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1  | INTRODUC TION

The electricity potential from offshore wind in the United States 
is estimated to be more than 2000 gigawatts, roughly twice the 
nation's current total generation (Musail et al., 2016). Two wind 
farms are now in operation off the coasts of Rhode Island and 
Virginia (Figure 1), while 29 offshore wind farms are in varying 

stages of development in the United States (AWEA, 2020a), with a 
projected build- out of 30 gigawatts of offshore energy by the year 
2030. The adverse effects of offshore wind generation on wildlife 
are generally acknowledged to be low relative to those of con-
ventional electricity generation technologies (Allison et al., 2019; 
Gibson et al., 2017). However, adverse impacts are still possible, 
and understanding the ecological significance of these effects is 
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shore wind development could impact North American bat populations. We find that 
most offshore bat records are of long- distance migrating bats and records occur dur-
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may be attracted to offshore turbines, potentially increasing their exposure to risk of 
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of time that bats are exposed to risk. We identify knowledge gaps and hypothesize 
that a combination of operational minimization strategies may be the most effective 
approach for reducing impacts to bats and maximizing offshore energy production.
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necessary for responsible development of offshore wind energy 
resources.

There is growing concern that North American bat populations 
are being adversely impacted by land- based wind development. An 
estimated 600,000 to 888,000 bats died from interactions with 
land- based wind turbines in the United States during 2012 (Hayes, 
2013; Smallwood, 2013), and installed wind power capacity has 
nearly doubled over the following eight years (AWEA, 2020b; Orrell 
et al., 2013). Some North American species, such as the hoary bat 
(Lasiurus cinereus), can potentially be at risk of population decline or 

extinction due to wind energy development (EPRI, 2020; Frick et al., 
2017). Bat fatalities are mainly due to collisions with moving tur-
bine blades (Grodsky et al., 2011; Lawson et al., 2020; Rollins et al., 
2012), though the underlying reasons for why bats approach tur-
bines are still largely unknown (Barclay et al., 2017; Cryan & Barclay, 
2009). To date, postconstruction monitoring studies of land- based 
wind energy facilities in the United States indicate the following: 
(a) long- distance migrating species (e.g., hoary bat, eastern red bat 
[Lasiurus borealis], and silver- haired bat [Lasionycteris noctivagans]) 
compose approximately 72% of reported bats killed; (b) the majority 

F I G U R E  1   Distribution of bat sightings and acoustic recording locations in the Atlantic Ocean, in relation to operating wind energy 
facilities and leased areas. Numbered sightings and lettered recording locations are described in Tables S1 and S2. BOEM, Bureau of Ocean 
Energy Management
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of fatalities occur during the autumn migration season (August and 
September); and (c) most fatalities occur on nights with relatively 
low wind speeds (e.g., <6.0 m/s; Arnett et al., 2008; AWWI, 2020).

Bats are primarily associated with terrestrial environments, yet 
some species are known to forage or migrate offshore. In Europe, 
field observations and recaptures of marked bats have shown that 
some species migrate seasonally across the Baltic and North Seas 
between the European continent and either Sweden or the United 
Kingdom, and some nonmigratory species forage over water far 
from shore (Ahlén et al., 2007, 2009; Hüppop & Hill, 2016; Lagerveld 
et al., 2014; Moores, 2017). In general, bats have been observed 
flying over large bodies of water (Hatch et al., 2013; Murphy & 
Nichols, 1913; Nichols, 1920), landing on ships at sea (Brown, 1953; 
Carter, 1950; Esbérard & Moreira, 2006; Griffin, 1940; Haagner, 
1921; Mackiewicz & Backus, 1956; Norton, 1930; Peterson, 1970; 
Thomas, 1921; Van Deusen, 1961), roosting on gas and oil platforms 
(Boshamer & Bekker, 2008), arriving on remote islands (Allen, 1923; 
Cryan & Brown, 2007; Hitchcock, 1943; Paracuellos et al., 2020; 
Petersen et al., 2014; Tenaza, 1966; Van Gelder & Wingate, 1961), or 
otherwise encountered in areas or situations suggesting the animals 
traveled over large bodies of water (Maunder, 1988; Merriam, 1887; 
Miller, 1897; Saunders, 1930). Acoustic, radar, and high- altitude vid-
eography surveys in the Gulf of Maine (Peterson et al., 2014, 2016) 
and in the Mid- Atlantic (Craven et al., 2020; Geo- Marine, 2010; 
Hatch et al., 2013; Peterson et al., 2016; Sjollema et al., 2014) have 
revealed some offshore bat activity patterns and behavior in North 
America. Despite these efforts, the frequency and extent of sea-
sonal bat foraging and migration activities in the North American 
marine environment is poorly understood, and the degree to which 
bat populations can potentially be impacted by offshore wind devel-
opment is largely unknown.

2  | METHODS

We aim to elucidate which North American bat species have the 
highest exposure risk from offshore wind development, and when 
and where we might expect the highest fatalities to occur at sea. 
We also assess whether observations of offshore bat behavior can 
help inform minimization strategies for reducing impacts by offshore 
wind energy development. We synthesize information from historic 
oceanic records and more contemporary records to gain a better 
understanding of the offshore occurrence and behavior of North 
American bats and to place this in the context of offshore wind en-
ergy development in the United States. We exclude data on bat use 
of the nonoceanic Great Lakes (e.g., McGuire et al., 2012) from our 
review, although some of the patterns and behaviors described here 
may be applicable to bat use of inland lakes.

