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Abstract

Finding new peptide biomarkers for stomach cancer in human sera that can be implemented into a clinically practicable
prediction method for monitoring of stomach cancer. We studied the serum peptidome from two different biorepositories.
We first employed a C8-reverse phase liquid chromatography approach for sample purification, followed by mass-
spectrometry analysis. These were applied onto serum samples from cancer-free controls and stomach cancer patients at
various clinical stages. We then created a bioinformatics analysis pipeline and identified peptide signature discriminating
stomach adenocarcinoma patients from cancer-free controls. Matrix Assisted Laser Desorption/Ionization–Time of Flight
(MALDI-TOF) results from 103 samples revealed 9 signature peptides; with prediction accuracy of 89% in the training set and
88% in the validation set. Three of the discriminating peptides discovered were fragments of Apolipoproteins C-I and C-III
(apoC-I and C-III); we further quantified their serum levels, as well as CA19-9 and CRP, employing quantitative commercial-
clinical assays in 142 samples. ApoC-I and apoC-III quantitative results correlated with the MS results. We then employed
apoB-100-normalized apoC-I and apoC-III, CA19-9 and CRP levels to generate rules set for stomach cancer prediction. For
training, we used sera from one repository, and for validation, we used sera from the second repository. Prediction
accuracies of 88.4% and 74.4% were obtained in the training and validation sets, respectively. Serum levels of apoC-I and
apoC-III combined with other clinical parameters can serve as a basis for the formulation of a diagnostic score for stomach
cancer patients.
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Introduction

Mortality rates of many cancers have not changed dramatically

in the last 20 years [1]. Early detection was shown to greatly

improve the efficacy of cancer treatment, yet detection is often

only possible after the appearance of the first clinical symptoms,

which in some cancers occurs too late for successful intervention.

This is largely due to the absence of specific and sensitive tests

that allow early screening and monitoring of cancerous states.

Therefore, the discovery of novel tumor biomarkers is increasingly

considered critical to improving cancer treatment. In the past

decade, many studies have focused on biomarker discovery. One

of the most promising sources for biomarker discovery is the

human blood, in particular serum and plasma, which can reflect

many events in the body, in real time. Yet, despite immense

efforts, only a very small number of plasma proteins have been

proven to have diagnostic value [2–5]. Frequently, these

biomarkers do not stand alone and are accompanied by other

tests for monitoring and diagnosis. Most of them are not specific

and sensitive enough for wide screen diagnosis [6,7].

One possible source of novel cancer biomarkers is the

peptidome. The rationale behind focusing on serum peptides is

based on evidence that cancer formation and development

involves change in proteins’ and peptides’ metabolism, and on

the increased availability of methodology for screening the entire

peptidome. In terms of cancer development, changes may occur in

the array of intra- and extra-cellular peptides represented in the

blood peptidome, which may be specific to the cancerous stage,

and thus have a diagnostic potential [2,4,5]. In terms of detection

technology, recent advances in MS technology enable the
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detection of hundreds of peptides from a few microliters of serum

[8,9]. Indeed, previous blood peptidome studies reported an array

of signature peptides in serum that had distinguished healthy from

cancer patients (reviewed in [5]). This was shown for prostate,

bladder, breast and thyroid cancer by Villanueva et al [10,11].

They reported 61 signature peptides that could distinguish healthy

individuals from 3 different types of cancer patients. While all of

these peptides and/or their fragments are normally found in

the serum, differences in quantity between healthy and affected

individuals are observed. However, although these results

demonstrate the potential that peptidome profiles have for cancer

diagnosis, it still remains to be shown that this approach can be

extended to discover biomarkers suitable for early diagnosis and

consistent monitoring. First, the ability of these sera peptide

biomarkers to distinguish patients from controls was mostly

demonstrated for patients with highly advanced or metastatic

tumors. Moreover, the robustness of these biomarkers has been

challenged; uncontrolled variables, mostly attributed to differences

in sample handling, processing protocols and data analysis, have

been shown to dramatically modify the results of these assays

[11–19]. By putting major emphasis on sample acquisition,

handling, processing, MS signal processing and statistical analyses

more robust and reproducible results can be achieved [18,20,21].

