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Abstract

Since the discovery of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) in late 2019, intense research
efforts on an unprecedented scale have focused on the study
of viral entry mechanisms and adaptive immunity. While the
identification of angiotensin-converting enzyme 2 (ACE2) and
other co-receptors has elucidated the molecular and structural
basis for viral entry, the pathobiological mechanisms of SARS-
CoV-2 in human tissues are less understood. Recent ad-
vances in bioengineering have opened opportunities for the
use of organotypic human tissue models to investigate
host—virus interactions and test antiviral drug candidates in a
physiological context. Although it is too early to accurately
quantify the added value of these systems compared with
conventional cell systems, it can be assumed that these
advanced three-dimensional (3D) models contribute

toward improved result translation. This mini-review summa-
rizes recent work to study SARS-CoV-2 infection in human 3D
tissue models with an emphasis on the pharmacological tools
that have been developed to understand and prevent viral
entry and replication.
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Introduction

The coronavirus disease 2019 (COVID-19) pandemic
has resulted in an unprecedented shift in research ac-
tivities aimed at collectively combining efforts to
develop treatments for severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) and minimize its

spread in the community. This has led to the uncoor-
dinated use of different cell and tissue models to study
SARS-CoV-2 infection and treatment modalities [1].
The choice of model system has important implications
in the context of functional pharmacology, where lead
compounds encounter a bottleneck in drug discovery at
the preclinical or clinical phase because of a lack of
therapeutic value. What complicates the matter further
is that although COVID-19 is primarily a respiratory
disease, it is now clear that it can also result in a
multitude of extrapulmonary manifestations, including
liver and renal injury, endothelial damage, neurologic
symptoms, and beta-cell dysfunction [2].

The expression of SARS-CoV-2 receptors and entry
factors has been studied across healthy human tissues
[3], but the effects of infection on host cell molecular
signatures are limited to the airway epithelium, lung,
and intestine and are mostly based on biopsy samples.
"To allow for longitudinal profiling, the establishment of
an accessible panel of human organotypic three-
dimensional (3D) tissue models provides a promising
tool kit to study the tissue-specific pathobiology of viral
infections. Previously, 3D models have been used to
study a multitude of enteric infections, including
coxsackie B1 virus [4], norovirus [5], rotavirus [6] and
enterohemorrhagic FEscherichia coli 7], hepatitis viruses
[8,9], and respiratory viruses, such as respiratory syn-
cytial virus [10], influenza virus [11,12], and para-
influenza virus 3 [13].

The choice of model system depends on several factors,
but perhaps the biggest differences are found when
investigating the pharmacology of conventional pro-
phylactics versus vaccines. While prophylactics largely
depend on the nature of the selected cell system, vac-
cines rely on an understanding of the virus itself. In the
case of COVID-19, which can progress to affect multiple
organs, further consideration should be given to the
stage of infection (i.e. initial infection vs. multiorgan
failure).

To study the complex pathophysiology of SARS-CoV-2
infection in human tissues, cell lines and animal
models have important limitations because of species
differences in virus tropism and cell line—specific pe-
culiarities of the host cell response. For instance, since
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their isolation in the late 1960s, African green monkey
kidney cells (Vero) have routinely been used as host
cells for virus propagation and the testing of antiviral
drug candidates. However, Vero cells lack the capacity to
produce interferons, which is an important consider-
ation, particularly for the study of interferon susceptible
viruses, such as SARS-CoV-2. Such caveats necessitate
the use of other emerging culture models, such as stem
cell—derived organoids and 3D primary tissue models,
that may better represent the pathophysiology of
infection and increase the fidelity of result translation
(Table 1). For methodological details, as well as critical
discussions of the advantages and limitations of these
culture systems, we refer the interested reader to recent
comprehensive reviews [14—17].

3D human airway models

Patients with severe COVID-19 can develop acute res-
piratory distress syndrome characterized by respiratory
failure with hypoxemia and acute bilateral pulmonary
infiltrates and histopathologic patterns of diffuse alve-
olar damage and pulmonary microthrombi [18]. Several
distal lung epithelial models have been developed that
can be infected with SARS-CoV-2 and allow to study
viral effects in the distal gas-exchange region of the
lungs (Figure 1a).

Human primary alveolar organoids have been generated
from cells isolated from normal human distal lung tissue
co-cultured with MRC-5 human lung fibroblasts [19].
These organoids were susceptible to SARS-CoV-2
infection and showed robust induction of host response
genes, including various cytokines, as well as cell auton-
omous and non—cell autonomous apoptosis, indicative of
alveolar injury. At physiological concentrations, remde-
sivir significantly reduced viral load, whereas no effects
were observed for hydroxychloroquine.