To best characterize bat migratory behavior over the open ocean, 
we summarize data on sightings of bats at sea and of acoustic re-
cordings collected at offshore structures, such as buoys, towers, and 
lighthouses on barren, wave- swept rocks. Coastal data (e.g., Moore, 
2015; Moore & Best, 2018) and records from islands containing TA
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vegetation (e.g., Dowling, 2018; Dowling & O’Dell, 2018; Dowling 
et al., 2017; Johnson & Gates, 2008; Johnson et al., 2011; Peterson 
et al., 2014, 2016) were not included in our data summaries because 
these features likely harbor resident populations of bats and off-
shore wind development is not planned for these habitats. Use of 
the marine environment by bats has been studied more extensively 
in European waters, including surveys at operating offshore wind 
farms, and we incorporate information from these studies to provide 
framework for the behavior of North American species.

Several biases are inherent to this review. Sightings of bats fly-
ing over the ocean are necessarily restricted to daytime hours and 
to an observer's viewshed, so most sightings are reported during 
daylight hours and within a few dozen meters. As well, most sight-
ings reported here were opportunistic, made while observers were 
engaged in other activities. Acoustic surveys can capture nighttime 
bat activity and are typically more rigorous and systematic than 
sightings from boats, but recordings are limited to the range of 
the detector— approximately 30 m for most species (Adams et al., 
2012)— and require that bats actively echolocate while flying over 
the water. There is evidence that some European species echolocate 
over water (Ahlén et al., 2009), but hoary bats in North America are 
capable of making inconspicuous echolocation calls or flying without 
echolocating at all (Corcoran et al., 2021; Corcoran & Weller, 2018). 
Population impacts due to collision with offshore turbines are also 
impossible to assess because the population size of species likely to 
collide with offshore turbines is unknown, as is the proportion of 
those populations that flies over the ocean, or that might encoun-
ter turbine blades. Despite these limitations to the data, we think a 
thorough examination of North American oceanic records is needed 
as a starting point for understanding potential exposure risks to bats 
in the offshore environment and identifying knowledge gaps moving 
forward.

3  | RESULTS AND DISCUSSION

3.1 | Spatial distribution

All records of North American bats flying over the open ocean 
have occurred in the Atlantic region between North Carolina and 
Nova Scotia (Tables S1 and S2; Figure 1). When specified, bats were 
visually observed flying over open water or landing on ships at sea 
between 2.6 and 817.3 km from the nearest land (n = 37 records; 
median = 39.2 km; Table S1; Figure 1). Acoustic surveys in the Mid- 
Atlantic and Gulf of Maine recorded bats at various offshore struc-
tures (e.g., buoys, lighthouses) between 5.9 and 41.6 km from land 
(Table S2; Figure 1; Peterson et al., 2014, 2016). Ultrasonic detec-
tors mounted on research and fishing vessels that traveled within 
166 km of the Mid- Atlantic coast recorded bats an average of 
8.7 km (n = 166 passes; range = 1.2– 21.9 km; Sjollema et al., 2014), 
29.6 km (n = 584 passes; range 22.2– 44.4 km; Craven et al., 2020), 
and 60.3 km (n = 35 passes; range = 1.2– 129.6 km; Peterson et al., 
2016; Table 1) from land. A thermal imaging camera (paired with a 

vertically pointed radar and mounted to a barge) monitored for birds 
at temporary locations within 0– 20 km of the New Jersey coast and 
detected 45 radar signatures characterized as foraging bats (Geo- 
Marine, 2010; Table 1). Nearly two- thirds (62.5%) of records oc-
curred over water shallow enough to be effectively developed with 
current technology (i.e., <60 m deep; Tables S1 and S2; Figure 1). 
Six records occurred over water currently leased for wind develop-
ment, and six more were in the vicinity of the newly constructed 
Coastal Virginia Offshore Wind Project (Figure 1). In summary, bats 
have been seen and detected over a wide area of the Mid- Atlantic 
and Gulf of Maine, occurring in areas currently developed for wind 
and projected for future offshore wind energy development (Musail 
et al., 2016).

To our knowledge, North American bats have never been seen or 
acoustically detected flying over the Pacific Ocean. Hoary bats are 
believed to migrate south along the Pacific Coast in autumn (Brown, 
1935; Dalquest, 1943), and several species are known to occupy 
Pacific islands (San Juan Islands, Dalquest, 1940; Vancouver Island, 
Dalquest, 1943; Haida Gwaii, Burles et al., 2014; Channel Islands, 
Brown & Rainey, 2018). Hoary bats and western red bats (Lasiurus 
blossevillii) have been documented on Southeast Farallon Island, 
located approximately 32 km off the northern California coast, 
using it as a migratory stopover for the past four decades (Cryan 
& Brown, 2007; Tenaza, 1966). Genetic evidence recently identi-
fied a juvenile eastern red bat on Santa Cruz Island, 32 km off the 
southern California coast (P. Brown & W. Rainey, unpublished data). 
Combined with genetic confirmation of four specimens in southern 
California museums (D. Fraser, unpublished data), this extends the 
current known distribution of eastern red bats by approximately 
800– 1200 km (Geluso & Valdez, 2019; Solick et al., 2020). Hoary 
bats are the only extant bat species to colonize the Hawaiian Islands, 
where reproductive isolation and morphological differentiation after 
multiple dispersal events led to the formation of a new species, the 
Hawaiian hoary bat, Lasiurus semotus (ʻōpeʻapeʻa; Pinzari et al., 2020; 
Russell et al., 2015). The presence of bats on offshore islands in the 
Pacific indicates some movement by bats over the Pacific Ocean, 
including long- distance migrating species frequently found as fatal-
ities at land- based wind facilities. It is unknown whether the lack of 
observations reflects less activity by bats over the Pacific Ocean or 
the absence of survey effort by biologists.