In this work, we focused on discovering an array of signature

peptides that could have diagnostic value for stomach cancer. In

order to achieve this, we used three different serum sources involving

stomach cancer patients at different stages. A strict protocol for

serum collection and processing was applied [18], using a cohesive

procedure of peptide extraction and MALDI-TOF readings, with a

modified analysis pipeline. Together, the improved pipeline allowed

for the identification of a peptide pattern that discriminates between

cancer and control samples. These results were corroborated on the

original and new sera for three identified features from the pattern,

apoC-I (two features) and apoC-III, using immuno-based assays. We

then employed serum levels of apoC-I and apoC-III combined with

CRP and CA19-9 markers to discriminate stomach adenocarcinoma

patients from cancer-free controls.

Materials and Methods

Serum harvesting and handling
Sera were obtained from two commercial sources. 79 sera

samples from pre-operation stomach cancer patients and 33 sera

samples from cancer-free matched controls (including 10 gastritis

patients) were collected by RNTech (Paris, France) in Romania.

Sera form cancer and non cancer patients were taken after

overnight fasting in the following manner: 5 ml of blood was drawn

into a vacuette serum tube (Cat #456005, Greiner Bio One,

Kremsmuenster, Austria) and left to clot for about 30 minutes, after

which the tube was centrifuged at 3,000 rpm on a Hettich EBA 20S

centrifuge (Hettich Ag, Tuttlingen, Germany) for 5 minutes at room

temperature. The separated serum was aliquoted into 1 ml aliquots

in sterile cryogenic tubes (Nalgene, Rochester, NY, USA) and

immediately frozen at (270)uC. 22 pre-operation stomach cancer

sera and 21 controls were collected by Asterand in the USA

(Detroit, MI, USA) in the following manner: 10 ml of blood was

drawn into a BD vacutainer SST plus plastic tube (cat #BEC

367985, BD, San Jose, CA, USA). The tube was mixed by inverting

it 5 times and left to clot for about 30 minutes in a vertical position.

This step was followed by a centrifugation of 1,100–1,300 g for 10

minutes at room temperature. The separated serum was aliquoted

into 1 ml aliquots in sterile cryogenic tubes (Nalgene) tubes and

immediately frozen at (270)uC. For the Asterand source, fasting

data was not collected on any of the blood draws in their bank. Sera

samples from both companies were transported on dry ice and

stored at (270)uC immediately upon arrival. Sera samples were

thawed on ice for about an hour and a half, 50 ml was aliquoted into

lo-bind tubes (Eppendorf, Hamburg, Germany) and immediately

re-frozen at (270)uC. All sample aliquots were stored at (270)uC
until processing. A third source of sera was obtained in our

laboratory from 12 cancer-free Israeli controls. Blood was drawn

with the tube brand used by RNTech (Cat #456005, Greiner Bio

One) and serum handling followed the procedure of RNTech. The

sera obtained in our laboratory were taken from non-fasting

individuals. Both RNTech and Asterand companies have estab-

lished and conducted their activities following regulatory and ethical

standards, implementing local, national, European, US and

International (UN) rules and recommendations particularly when

applicable to biological material collection and treatment and

research result exploitation. This includes both written consent of

each patient contributing to the biological and data bank, and

written study authorization from the ethics committee of each

clinical institute contributing samples to the companies’ banks.

Serum sample processing and preparation for MS-MALDI
reading

Each serum sample was processed in two to three replicates

(from identical aliquots and on separate random dates). Peptides

were extracted on beads coated with C8, washed, eluted, mixed

with CHCA matrix, and deposited on the MALDI target plate.

Sera were processed in replicates and deposited onto the MALDI

plate in duplicates. For detailed description please see File S1.

Data analysis of MALDI results
Data processing was performed in two steps. In the first step, an

intensity matrix was performed from the raw ASCII files of

MALDI-TOF readings from all sera sample sources using re-

sampling, aligning, and m/z peaks detection as described in

Villanueva et al [21]. In the second step, machine learning was

used to define a discriminative pattern that can be used to classify

patients. For this purpose, the process described in Villanueva et al

[21] was modified as described below. The modified pipeline relies

entirely on open source software and additional details are

described in the bioinformatics section in File S1.