Human alveolar type II (AT2) cells derived from primary
human lung tissue have also been used to investigate the
host cell response to SARS-CoV-2 infection in long-term
3D culture [20]. These studies revealed rapid viral
replication within a few days postinfection paralleled by a
strong induction of interferon response gene signatures,
indicative of a robust endogenous innate immune
response. Furthermore, single-cell sequencing showed
that although uninfected AT?2 cells were relatively ho-
mogeneous, SARS-CoV-2 infection resulted in the sub-
division of cells into distinct clusters, of which some were
characterized by a loss of AT2 identity and compromised
alveolar function. Distal lung organoids have also been
generated from adult AT2 or keratin S5—positive
(KRT5+) basal cells [21]. Alveolar organoids differenti-
ated into alveolar type I (AT1) cells, whereas basal cell
organoids became luminal lined with differentiated club
and ciliated cells within bronchiolar structures. Impor-
tantly, distal lung organoids with apical-out polarity were

susceptible to infection, and club cells were identified as
a novel SARS-CoV-2 target population.

Lung organoids generated by differentiation of primary
stem cells derived from tissue sections enabled the
modeling of both distal and proximal lung epithelium
[22]. Notably, proximal epithelial cells were more
permissive to SARS-CoV-2 infection, whereas distal
epithelial cells showed increased host cell immune
response, highlighting the importance of spatially
refined tissue modeling.

Alternatively, human pluripotent stem cells (hPSCs)
can be used to generate organoids that recapitulate
the cellular complexity of the human distal lung,
including AT'1 and AT2 cells, stromal cells, pulmonary
neuroendocrine cells, as well as airway epithelial cells
[23]. Notably, this model allowed for sufficient
throughput to screen >1200 US Food and Drug
Administration FDA)-approved drugs for their ability
to inhibit SARS-CoV-2 entry, and the authors identi-
fied candidate molecules, including imatinib and
chloroquine, which inhibited infectivity at subtoxic
concentrations. hPSC-derived AT2 cells can further-
more be cultivated as monolayers with apical-basal
polarization and barrier integrity on filters in air—
liquid interface (ALI) cultures [24]. The presence
of virus particles in the vicinity of lamellar bodies
suggests that secretion of lung surfactant may be
dysregulated by SARS-CoV-2 infection. As in cultures
from primary cells, infection increased inflammatory
signaling and loss of mature alveolar phenotypes. It is,
however, important to note that these culture models
lacked immune cell components.

To overcome this limitation, lung and macrophage co-
culture systems were developed based on directed dif-
ferentiation of hPSCs [25]. Importantly, in this model,
both M1 and M2 macrophages inhibited SARS-CoV-2
infection, but only M1 macrophages increased the pro-
duction of inflammatory cytokines that facilitated lung
cell injury. Inhibition of viral entry improved M2-
mediated viral clearance and resulted in significant
protection of lung cells, suggesting that blockade of viral
entry or stimulation of M2 macrophages are potential
strategies for therapeutic intervention.

Taken together, both organoids and ALI cultures can be
used as tools to study SARS-CoV-2 infection of pulmo-
nary tissues. In particular, human primary models
faithfully recapitulate the molecular and cellular phe-
notypes of distal and proximal lung epithelium. How-
ever, they lack the ability to be stably propagated and are
consequently more suitable for mechanistic studies or
target validations rather than large-scale screens. A
major drawback of most current models remains the
relatively low cellular complexity, particularly the
absence of immune cells, which impairs our
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Table 1

Overview of 3D human tissue models for SARS-CoV-2 infection.