3.2 | Activity rates

Most sightings occurred during daylight hours, and all 38 sightings 
occurred over a span of 130 years (Table S1), which could imply 
that offshore bat occurrence is relatively rare. However, multiyear 
acoustic surveys in the Mid- Atlantic and Gulf of Maine indicate the 
nocturnal density of offshore bats and the frequency at which the 
animals pass by fixed locations at sea is more common, averaging 
2.57 passes/night at offshore structures (n = 32 site- years; Table S2; 
Figure 1; Peterson et al., 2014, 2016). Activity rates of bats recorded 
at wind turbines and research platforms in the North Sea of Europe 
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averaged 1.01 passes/night (n = 7 sites; Table 2). Both sets of activ-
ity rates are relatively low and are comparable to rates typically re-
corded in open, arid regions of the United States (Solick et al., 2020; 
Weller & Baldwin, 2012), suggesting that bat migration over the 
ocean is generally dispersed over a relatively wide, featureless area.

The standard deviation (3.51 passes/night) and the range (0– 
14.49 passes/night; Table S2) for North American bat acoustic ac-
tivity data are quite broad, reflecting relatively high interannual 
variation in activity rates within and between sites. For example, 
during five years of acoustic monitoring at Matinicus Rock, located 
32.9 km off the Maine coast, annual activity rates ranged between 
0.41 and 12.06 passes/night, and the maximum number of passes 
recorded within a single night each year ranged between 21 and 
326 passes/night (Table S2). Acoustic data provide an index of bat 
activity, not abundance (Barclay, 1999), so a high number of passes 
may represent foraging or exploratory behavior by a few bats and not 
a large number of individual bats flying by the detector. Regardless, 
the relatively high degree of variation indicates that bat activity in 
proximity to structures in the offshore environment is uneven be-
tween years, suggesting that weather patterns (Cryan & Brown, 
2007) or some other stochastic factor likely determine when and 
how bats encounter offshore structures during migration.

3.3 | Temporal variation

All of the Atlantic bat sightings occurred during the autumn: eight 
in August (including the late July- early August Myotis record), 25 in 
September (11 of which were videographed during aerial surveys on 
a single morning; Hatch et al., 2013), and four in October (Table S1). 
On Bermuda, located 1000 km offshore and where long- distance 
migrating bats have been blown off- course by weather, “a minimum 
of 100 bats is likely to occur during the fall migration (in a normal 
year) and perhaps half that number during the spring migration” (Van 
Gelder & Wingate, 1961: 6). Likewise, on Southeast Farallon Island 
in the Pacific, hoary bats were seen during the autumn months for 
36 of 38 years that records were kept (mean ± standard deviation 
[SD] = 8.2 ± 6.6 bats; median = 6) compared to just two years that 
bats were seen during the spring (Cryan & Brown, 2007; Tenaza, 
1966). Acoustic records in the Gulf of Maine (including offshore 
structures, coastal areas, and islands) support this seasonal timing 
of offshore bat activity, with >99% of 75,058 recordings made be-
tween 15 July and 15 October, despite just 56% of sampling occur-
ring during this period (Peterson et al., 2014). Bat activity peaked in 
August at offshore structures in the Gulf of Maine and Mid- Atlantic 
(mean ± SD = 8.0 ± 1.2; range = May– October; Table S2). The timing 
of bats in the offshore environment coincides with autumn migra-
tion and with the period of highest bat fatalities at land- based wind 
facilities in North America (AWWI, 2020; Arnett et al., 2008). The 
general lack of oceanic records during other seasons suggests bats 
primarily occupy the offshore environment during autumn migration 
and that risk of exposure at offshore wind facilities is lower during 
the rest of the year.TA
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Activity rates for bats recorded during acoustic surveys at off-
shore structures in the Gulf of Maine and Mid- Atlantic peaked a few 
hours after sunset (mean ± SD = 2.5 ± 1.7 h after sunset), with a 
range in peak activity between one and 7 h after sunset (n = 28 site- 
years; Table S2). However, detectors at three offshore structures 
recorded bats during daylight hours (n = 130 passes; Peterson et al., 
2016), and sightings of bats in the Atlantic mainly occurred during 
the day (91.7% of 24 records that recorded time), with several bats 
seen as late as 11:00– 12:00 in the morning and one bat seen an 
hour before dusk (Table S1). Therefore, while most bats fly over the 
ocean at night, some bats will be active during daylight hours, likely 
in search of a place to land.