(1) A replicate summation and feature filter steps were added to

consider zero values as special cases. Our original matrix

contained a considerable amount of zero values for different

features in different samples. Due to general limitation of MALDI

technology, a significant fraction of these zero values could

represent missing values rather than true zero intensities. To

partially overcome this limitation we read each sample in

replicates, and calculated the average intensity, ignoring zero

intensity readings. Following this replicate summation, the resulted

matrix still contained substantial amount of zero values. SVM-

based models could classify according to zero values representing

missing values and not true zero intensities. Therefore, we filtered

out features that still had zero values in at least one of the samples.

None of these removed features had clear preference of zero values

to a specific clinical group assignment. The resulting sub-matrix

was used in a machine learning classification.

(2) A new approach to feature selection parameterization was

developed. The definitions for SVM-based analysis were initially

as follows: RNTech stomach vs. RNTech control, Asterand

stomach vs. Asterand control. Mann-Whitney p-value was

calculated for each peak, according to clinical groups defined for

the analysis. We then used Mann-Whitney p-values and peak

intensities as cutoffs to select a subset of features (peaks) for usage

in machine learning experiments. An intensity cutoff did not filter

ApoC-I and C-III as Biomarkers
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out samples in which at least one average reading had intensity

above the cutoff for the peak tested. Filter values were optimized

for best performance in SVM-based classifiers (produced by

LIBSVM, linear kernel) according to ten-fold cross validation by a

two-step protocol. The first step defined search ranges and

intervals for both filters and iterating over all combinations. Then,

the second step selected the combination of values, which provided

the best performance and smallest number of features.

(3) A normalization step was added to control for cross-sample

and cross-experiment biases. For sera sources’ comparison and

selection of features showing similar trends in both sources, cross-

source normalization of intensities was performed using the R

function ‘‘quantile’’ to define 9 thresholds X1.9 that divide the

scaled values in the control class into 10 quantiles.

Additional bioinformatics methods are provided in File S1.

Immuno-based commercial and clinical assays for the
different apolipoproteins

ApoC-III and apoB-100 levels were measured by Immunotur-

bidometry on an Olympus 400 autoanalyzer, using the K-assay

kits (cat # KAI-006 and 6142, Kamiya Biomedical, Seattle, WA,

USA) as previously described [22]. In house ELISA for apoC-III is

described in File S1. ApoC-I levels were tested using an AssayMax

Human Apolipoprotein C-I ELISA kit (Assaypro, St. Charles,

MO, USA) according to the manufacturer’s instructions. Purified

human apoC-I standards were included in the kit.

Results

Use of MS-based method to identify serum peptides
signature for stomach cancer

Previous studies showed that well-designed and carefully-

controlled sera peptidomics can separate specific cancer-bearing

patients and non-cancer controls based on distinctive patterns of

Table 1. Summary of clinical stages for stomach cancer and
cancer-free individuals’ sera from both sources.

Total samples (MALDI study, Clinical study)

Number of samples

Stage Asterand RNTech
Age
average Female Male

,IB 8 (8,8) 0 (0,0) 57 6 (6,6) 2 (2,2)

IB 3 (3,3) 7 (7,7) 68 8 (8,8) 2 (2,2)

II 4 (4,4) 25 (16,22) 66 14 (11,14) 15 (9,12)

IIA 0 (0,0) 11 (0,11) 65 1 (0,1) 10 (0,9)

IIIA 2 (2,1) 16 (8,15) 67 5 (2,4) 13 (8,12)

IIIB 0 (0,0) 7 (3,4) 66 2 (2,1) 5 (1,3)

IV 5 (5,4) 13 (6,11) 60 7 (5,5) 11 (6,10)

Stomach cancer 22 (22,20) 79 (40,70) 64 43 (34,39) 58 (28,50)

Controls 21 (21,19) 33 (20,33)* 54 28 (22,26) 26 (19,25)