Tissue Cell source Cell types Strengths Limitations References
Lung Distal lung tissue co-culture AT2 Allow for study of proximal—distal axis of the No presence of AT1 cells; long differentiation [5]
with lung fibroblasts infection process (20 days; preprint)
Primary human lung tissue AT1 and AT2 AT1 and AT2 representation; long-term stable Lack of immune cells; tissues derived from [20]
3D culture heterogeneous clinical samples; limited
scalability
Primary human AT2 AT1 differentiated from AT2 Long-term feeder-free culture; possibility for Lack of immune cells; apical-out polarity [21]
short-term propagation
Primary human Basal Club and ciliated cells
KRT5+ cells differentiated from basal
cells
Lung tissue adult stem cells AT1 and AT2 Recapitulation of proximodistal cellularity; Lack of immune cells (preprint) [8]
scalability
Basal cells, ciliated cells,
club cells, and goblet cells
hPSC AT1- and AT2-like cells Substantial cellular complexity; cells can be Lack of immune cells; immature phenotype; [23]
propagated resulting in high scalability long differentiation process (50 days)
hPSC AT2-like cells Self-renewing human lung epithelial lineages; Lack of AT1-like cells and immune component [24]
adaptation to 2D ALI cultures mimicking
apical viral respiratory infections
hPSC AT2, AT1, ciliated, basal, Host cell and macrophages from the same Cultures cannot be propagated limiting [11]
stromal, club, hPSC lines avoiding concern of scalability (preprint)
neuroendocrine cells, M1 histocompatibility
and M2 macrophages
Liver hPSC Hepatocyte-like cells The study also investigated the viral tropism in Lack of nonparenchymal cells; immature liver [27]
other stem cell-derived tissue models phenotypes
Bile duct—derived Cholangiocytes Allow for the study of SARS-CoV-2 specifically Underrepresentation of liver cell complexity [28]
progenitor in cholangiocytes
Primary human hepatocytes Hepatocytes Cells retain their mature phenotype on Use of limited primary material [29-33]
and nonparenchymal transcriptomic, proteomic, and metabolomic
cells level for many weeks; high-throughput
compatible
Intestine Primary gut epithelial stem Enterocytes, goblet cells, Mimics the cellular complexity of the human Brush borders face the organoid lumen [41,50,51]
cells enteroendocrine cells intestine; well-characterized phenotypes; making it cumbersome to study infections of
unlimited propagation in 3D culture the oral routes
Primary gut epithelial stem Enterocytes Enteroids can be derived from duodenum, Limited intestinal complexity [42]
cells ileum, and colon; compatible with transwell
culture
Primary gut epithelial stem Enterocytes Robust and long-term stable culture Limited intestinal complexity [43]
cells
Human pluripotent stem Molecular phenotypes not well characterized [44]

cells

(continued on next page)
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understanding of the pathophysiological mechanisms of
SARS-CoV-2 infection of pulmonary tissues.

3D human liver models

There is considerable interest in organotypic liver
models to study virus—liver cell interactions, as well as
the pharmacokinetics and toxicity of candidate drugs.
This is reinforced by the observation that liver injury has
been detected in up to 60% of severely ill COVID-19
patients [26], suggesting that liver models could be
useful to study extrapulmonary disease biology ex vivo.

Hepatic effects of SARS-CoV-2 have been studied in
stem cell—derived organoids and in organotypic 3D
cultures of mature human liver cells. In stem cell—
derived liver organoids, SARS-CoV-2 infection could
be detected in albumin-positive hepatocyte-like cells
[27], as well as in cholangiocytes in human liver ductal
organoids based on bile duct—derived progenitor cul-
tures [28]. Interestingly, in the latter, the authors
demonstrated that infection impaired the barrier and
bile acid transporting functions of cholangiocytes by
modulating the expression of tight junction and bile acid
transport genes, thus providing a possible link between
SARS-CoV-2 and cholestatic liver injury (Figure 1b).

Using a well-established primary human hepatocyte 3D
spheroid model in which liver cells retain their tran-
scriptomic, proteomic, and metabolomic configuration
[29—31], it was shown that mature human hepatocytes
are permissive to SARS-CoV-2 infection despite
expressing only low levels of angiotensin-converting
enzyme 2 (ACE2) [32]. Interestingly, exposure to proin-
flammatory cytokines, particularly class I interferons,
resulted in the induction of ACEZ2 expression and
increased liver cell infectivity [33]. However, whether the
full-length functional or truncated nonfunctional ACE2
1soform [34,35] becomes induced in human liver remains
to be determined. SARS-CoV-2 infection was moreover
found to modulate the host cell response of hepatocytes
to inflammatory signaling, specifically altering the
expression of coagulation factors and genes involved in
plateletactivation, which mightat least in part explain the
coagulation defects observed in COVID-19 patients [33].