3.4 | Species composition

At least six species of bat have been documented off the Gulf of 
Maine and Mid- Atlantic coast (Tables S1 and S2; Figure 2). The 
vast majority of visual and acoustic records identified to species 
were of eastern red bats. Silver- haired bats and hoary bats made 
up most of the remaining observations, while tricolored bats, big 
brown bats, and Myotis bats were relatively rare. The species com-
position likely reflects both differences among species in relative 
abundance and factors that make some species easier or harder 
to detect.

A review of museum specimens indicates eastern red bats 
occur throughout coastal areas along the Atlantic Ocean and Gulf 
of Mexico, extend inland in the spring, and then migrate south 

along the Atlantic coast in the fall (Cryan, 2003). Telemetry of an 
eastern red bat along the coast indicates individuals of this species 
can travel at least 453 km over water in a single night (Dowling 
et al., 2017). Eastern red bats were reported during 68% of 38 
sightings (Table S1) and were the most frequently recorded spe-
cies (89% of 3489 passes classified to species) at 88% of offshore 
structures during acoustic surveys in the Mid- Atlantic and Gulf 
of Maine (Peterson et al., 2016; Figure 2). Eastern red bats were 
the main species recorded at 75% of sites (Figure 2), including at 
NERACOOS Buoy E, located 18.8 km off the shore of Maine. Bats 
were recorded at this buoy for over 70% of nights in August of 
2012, when approximately eight passes/night were recorded on 
average for nine consecutive nights (Peterson et al., 2016). These 
data suggest either a pulse of migration past this buoy— possibly 
evidence of flocking behavior— or that bats were using this buoy as 
a temporary roost.

Silver- haired bats were the next most commonly seen species 
offshore, accounting for 15% of sightings, including one instance 
when red and silver- haired bats were observed flying together as 
part of a large mixed flock (Thomas, 1921; Table S1). As this man-
uscript was going to publication, we learned of a silver- haired bat 
that landed on a charter fishing boat approximately 22 nautical 
miles southeast of Nantucket Island, Massachusetts, on 25 August 
2021 at 0930 (D. O’Dell, personal communication). Acoustic detec-
tions of silver- haired bats were less frequent than for red bats (5%; 
Figure 2). Some silver- haired bats apparently do not migrate, with in-
dividuals found hibernating in Minnesota and Michigan (Beer, 1956; 
Kurta et al., 2017), and others overwintering in moderate Pacific 

F I G U R E  2   Species composition 
at offshore structures surveyed with 
acoustic detectors between 2009 and 
2014 in the Gulf of Maine and Mid- 
Atlantic, adapted from Peterson et al. 
(2016) and arranged by distance from land
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Northwest climates (Izor, 1979; Nagorsen et al., 1993). Specimens 
for silver- haired bats have been collected during the autumn on the 
Atlantic coast, indicating coastal migration in the east (Cryan, 2003). 
Silver- haired bats were detected at 63% of offshore structures, 
though were more frequently recorded at sites located closer to land 
(Figure 2), suggesting that this species migrates relatively close to 
shore, at least at relatively low altitudes.

Hoary bats have not been seen flying over the ocean (Table S2). 
Robust data are lacking, but museum records and stable isotope 
analysis suggest hoary bats migrate from the interior of the country 
to the coasts in search of more moderate climates and potentially 
do not actually engage in pronounced latitudinal migration (Cryan, 
2003; Cryan et al., 2014). Indeed, there is some evidence that at 
least some hoary bats can potentially hibernate for all or part of the 
winter in habitats with stable, nonfreezing climates (Marín et al., 
2020; Weller et al., 2016). Three male hoary bats captured in north-
ern California and tracked over the fall and winter using miniature 
GPS tags and data loggers exhibited a variety of movement patterns, 
but none of the bats were recorded flying over the Pacific Ocean 
(Weller et al., 2016).

Despite the general lack of visual records, acoustic surveys indi-
cate hoary bats were widespread in the Atlantic Ocean, present at 
88% of offshore structures, though hoary bats were infrequently re-
corded (4% of passes; Figure 2). Hoary bats are strong, long- distance 
fliers, and produce a distinct echolocation call, so it is surprising 
that members of this species are not more frequently observed or 
acoustically detected over the Atlantic Ocean. Hoary bats have rou-
tinely been observed during the autumn on Bermuda (Allen, 1923; 
Van Gelder & Wingate, 1961) and have been collected as far away 
as Iceland (Hayman, 1959), the Orkney Islands (Barrett- Hamilton, 
1910), Southampton Island (Hitchcock, 1943), and Newfoundland 
(Maunder, 1988), so it is likely that some hoary bats do migrate over 
the Atlantic, though perhaps not to the same extent as eastern red 
and silver- haired bats. Hoary bats have been documented flying at 
altitudes of 2,400 m above sea level during autumn (Peurach, 2003) 
and can forego echolocation or produce undetectable echoloca-
tion “micro calls” in flight (Corcoran et al., 2021; Corcoran & Weller, 
2018), so it is possible that hoary bats (and other species) are more 
common offshore but potentially fly too high or too quietly to be 
seen or detected.