Asterand and RNTech clinical stages, age average and gender for stomach
cancer and cancer-free individuals. The right and left values in parenthesis
indicate the number of samples used for MALDI and clinical studies,
respectively).
*RNTech control samples include 23 normal controls and 10 gastritis patients.
Clinical information for each individual is depicted in File S1. The supplemental
Tables include: sample ID, age at excision, sex, clinical diagnosis (specimen and
patient), AJCC/UICC TNM classification, AJCC/UICC stage group, CRP values and
CA 19-9 levels.
doi:10.1371/journal.pone.0014540.t001
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signature peptides in the serum [10,11]. We investigated whether

these results can be reproduced for stomach cancer and whether

such separation is sufficient for analysis of sera from different

sources. We first analyzed the serum peptide profiles of 62 patients

with stomach cancer at different stages, as well as 41 control sera

from healthy volunteers. These sera were obtained from two

sources: (i) RNTech, a company that collected sera at Bucharest,

Romania; and (ii) Asterand, a company that collected sera in the

USA. For each source, the sera were collected using a single

standard clinical protocol. The protocols were comparable e.g. the

type of the tube, the clotting time and the initial freezing of the

sera (see Methods), yet the blood withdrawal tubes were different.

Age distribution, gender, and clinical characteristics of the 103

individuals included in this study are provided in Table 1 and in

more detail in File S1. A summary of clinical stages of stomach

cancer-derived sera for both sources is given in Table 1. Sample

handling after the initial collection was uniform, involving 2

freeze-thaw cycles to accomplish initial storage and subsequent

aliquoting for peptide extraction and MS analysis. All 103 serum

samples were processed manually but identically employing one-

step reverse-phase extraction. Sera samples and sample replicates

were processed and read randomly on different dates to avoid

preparation date-associated bias. All sera preparation and

deposition was performed by the same individual. Similarly, all

MALDI readings were performed by the same technician. The

MALDI-TOF instrument’s sensitivity was monitored routinely

and constantly calibrated during all readings.

Analysis of MS-based sera peptidome revealed a
9-peptide signature that distinguish stomach
adenocarcinoma patients from cancer free controls

Total of 637 mass peaks (features) were identified in the 103

studied samples. The results of the MALDI were converted to a

matrix containing the signal intensities of 637 mass peaks (features)

for each of the studied serum samples with replicates for each

sample (see methods, bioinformatics). While unsupervised hierar-

chical clustering using all features did not segregate cancer and

non-cancer samples, PCA analysis of all features for each sera

source differentiated between cancer and non-cancer samples

(Figures S1–S3). This suggested that feature filtration and selection

is essential before employing machine learning-based classification.

Therefore we (i) applied a feature filtration and selection step and

(ii) employed Mann-Whitney p-values and peak intensities as

cutoffs to select a subset of features (peaks) for usage in machine

learning experiments. (see methods, bioinformatics). We then

analyzed within each source (RNTech and Asterand) whether sera

of patients and controls could be segregated. We received good

results for each of the single-source classifiers; SVM-based

classifiers for RNTech and Asterand had 90.0% and 93.0%

predicted accuracies, respectively, according to ten-fold cross

validation of the training set (Table 2A). Random shuffling of

group members resulted in much higher p-values (e.g. 0.8) and low

predicted accuracy in trained models per each sera source. This

indicated the significance of clinical conditions for classification

into two clinically-defined groups within each sera source.

However, the single-source classifiers did not perform well on

the other source’s samples, predicting correctly clinical status only

in 35/60 samples (Asterand on RNTech) and 25/43 (RNTech on

Asterand) (Table 2A). Therefore, source bias of peptidome has a

significant effect on the accuracy of prediction.

The inability of models trained on one source to adequately

predict clinical conditions from readings from the other source

(Table 2A) is better presented when checking the features selected

by the source-specific classifiers (Table 3). Some of the features

which worked well on one source showed an opposite trend on the

other source. Others were important for classification in one

Table 3. Peaks selected for models when quantile normalization was used before averaging and feature selection.

