8—C9	123.48 (17)	C27—C26—C25	118.62 (18)
C6—C8—C9	120.75 (16)	С27—С26—Н26	120.7
С8—С9—Н9А	109.5	С25—С26—Н26	120.7
С8—С9—Н9В	109.5	C26—C27—C28	120.36 (19)
Н9А—С9—Н9В	109.5	С26—С27—Н27	119.8
С8—С9—Н9С	109.5	С28—С27—Н27	119.8
Н9А—С9—Н9С	109.5	C29—C28—C27	120.14 (19)
Н9В—С9—Н9С	109.5	C29—C28—H28	119.9
C15-C10-C11	121.32 (18)	C27—C28—H28	119.9
C15-C10-S1	120.15 (14)	C30—C29—C28	120.52 (19)
C11—C10—S1	118.53 (15)	С30—С29—Н29	119.7
C12-C11-C10	119.01 (19)	С28—С29—Н29	119.7
C12—C11—H11	120.5	C29—C30—C25	118.66 (18)
C10-C11-H11	120.5	С29—С30—Н30	120.7
C11—C12—C13	120.27 (18)	С25—С30—Н30	120.7
C8—N1—N2—S1	-178.55 (13)	C12—C13—C14—C15	-0.4(3)
O3—S1—N2—N1	178.10 (12)	C11—C10—C15—C14	-0.5 (3)
O2—S1—N2—N1	48.83 (14)	S1—C10—C15—C14	179.65 (16)
C10—S1—N2—N1	-66.31 (14)	C13-C14-C15-C10	0.6 (3)
C23—N3—N4—S2	-178.21 (14)	O4—C16—C17—C18	-179.93 (19)
O6—S2—N4—N3	-178.19 (12)	C21—C16—C17—C18	-0.3 (3)
O5—S2—N4—N3	53.04 (14)	C16—C17—C18—C19	-0.3 (3)
C25—S2—N4—N3	-62.08 (14)	C17—C18—C19—C20	0.2 (3)
O1—C1—C2—C3	179.06 (17)	C17—C18—C19—C22	-179.9 (2)
C6—C1—C2—C3	-0.5 (3)	C18-C19-C20-C21	0.4 (3)
C1—C2—C3—C4	0.2 (3)	C22-C19-C20-C21	-179.54 (19)
C2—C3—C4—C5	0.4 (3)	C19—C20—C21—C16	-0.9 (3)
C2—C3—C4—C7	179.82 (18)	C19—C20—C21—C23	-179.97 (18)
C3—C4—C5—C6	-0.8 (3)	O4—C16—C21—C20	-179.57 (18)
C7—C4—C5—C6	179.81 (18)	C17—C16—C21—C20	0.8 (3)
C4—C5—C6—C1	0.5 (3)	O4—C16—C21—C23	-0.5 (3)
C4—C5—C6—C8	-179.50 (17)	C17—C16—C21—C23	179.88 (18)
O1—C1—C6—C5	-179.38 (17)	N4—N3—C23—C21	178.11 (16)
C2-C1-C6-C5	0.1 (3)	N4—N3—C23—C24	-0.7 (3)
O1—C1—C6—C8	0.6 (3)	C20-C21-C23-N3	176.27 (18)
C2—C1—C6—C8	-179.87 (17)	C16—C21—C23—N3	-2.8 (3)
N2—N1—C8—C6	176.62 (15)	C20—C21—C23—C24	-4.9 (3)
N2—N1—C8—C9	-1.1 (3)	C16—C21—C23—C24	176.08 (18)
C5—C6—C8—N1	177.95 (17)	O6—S2—C25—C30	-147.06 (15)
C1—C6—C8—N1	-2.0 (3)	O5—S2—C25—C30	-14.60 (18)
C5—C6—C8—C9	-4.2 (3)	N4—S2—C25—C30	99.92 (16)
C1—C6—C8—C9	175.76 (18)	O6—S2—C25—C26	31.95 (18)
O3—S1—C10—C15	-151.83 (16)	O5—S2—C25—C26	164.42 (15)
O2—S1—C10—C15	-19.67 (18)	N4—S2—C25—C26	-81.06 (17)
N2—S1—C10—C15	95.17 (17)	C30—C25—C26—C27	0.1 (3)
O3—S1—C10—C11	28.32 (18)	S2—C25—C26—C27	-178.86 (16)

O2—S1—C10—C11 N2—S1—C10—C11 C15—C10—C11—C12 S1—C10—C11—C12 C10—C11—C12—C13 C11—C12—C13—C14	160.48 (15) -84.68 (16) 0.3 (3) -179.87 (15) -0.1 (3) 0.2 (3)	C25—C26—C27—C28 C26—C27—C28—C29 C27—C28—C29—C30 C28—C29—C30—C25 C26—C25—C30—C29 S2—C25—C30—C29		1.2 (3) -1.3 (3) 0.1 (3) 1.2 (3) -1.3 (3) 177.65 (15)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1o…N1	0.84 (3)	1.80 (2)	2.562 (2)	151 (4)
O4—H4o…N3	0.85 (3)	1.79 (2)	2.563 (2)	150 (3)
N2—H2n····O2 ⁱ	0.88 (1)	2.18 (1)	3.040 (2)	168 (2)
N4—H4n····O5 ⁱⁱ	0.88 (1)	2.07 (1)	2.942 (2)	173 (2)
Symmetry codes: (i) $x-1$, y , z ; (ii) $x+1$, y	V, Z.			

Fig. 1