As with land- based wind development, it appears that long- 
distance migrating bats are the species most at risk from offshore 
development. However, species that do not migrate long- distances, 
such as tricolored bat (Perimyotis subflavus; but see Fraser et al., 2012) 
and big brown bat (Eptesicus fuscus), have been detected acoustically 
up to 12– 14 km from shore at locations in the Gulf of Maine (Figure 2; 
Peterson et al., 2016). Myotis bats were the most widespread spe-
cies detected acoustically in the Gulf of Maine, being detected on 
all eight offshore structures for which species data were provided, 
and Myotis were the only species detected (n = 2 passes) at the most 
distant structure, NERACOOS Buoy I, located 26.2 km from land 
(Figure 2). Echolocation calls by Myotis can be confused with steep 
calls made by eastern red bats (Britzke et al., 2013), so it is possible 

some of these calls were misclassified. Myotis species were more ac-
tive at structures closer to shore, with 83.3% recorded at structures 
8.3 km or less from shore (Figure 2). Sjollema et al. (2014) recorded 
Myotis species up to 11.5 km from shore on research and fishing ves-
sels in the Mid- Atlantic. Telemetry of a little brown bat (Myotis luci-
fugus) captured on the island of Martha's Vineyard, Massachusetts, 
found that the bat traveled at least 78 km to a mainland location 
on Cape Cod, which required some overwater travel (Dowling et al., 
2017). One ship record indicates that Myotis species are capable of 
traveling much further from shore. Thompson et al. (2015) describe 
dozens of unknown Myotis bats (probably M. lucifugus) landing and 
roosting on their ship as well as on tall “high flier” buoys in the re-
gion, 110 km from the nearest land (Table S1; Figure 1). This event 
occurred in late July or early August, and the bats were believed to 
have been feeding on relatively large numbers of biting flies present 
at the time. In the Baltic Sea, approximately 36% of observations 
at sea (n = 1062) were of nonmigratory species feeding on flying 
insects and apparently gleaning amphipods from the water surface 
(Ahlén et al., 2009).

3.5 | Group size

Bats were seen flying alone for 79% of records (Table S1), suggest-
ing that offshore migration is largely a solitary activity. Several 
records reported large groups of bats flying together in the “doz-
ens,” or estimated at 100– 200 individuals (Table S1). All of the 
records for large groups of long- distance migrating species were 
from 1949 or earlier. Mearns (1898) reported “great flights” of 
eastern red bats over land during autumn in the Hudson Valley 
of New York. Loose aggregations of eastern red bats during au-
tumn have also been reported migrating over land in Washington, 
D.C. (Howell, 1908), while concentrations of this species in south-
ern states were noted by Baker and Ward (1967), LaVal and LaVal 
(1979), and Saugey et al. (1989). It is unknown whether this flock-
ing behavior no longer occurs due to apparent population declines 
(Winhold et al., 2008), or whether eastern red bats continue to 
gather and flock in the autumn, unobserved at night. The 11 east-
ern red bats reported over a three- hour period on a single morning 
by Hatch et al. (2013; Table S1), though flying singly, seem reminis-
cent of Howell's observation from a century earlier. However, all 
of these reports of apparent group size for bats were made during 
the daytime, which may not be representative of typical nighttime 
migration behavior.

3.6 | Sex and age

Only 11 oceanic records noted the sex of captured or collected indi-
viduals: Six bats were male and five were female (Table S1). Age was 
not specified. Presumably, bats susceptible to collision with offshore 
installations would comprise adult and juvenile bats of both sexes, 
as they do on land.
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3.7 | Flight height

None of the records from ships state the precise height at which 
bats were seen flying, though Murphy and Nichols (1913: 7) describe 
bats flying “about a gun- shot” above the sea, Griffin (1940) notes a 
bat “flew within 15 or 20 feet” (4.5– 6.0 m) and A. Rabon and J.B. 
Thornton (personal communication) photographed an unknown 
Lasiurus circling their boat at approximately 9 m (Table S1). Bats mi-
grating over the Baltic Sea were most often seen flying <10 m above 
the water surface (Ahlén et al., 2009), including the common noctule 
bat (Nyctalus noctula), which is normally a high- flying species over 
land (Ahlén et al., 2007). Nathusius’ pipistrelles (Pipistrellus nathusii) 
were seen flying at heights between 3 and 20 m during ship- based 
surveys on the North Sea (Boshamer & Bekker, 2008; Lagerveld 
et al., 2014). Bats flying low over water have reduced flight costs 
(“aerodynamic ground effect”; Johansson et al., 2018) and can po-
tentially also use echolocation to remain oriented with the water 
surface (Ahlén et al., 2009). North American bats flying over the 
ocean in a similar manner would be less likely to encounter turbine 
blades. However, bats have been observed ascending rapidly when 
encountering vertical structures, such as ships, lighthouses, or wind 
turbines (Ahlén et al., 2009). Off the Atlantic coast of the United 
States, eastern red bats have been estimated flying 100 –  200 m 
and >200 m over the ocean based on parallax measurement of aerial 
video (Hatch et al., 2013; Table S1). Five of the six bats estimated at 
these heights were videographed in the vicinity of the recently built 
Coastal Virginia Offshore Wind Project, whose turbine blades reach 
222 m above sea level (Table S1; Figure 1). Long- distance migrat-
ing bats in general are capable of flying at altitudes up to at least 
460 m (silver- haired bat) to 2400 m (hoary bat) above sea level as 
evidenced by collisions with aircraft (Biondi et al., 2013; Peurach, 
2003; Peurach et al., 2009). Bats have been recorded flying at na-
celle height (93 m) at an offshore wind farm in the North Sea, al-
beit at a much lower rate (0.02 bats/night) than bats recorded at the 
base of turbines (16 m; 0.18 bats/night; Brabant et al., 2019; Table 2). 
These detectors could only record bats emitting echolocation pulses 
>30kHz (Brabant et al., 2019), which likely reduced the overall bat 
activity recorded.