m/z Selected For Bias Dist Rn Bias Dist As Bias Dist Mix Possible identification

906 AM 12.44 4.017 V: m/z 905.5, FPA fragment FLAEGGGVR

1264 RM 77.57 1.935 V: m/z 1263.6, FPA fragment GEGDFLAEGGGVR

1351 R 260.86 V: m/z 1350.6, FPA fragment SGEGDFLAEGGGVR

1520 AR 16.73 26.35 V: m/z 1519.7, ITIH4 fragment GPPDVPDHAAYHPF

1534 A 212.59 V: m/z 1533.79, b-ion of c3f SKITHRIHWESASLL

1549 A 8.51 ?

4052 R 1.88 ?

4088 RM 228.53 2.666 EPO-KB: score 11, average m/z 4076.9, amyloid beta a4 protein

4207 RM 20.48 27.916 ?

5752 ARM 229.46 20.8 22.767 ?

5902 A 24.68 EPO-KB: score 3, average m/z 5902, fibrinogen alpha-chain frag.

6431 AM 12.57 2.799 EPO-KB: score 2.5, average m/z 6433.26, apolipoprotein C-I

6629 M 0.289 EPO-KB: score 5, average m/z 6624-6640, apolipoprotein C-I

9110 RM 13.08 26.08 EPO-KB: score 20, average m/z 9130, haptoglobin

9443 ARM 8.43 23.87 8.904 EPO-KB: score 0, average m/z 9443, apolipoprotein C-III

13997 A 6.73 ?

List of the classifier-selected peaks for Asterand-based classifier (A), RNTech-based classifier (R) and Mixed set-based classifier (M). Models studied data obtained when
quantile normalization was used before averaging and feature selection. The influence that each peak has on the prediction of the linear kernel SVM-based model was
evaluated by entering an zero values vector and comparing this result to that of a vector containing zeros in all but one peak which has the maximum possible value.
Directions were corrected so that signs would mean the same in all three models (minus: cancer; plus: control). Possible identification: Similar m/z values from the study
by Villanueva et al. [11] and EPO-KB (searchable knowledge base of biomarker to protein links) [34] are presented.
doi:10.1371/journal.pone.0014540.t003
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source but had little or no effect in the other. These observations

led us to a comparative analysis of data from both sources. We

produced box plots for all peak intensities, according to clinical

groups. These plots showed that when comparing control and

cancer intensities for each feature within a source, the trend

observed could differ between the two sources (e.g. m/z 1520,

Figure 1A). Even when the trend was persistent in both sources,

the intensity values could be different (e.g. m/z 6431; RNTech

higher than Asterand, Figure 1B). In order to create a prediction

model, we needed to (i) discard source-specific phenomena, and (ii)

add a normalization step which would reduce the effect of different

intensity levels where the trend was maintained.

The use of the mixed dataset with a Mann-Whitney p-value

cutoff for feature selection could discard source-specific phenom-

ena. Peaks which showed different trends in different sources

would not be significant in the mixed set for clinical group-based

separation; feature 1520 manifesting opposite trend between

sources, was selected by each single source classifier (Figure 1A,

Table 3). Therefore, it contributed to the lack of successful

performance of each single source classifier on the other source

(Table 2A). As expected, this feature was not selected by any

model based on the mixed set. We created a mixed data set while

randomly removing 21 stomach cancer samples from the mixed

training set, and used these 21 removed samples for validation. In

addition, we used the 12 cancer-free control samples collected in

our laboratory as an independent control validation set. The

model was selected in keeping with a maximum predicted

accuracy according to a ten-fold cross validation, as before. The

best scoring model for the mixed set was using 9 features (Mann-

Whitney p-value filter of 0.044) and had a predicted accuracy of

84.1% according to ten-fold cross validation of the training set.

Importantly, it accurately predicted 10/12 Israeli controls.

However, this classifier predicted inadequately (13 of 21) the 21

removed mixed stomach cancer samples used for validation.

Therefore, to reduce the effect of source-related differences in

intensity levels, the filter’s performance in feature selection was

enhanced by introducing a quantile normalization step. This

normalization was performed according to controls of each sera

source independently of the other sources (see methods, bioinfor-

matics). For features, such as m/z 6431 with a persistent trend in

both sources, this step corrected the intensity bias (Figure 1D).