3.8 | Weather

Only 22 (60% of 37) oceanic accounts describe the weather condi-
tions when bats were sighted (Table S1). Three records describe light 
winds out of the northwest or west- northwest, while a fourth record 
mentions an east wind. Four of the accounts took place during peri-
ods of relatively calm weather, and the authors suggest that the bats 
were likely not driven offshore by severe weather. In contrast, the 
large flock of approximately 200 eastern red bats reported by Carter 
(1950: 350) was seen on a day with “rain and west- northwest winds 
of 20 miles/h” (32.2 km/h). As well, the eastern red bat reported 
804.7 km from Nova Scotia by Brown (1953: 139) was “believed by 
the ship's crew (to) have been driven out to sea by strong winds,” 

although the actual weather conditions were not described. Sjollema 
et al. (2014) and Craven et al. (2020) found that bat activity off the 
mid- Atlantic coast decreased with increasing wind speeds, a relation-
ship that has also been found in the Baltic Sea (Ahlén et al., 2007), on 
Assateague Island (Johnson et al., 2011), and at multiple land- based 
wind energy studies (Arnett et al., 2008; Baerwald & Barclay, 2011; 
Horn et al., 2008; Reynolds, 2006; Weller & Baldwin, 2012). That 
said, Hatch et al. (2013) reported bats flying with tailwinds between 
8.9 and 10.1 m/s (n = 12 records; Table S1), indicating that bats are 
capable of flying at relatively high wind speeds offshore.

3.9 | Offshore wind development

It is unknown what impact, if any, that offshore wind development 
might have on bat populations or whether any mitigation is needed. 
In the absence of empirical data, the similar species composition and 
patterns of bat activity in onshore and offshore environments sug-
gest that bats flying offshore are at some risk of collision. To date, 
no fatalities of bats have been documented at offshore wind energy 
facilities worldwide. However, searching for carcasses beneath off-
shore turbines is not possible, and monitoring of offshore turbines 
using camera technologies (e.g., thermal, near infrared) that could 
witness collisions is at very early stages of development and has only 
been recently pilot- tested (Brown- Saracino, 2018; Good & Schmitt, 
2020; Matzner et al., 2020; Normandeau Associates, 2021). It is un-
known what the potential population impacts could be to bats from 
offshore wind development. The population size for long- distance 
migrating bat species is poorly understood, and it is unclear what 
proportion of bats move over water as opposed to land. Taken alone, 
the relatively low numbers of oceanic records in the literature (Table 
S1) could imply offshore migration is generally a rare event. Yet the 
acoustic recordings described in this review (Table 1, Table S2) in-
dicate regular, albeit unconcentrated, movement of bats over open 
water, at least in the Gulf of Maine and the Mid- Atlantic. What is 
known is that the vast majority of offshore bat records are of long- 
distance migrating bats and occur during autumn migration, the 
period when the highest fatality rates of these same species at land- 
based wind turbines in North America have been recorded (AWWI, 
2020). It is prudent to assume that bats flying offshore are at similar 
risk of collision with turbine blades as conspecifics flying over land. 
Then again, if offshore wind speeds are typically greater than wind 
speeds on land, it is possible that bats flying over the ocean area at 
less risk of collision.

Offshore turbines could be more attractive to bats than main-
land turbines. Solick, Pham, et al. (2020) found that bat activity 
rates increased in a location after turbines are built, and Cryan and 
Brown (2007) and Baerwald (2018) hypothesized that bats could be 
attracted to prominent landmarks such as turbines in an otherwise 
featureless landscape. Some wavelengths of light are attractive to 
some European migratory species (Voigt et al., 2017, 2018), and 
the contrast of bright lights against a dark ocean could potentially 
amplify this attraction. Exploratory behavior by bats to investigate 
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potential landing spots, evaluate feeding opportunities (e.g., Brabant 
et al., 2019; Hüppop & Hill, 2016), or inspect novel structures on 
the landscape could increase the probability of collision with moving 
turbine blades. Prior to landing on ships, bats were observed circling 
vessels on three occasions (Table S1), presumably inspecting the 
vessel before landing or moving on. Thermal video at a wind farm in 
Indiana captured 993 bat detections, of which 88% exhibited “focal” 
exploratory behaviors, including close approaches to the tower, na-
celle, or blades, and the bats often approached multiple times over a 
period of several minutes (Cryan, Gorresen, et al., 2014).

Offshore structures can provide shelter from adverse weather or 
an opportunity to rest after a long flight. Indeed, for 12 of the 19 re-
cords by ship (63.2%), observers describe bats landing on the rigging, 
on other parts of the ship, and even on people (Table S1), presumably 
from exhaustion. On two occasions, bats remained aboard until the 
ship returned to harbor (Table S1). In the North Sea, bats have been 
found roosting on offshore installations (Boshamer & Bekker, 2008; 
Hüppop & Hill, 2016; Petersen et al., 2014), and the animals are likely 
using structures as temporary refugia during migration. In both the 
Baltic and North Seas, bats have been found roosting in the nacelles 
of turbines (Ahlén et al., 2007, 2009), as well as in a transformer 
station (Lagerveld et al., 2016), inside turbine foundations (Brabant 
et al., 2019), and in the maintenance equipment on a turbine service 
platform (Brabant et al., 2019).

Offshore structures can potentially also provide feeding oppor-
tunities for migrating bats. Nathusius’ pipistrelle exhibits a “fly- and- 
forage” strategy during autumn migration along the coast of Latvia 
(Šuba et al., 2012), and North American long- distance migrating bats 
feed during autumn migration as well (Reimer et al., 2010; Valdez & 
Cryan, 2013), including in the vicinity of wind facilities (Foo et al., 
2017; Reimer et al., 2018). Migratory and nonmigratory bats were 
regularly observed foraging on high densities of insects at wind 
farms located 9.1– 14.2 km off the coast of Sweden. Chironomids of 
marine origin were common offshore, as were terrestrial insects that 
had flown or drifted from neighboring countries, including balloon-
ing spiders (Ahlén et al., 2007, 2009). So- called “bioflows” of “aerial 
plankton” containing trillions of insects amounting to thousands of 
metric tons of biomass (Hu et al., 2016; Satterfield et al., 2020) can 
sometimes occur over the open ocean (Alves et al., 2018) and can 
potentially provide strong incentive for insectivorous bats to seek 
out and/or follow. The occurrence of “dozens” of Myotis bats— not 
typically associated with long- distance flight— 110 km offshore for 
a 24- h period (Table S1), ostensibly feeding on large numbers of bit-
ing flies, may be an example of North American bats exploiting a 
bioflow.

Bats have been observed foraging in close proximity to turbine 
blades over land and over water (Ahlén et al., 2009; Horn et al., 
2008). “Hill- topping” is a behavior whereby insects follow a hill (or 
other tall structure) upward and congregate at the top (Shields, 
1967). Applied to turbines, this could place foraging bats within 
proximity of spinning blades (Rydell et al., 2010). Lidar mounted on 
the nacelles of land- based turbines and paired with bat detectors 
documented nightly insect swarms and bat feeding activity (Jansson 

et al., 2020). Insects are most abundant during nights with low wind 
speeds, and bats are also most active on nights with low wind speeds 
(Baerwald & Barlcay, 2011). Thus, as with land- based facilities, risks 
to bats at offshore wind facilities may be greatest to long- distance 
migrating bats on low wind speed nights.

Foraging bats may also be attracted by marine organisms in the 
open ocean. Ahlén et al. (2009) observed two species of bats reg-
ularly dipping into the water with their feet and hypothesized the 
bats were gleaning the numerous and widespread amphipods. In the 
Gulf of California, the fish- eating bat (Myotis vivesi) feeds on fish and 
crustaceans captured in the ocean (Otálora- Ardila et al., 2013). In 
the San Juan Islands, Washington, Yuma bats (M. yumanensis), and 
California bats (M. californicus) were shot and collected while flying 
low and dipping into saltwater off the coast (Dalquest, 1940). It is 
possible these bats were also foraging on marine organisms.

Given bat use of offshore structures— including turbines— as 
temporary roosts, and the potential abundance and availability of 
insects at wind farms, it is possible that offshore creation of roost-
ing and foraging habitat could benefit bat populations. However, 
roosting and foraging in the vicinity of turbine blades could increase 
exposure and risk of collision with turbine blades (Peterson, 2020). 
Turbines located offshore may pose additional risks to bats com-
pared to mainland counterparts. Bat fatalities increase with turbine 
height (Barclay et al., 2009), and offshore turbines are taller than 
land- based turbines (Musail et al., 2016). As noted earlier, bats fly 
during daylight hours over the ocean, and if this behavior is more 
common than on land, they may be at greater risk of colliding with 
offshore turbines throughout the 24- h period. Lastly, bats have col-
lided with lighthouses, buildings, and television towers during pe-
riods of fog or low ceiling height (Cryan & Brown, 2007; Saunders, 
1930; Van Gelder, 1956). These weather factors are more common 
at sea and can potentially increase the risk of collision for bats with 
offshore turbines.

At present, it is not possible to estimate fatality rates for bats 
at offshore facilities, and technologies to monitor activity and as-
sess risk are limited. Radar has been used to monitor bat movements 
over the Baltic Sea, but could only track the large- bodied common 
noctule bat (average mass = 30 g; Ahlén et al., 2007). The thermal 
imaging camera and vertically pointing radar used off the coast of 
New Jersey only documented 45 bats during approximately 520 h 
of surveys due to the limited field of view and inability to reliably 
distinguish commuting bats from birds (Geo- Marine, 2010). Impact 
sensors within rotor blades can reliably detect collisions with 57 g 
tennis balls fired from an air cannon (Hu et al., 2018), but it is un-
known if these sensors can detect collisions of long- distance mi-
grating bats weighing 8– 40 g. Acoustic detectors mounted on 
offshore structures provide information on species composition, 
timing, and relative activity rates for bats. More offshore acoustic 
monitoring needs to take place to better understand offshore bat 
activity patterns, particularly in the Pacific Ocean. More information 
is needed on bat activity in the vicinity of operational turbines in 
North American waters and how frequently bats fly over the ocean 
during daylight hours. A meta- analysis of land- based wind facilities 
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in North America concluded that bat activity rates do not predict 
fatality rates (Solick, Pham, et al., 2020), so offshore activity rates 
may not be a good indicator of risk. Lagerveld et al. (2020) evalu-
ated three systems combining radar, thermal cameras, and acoustic 
detectors to monitor for bats flying near turbine blades, but con-
clude none of the systems are currently ready for deployment in the 
offshore environment. However, two Acoustic and Thermographic 
Offshore Monitoring (ATOMTM) systems were recently deployed at 
the Coastal Virginia Offshore Wind facility as part of a pilot project 
(Normandeau Associates, 2021).