Indeed, 6431 feature was not selected for the non-normalized mix-

Figure 1. Boxplot presentations of features 1520 (A, C) and 6431 (B, D). A and B represent non-normalized peak intensities; C and D
represent intensities following quantile normalization according to controls of each sera source (see methods). Rn, RNTech; As, Asterand.
doi:10.1371/journal.pone.0014540.g001
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based classifier. However, it was selected for the normalized mix-

based classifier (Table 3). Yet, for features such as m/z 1520 with

opposite trends in both sources, this step could not change the

trend, as expected (Figure 1C).

We tested the quantile normalization’s effect by applying it

before averaging and feature selection. To better assess the

prediction accuracy we employed the Matthews Correlation

Coefficient (MCC) measure. MCC is used in machine learning

as a measure of the quality of binary (two class) classifications and

returns a value between 21 and +1. A coefficient of +1 represents

a perfect prediction, 0 an average random prediction and 21 an

inverse prediction. MCC is generally regarded as a balanced

measure which can be used even if the classes are of different sizes.

We thus calculated the MCC for various classification experiments

in order to show the effect that normalization had on classification.

Results are shown in Table 2. Note that without normalization,

MCC was relatively high for the training set, yet showed mediocre

performance on the validation set (Table 2). The normalization

step gave similar high MCC values for training and validation sets

(Table 2). The normalization step to control cross-source bias did

not annul the need for machine learning-based classifier to define

a discriminative pattern; PCA of the two sources-mixed normal-

ized data sets resulted again in poor separation between stomach

cancer and control samples (Figure S4).

Immuno-based validation for features representing
apoC-I and apoC-III

The classifier resulted from the mixed data set, following

quantile normalization step, employed 9 features (Table 2). Three

of the 9 features involved apolipoproteins: apoC-III (feature 9443)

and apoC-I (features 6431 and 6629, Table 3). To further verify

the MALDI-based results, we first developed an ELISA test for the

qualitative detection of apoC-III in the serum (see methods) and

tested all sera samples from Asterand and RNTech. Results of the

ELISA followed the trend of the MALDI results (Figure 2A, B);

Intensity of the apoC-III was significantly higher in control groups

as compared to cancer groups in both sera sources. We further

assayed the correlation between apoC-III ELISA and 9443

MALDI results per each sample; ELISA and MALDI results

showed significant correlation (p,0.0001, Kendall’s ran correla-

tion tau). We then sent sera aliquots from nearly all samples (same

freeze state) to an external clinical laboratory for immunoturbid-

ity-based quantitative assay for apoC-III [22]. Results were

obtained in mg/dl (Figure 2C) and as above, quantity of apoC-

III was significantly higher in control groups of both sera sources.

To verify the apoC-I MALDI results, we employed a

commercial quantitative ELISA kit that includes apoC-I standards

and recognizes both 6431 and 6629 variants of apoC-I. Results

were obtained in mg/ml (Figure 3B) and followed the pattern

observed for the MALDI results (Figures 1D and 3A); Intensity of

the apoC-I was significantly higher in control groups as compared

to cancer groups in both sera sources. To assess the specificity of

apoC-I and apoC-III reduction in the sera of stomach cancer-
Figure 2. Boxplot presentations of MALDI feature 9443 and
apoC-III ELISA assay. Boxplot presentations of MALDI feature 9443

(A), qualitative ELISA assay for apoC-III (B) and quantitative immuno-
turbidity-based assay for apoC-III (C). For A, units represent MALDI-
based intensities following quantile normalization according to controls
of each sera source (see methods). For B, units represent OD ratios of
apoC-III ELISA following normalization to the average of controls of
each sera source. For C, units represent apoC-III concentration in sera.
For RNTech (Rn), * p-value ,0.0001 for A and B, and ,0.05 for C. For
Asterand (As), * p-value ,0.01 for A and B, and = 0.06 for C; Wilcoxon
rank sum test with continuity correction (alternative hypothesis: true
location shift is greater than 0).
doi:10.1371/journal.pone.0014540.g002
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bearing patients, we assayed apoB-100 levels. The samples assayed

for apoC-III in the external clinical laboratory were assayed in

parallel for apoB-100 levels using immunoturbidity-based quan-

titative assay. Results were obtained in mg/dl (Figure 3C) and

showed no significant trend between control and stomach cancer-

bearing groups. Therefore, we could make use of the apoB-100

results as a normalizing factor for the bioinformatics analysis of the

quantitative apoC-I and apoC-III results (Figures 3C, 3B, 2C,

respectively).