Acoustic deterrents generating high- frequency noise audible to 
bats have been found to reduce overall bat fatalities at land- based 
wind facilities in North America by up to 62% (Hein & Straw, 2021; 
Romano et al., 2019; Schirmacher, 2020; Weaver et al., 2020). 
However, this reduction of bat fatalities varies widely by technology 
and region, and between years, and between species. For example, 
during three years of study at a facility in Illinois, a General Electric 
deterrent reduced bat fatalities by approximately 30% in 2014 and 
2015, but no reduction was observed in 2016 (Romano et al., 2019). 
In Texas, an NRG Systems deterrent reduced fatality rates of hoary 
bats and Mexican free- tailed bats (Tadarida brasiliensis) by 78% and 
54%, respectively, but had no effect on fatalities for northern yellow 
bats (L. intermedius; Weaver et al., 2020), a species frequently found 
at wind facilities in the southwestern United States (8.1% of fatali-
ties; AWWI 2020). Eastern red bats appear to be the main species 
at risk of collision with offshore turbines in the Atlantic, but none of 
the deterrent systems reliably reduced fatality of this species when 
it was present at a facility. As such, acoustic deterrents by them-
selves do not appear to be a currently viable minimization strategy 
at offshore wind facilities. Other deterrents, such as illuminating tur-
bines with dim ultraviolet light (Gorresen et al., 2015) and texture 
coating (Bennet & Hale, 2018), are currently being tested (Hein & 
Straw, 2021).

Adjustments to turbine operations can potentially be the most 
effective minimization strategy for reducing impacts to bats off-
shore. Land- based wind facilities in North America have tested rais-
ing the turbine cut- in speed (i.e., the wind speed at which blades 
rotate and wind- generated electricity enters the power grid) from 
the manufactured speed (usually 3.0– 4.0 m/s) by 1.5– 3.0 m/s, a pro-
cess known as curtailment (Arnett et al., 2013). It is estimated that 
total bat fatalities are reduced by 33% for every 1.0 m/s increase 
in cut- in speed, for total reductions of 33– 79% in a given year at a 
cut- in speed of 5.0 m/s (Whitby et al., 2021). Economic analyses of 
land- based facilities in North America suggest this type of opera-
tional minimization is likely to result in <2– 5% energy production 
loss (Arnett et al., 2011, 2013; Baerwald et al., 2009; Dowling, 2018; 
Martin, 2015; Whitby et al., 2021). Modeling of theoretical offshore 
wind facilities in the Atlantic indicates that standard curtailment 
for bats would result in ≤1.12% decrease in energy production and 
≤0.88% revenue losses based on local marginal price data (Dowling, 
2018). Wind speeds are generally greater offshore, so low wind 
speeds (e.g., <5.0 m/s) associated with curtailment would contribute 
a lower proportion of annual energy production for offshore wind 

facilities (Dowling, 2018; Eurek et al., 2017). Detection- based “smart 
curtailment,” which deactivates turbine blades only when bats 
are detected during high- risk periods (e.g., wind speeds <5.0 m/s 
during August and September), combined with predictive models 
of offshore bat activity based on regional weather patterns (Smith 
& McWilliams, 2016), can potentially reduce energy production 
and revenue losses even further (Hayes et al., 2019). However, be-
cause winds tend to be stronger offshore and bats fly at higher wind 
speeds over the ocean (Hatch et al., 2013; Sjollema et al., 2014; Table 
S1), operational cut- in speeds for offshore turbines potentially also 
need to be increased (and possibly applied during daytime hours) to 
effectively reduce impacts to bats.

Offshore wind development in the United States is expected to 
rapidly increase to meet renewable energy initiatives by the end of 
this decade. Based on the available data, bats occur in the offshore 
environment and may be susceptible to collision with offshore tur-
bines. There is growing concern that fatalities at terrestrial wind 
facilities could be impacting North American migratory bat popu-
lations. Until we know the population sizes of different bat species, 
what proportion of those bats move over the ocean, and how many 
are killed at turbines, it is impossible to determine population- level 
impacts and whether operational minimization is needed. However, 
offshore wind development in North America is at an early stage 
and has an opportunity to plan for and research potential fatality 
reduction measures that would be biologically effective as well as 
economically feasible if offshore bat risk is determined to be signif-
icant. Most likely, those fatality reduction measures will include a 
combination of operational minimization strategies, such as smart 
curtailment and acoustic deterrents, to effectively harness offshore 
wind energy generation while reducing potential impacts to bats.
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