We analyzed clinically apoC-I, apoC-III and apoB-100 for

additional samples from stomach cancer patients and cancer-free

controls (RNTech source, same freeze-state; including 10 gastritis

patients in the cancer-free controls; note Table 1 for the total

sample numbers). We also analyzed clinically CA19-9 and CRP

levels for all samples (same freeze-state). We then employed

Clementine 10.0 software on the RNTech samples to assess

whether rules set based on apoB-100-normalized C-I and C-III,

CA19-9 and CRP serum levels can be used to classify between sera

of control and stomach cancer groups of RNTech source as a

training source. The combination of all 4 parameters yielded

better prediction accuracy as compared to combination of less

than 4 parameters (Figure 4 and data not shown). Prediction

accuracy of the training set was 88.4%. We employed the

RNTech-obtained rules set for the Asterand source and prediction

accuracy was 74.4% (Figure 4). For both training and validation

the sensitivity was excellent (87/90 combined) but the specificity

was less accurate (37/52 combined).

Discussion

In recent years, quite a few reports describing MS-identified

serum biomarkers/signatures for cancerous states were proven

wrong [5,18]. Different sources of bias were described including

sample selection, handling, processing, reading and analyzing

[18,20,21]. Upon removal of bias-contributing factors, it was

shown that SELDI-TOF MS whole serum proteomic profiling

with IMAC surface did not reliably detect prostate cancer [23].

Therefore, the authors suggested that it is unlikely that a mass

spectrometry approach using unprocessed serum would differen-

tiate between men with and without prostate cancer [24]. On the

other hand, other recent MALDI-TOF-based studies that avoided

bias-contributing factors and employed a one-step sera processing

technique identified discriminating biomarker signatures for

different cancers including prostate cancer [11].

In this study we adopted the one step sera processing approach

for identification of a peptidome-based signature to differentiate

sera derived from stomach adenocarcinoma patients. We made a

reasonable effort to avoid previously-reported bias contributing

factors [18]. We analyzed sera from two biorepositories. We

observed that even when sera handling, processing, MALDI

reading and analysis are the same, peptidome analysis is biased by

the biorepository. In addition to the socio-geographical differences

(Romania and USA as the source for the samples in RNTech and

Asterand, respectively), the source-related bias could be due to the
Figure 3. Boxplot presentations of MALDI feature 6629 and
apoC-I and apoB-100 ELISA assay. Boxplot presentations of MALDI

feature 6629 (A), quantitative ELISA assay for apoC-I (B) and quantitative
immunoturbidity-based assay for apoB-100 (C). For A, units represent
MALDI-based intensities following quantile normalization according to
controls of each sera source (see methods). For B and C, units represent
apoC-I and apoB-100 concentration in sera, respectively. For RNTech
(Rn), * p-value = 0.002 for A and ,0.0001 for B. For Asterand (As),
* p-value ,0.05 for A and = 0.001 for B; Wilcoxon rank sum test with
continuity correction (alternative hypothesis: true location shift is
greater than 0).
doi:10.1371/journal.pone.0014540.g003
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brand of the blood withdrawal tube, used in the different

biorepositories.

We then used a mixed sample set from two sera sources for

feature selection and added a cross-source normalization step to

compensate for source bias. We found that (i) the use of the mixed

dataset with a Mann-Whitney p-value cutoff for feature selection

could discard source-specific features, and (ii) a quantile normali-

zation step helps to select (for machine learning) partially

concordant features, in which the trends are concordant between

sources, but intensity levels are different between sources. The need

for normalization, when dealing with samples from different

sources, was already shown for microarray-based high throughput

technology [25]. It is well established that variations in experimental

procedures and uncontrolled conditions (e.g. socio-geographical

origin of samples) may lead to systemic measurement biases.

Following the modifications, we established a cross-source

serum peptide signature for distinguishing stomach cancer patients

from non-cancer controls. Three of the peptides corresponded to

apoC-I and apoC-III. We validated our MALDI-based results

with independent analytical methods that are based on immuno-

assays [26]. The peptide signature included apoC-III and apoC-I-

derived features. The results from independent quantification of

their serum levels followed the trend identified by the MS

approach.

Our study is the first to report that serum levels of apoC-I and

apoC-III can be used as potential biomarkers for stomach cancer.

It is true that recent reports have indicated that apolipoproteins’

levels in blood could be potential biomarkers for different

cancers. ApoC-I was identified as a potential serum biomarker

for colorectal cancer, hormone-refractory prostate cancer and liver

Figure 4. Decision tree for stomach cancer patients prediction and accuracy of prediction. (A) Accuracy of prediction produced by
decision trees using (1) apoC-I/apoB-100 and apoC-III/apoB-100; (2) CRP (mg/ml) and CA19-9 (U/ml); and (3) apoC-I/apoB-100, apoC-III/apoB-100, CRP
(mg/ml) and CA19-9 (U/ml) over training set RNTech and testing set Asterand. (B) Decision tree using the 4 features apoC-I/apoB-100, apoC-III/apoB-
100, CRP (mg/ml) and CA19-9 (U/ml).
doi:10.1371/journal.pone.0014540.g004
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fibrosis [27–29]. Other reports indicated that apoC-III might also

be a potential biomarker in pancreatic cancer and breast cancer

[30,31]. However, all of these reports employed MALDI-based

screening and did not verify their results with immuno-based or

other assays. Nor did they study sera from another source as a

validation group.

Our findings should be further expended and validated as

described [32,33]. Yet, the clinical validation of apoC-I and apoC-

III results prompt us to further explore a diagnostic assay based on

serum biomarkers that could be assayed in the clinic without the

need for MS technology. Rules set utilizing apoB-100-normalized

C-I and C-III, CA19-9 and CRP quantitative serum levels

generated for the RNTech source and validated on the

independent Asterand source had prediction accuracy of 88.4%

and 74.4%, respectively. Therefore, the use of these 4 clinical

features partially overcomes the source bias. However, the

relatively lower specificity indicates that additional clinical

parameter(s)/serum biomarkers should be added for the formu-

lation of an applicable diagnostic score for stomach cancer

patients. Additional source for such biomarkers could be

differential glycosylation of secreted proteins that could provide

additional serum biomarkers for cancerous state [35,36].

Supporting Information

File S1 Supplemental methods (bioinformatics, MALDI - serum

preparation and reading). Supplemental results (hierarchical

clustering and PCA). Legends to Figures S1 to S4 (showing

hierarchical clustering and PCA). Tables S1 to S3, showing age

distribution and gender, and clinical characteristics, are provided:

Tables S1 (RNTech), S2 (Asterand) and S3 (Israeli controls).

Found at: doi:10.1371/journal.pone.0014540.s001 (0.30 MB

DOC)

Figure S1 Principal Components Analysis (PCA) on data

derived from RNTech sera (A), Asterand sera (B), and the mixed

(RNTech and Asterand) dataset (C). For A and B, blue and red

circles indicate control and stomach samples, respectively. For C,

green and red circles indicate Asterand control and stomach,

respectively; black and blue indicate RNTech control and

stomach, respectively.

Found at: doi:10.1371/journal.pone.0014540.s002 (0.24 MB TIF)

Figure S2 Unsupervised hierarchical clustering on data derived

from RNTech sera (A) and Asterand sera (B). For A, blue and

black indicate cancer and control samples, respectively. For B, red

and green indicate cancer and control samples, respectively.

Found at: doi:10.1371/journal.pone.0014540.s003 (1.94 MB TIF)

Figure S3 Unsupervised hierarchical clustering on data derived

from the mixed (RNTech and Asterand) dataset. For the RNTech

samples set, blue and black indicate cancer and control samples,

respectively. For the Asterand samples set, red and green indicate

cancer and control samples, respectively.

Found at: doi:10.1371/journal.pone.0014540.s004 (5.63 MB TIF)

Figure S4 Principal Components Analysis (PCA) on the

normalized mixed (RNTech and Asterand) dataset. Green and

red circles indicate Asterand control and stomach, respectively;

black and blue indicate RNTech control and stomach, respec-

tively.

Found at: doi:10.1371/journal.pone.0014540.s005 (0.07 MB TIF)
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