The development of a model that recapitulates the
pathophysiology of SARS-CoV-2 infection ex vivo opened
the possibility to test candidate molecules for COVID-
19 drug repurposing. Baricitinib, an oral inhibitor of
JAK/STAT signaling approved for the treatment of
rheumatoid arthritis, had been suggested by artificial
intelligence—based knowledge graphs as a candidate
therapy for COVID-19 by virtue of inhibiting both
excessive cytokine signaling and numb-associated ki-
nases that regulate receptor-mediated endocytosis and
viral entry at nanomolar levels [36]. Importantly, bari-
citinib significantly reversed virus-induced host cell
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Organotypic 3D models of pulmonary and extrapulmonary tissues are susceptible to SARS-CoV-2 infection and allow for the study of
virus—host cell interactions. (a) SARS-CoV-2 infection in human airway epithelia. Both ciliated cells and secretory cells were permissive to SARS-CoV-
2 infection. Arrowhead and asterisk indicate cilium and secretory vesicle, respectively. Insets show close-ups of virus particles. Panel reproduced with
permission from Ref. [52]. (b) Immunofluorescence staining for SARS-CoV-2 N protein and E-cadherin reveals infection of cholangiocyte-like cells in
human liver ductal organoids. Panel modified with permission from Ref. [28]. (¢ and d) Superresolution dSTORM microscopy of short-term (4 h) infected
liver spheroids stained for SARS-CoV-2 nucleocapsid treated with DMSO control (c) or baricitinib (100 nM; d). (e) Baricitinib significantly reduced
intracellular viral particle numbers suggesting inhibition of viral entry. Bars indicate means + SD; ***P < 0.001 two-tailed Student’s ¢ test. Ab = antibody;
ns = not significant. Panels c—e modified with permission from Ref. [33]. (f) Transmission electron microscopy images of SARS-CoV-2—infected intestinal
organoids. Severely infected and disintegrating cells (i—iii) are shown. Double membrane vesicles (indicated by asterisks) and viral production in the
Golgi, characteristic of different stages of the viral lifecycle are shown in (iv) and (v), respectively. (vi) shows extracellular clusters of viruses. Panel
modified with permission from Ref. [52]. Scale bars = 2.5 um in (i) to (iii) and 250 nm in (iv) to (vi). Panel modified with permission from Ref. [41]. (g)
SARS-CoV-2 staining in human pluripotent stem cell—derived intestinal organoids one and two days postinfection. Viral S protein is shown in red, host E-
cadherin in green and nuclei (DAPI) in blue. Scale bar = 50 um (h) Co-treatment of SARS-CoV-2—infected organoids with remdesivir resulted in a
significant and dose-dependent decrease of virus-positive cells. Panels g and h reproduced with permission from Ref. [44]. (i) Human kidney organoid at
20 days of differentiation infected with SARS-CoV-2. Note the formation of tubular-like structures (green), podocyte-like cells (turquoise), and organized
basement membrane networks (red). Scale bar in light microscopy and confocal microscopy image = 100 um and 250 um, respectively. Panel reproduced
with permission from Ref. [48].
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transcriptomic alterations and reduced infectivity, as
well as viral load in 3D liver spheroids at therapeutically
relevant concentrations (Figure 1c—e). More impor-
tantly and in alignment with these ex vivo findings,
baricitinb significantly reduced mortality in observa-
tional trials of elderly patients in Italy and Spain [33].
The promising clinical effects have since been corrob-
orated by a large randomized controlled trial [37] and
have resulted in the FDA emergency use authorization
of baricitinib for COVID-19.

Intestinal ex vivo models

The manifestation of gastrointestinal (GI) symptoms in a
subset of SARS-CoV-2 patients [38,39] and the high
expression level of ACE2 in enterocytes [40] have fueled
studies into the pathobiology of SARS-CoV-2 in human
intestinal tissues. In contrast to lung and liver, ex vivo
studies of SARS-CoV-2 infection of intestinal cells have
only been presented in stem cell—derived organoid cul-
tures. In small intestinal organoids derived from primary
gut epithelial stem cells, SARS-CoV-2 productively
infected the enterocyte lineage (Figure 1f), whereas
enteroendocrine cells and goblet cells were not infected
[41]. Infections of ACE2-positive enterocytes were pro-
moted by the mucosa-specific serine proteases
TMPRSS2 and TMPRSS4 [42]. Interestingly, TMPRSS2
is expressed on goblet cells, which are themselves resis-
tant to infection but promotes infection of neighboring
enterocytes 2 trans. Infectious viral particles were
detected in stool samples of a patient with diarrheal
COVID-19, and viral replication was found to be higher in
human colonoids compared with enteroids [43].

Infection, active replication, and viral spread of SARS-
CoV-2 also occurred in intestinal organoids derived
from hPSC that recapitulated the cellular heterogeneity
of the human intestinal lining (Figure 1g). In this model,
the authors observed infection of enterocytes as well as
Paneth cells, suggesting potential disruption of hor-
monal secretion and perturbed local immune defense
[44]. The model was successfully used to confirm the
antiviral effects of remdesivir (Figure 1h) and the
peptidic pan-coronavirus fusion inhibitor EK1, but not
of the putative TMPRSS2 inhibitor famotidine. In
addition, following a high-throughput screen of FDA-
approved drugs for antiviral action, imatinib, mycophe-
nolic acid, and quinacrine dihydrochloride were
confirmed to inhibit SARS-CoV-2 infectivity in hPSC-
derived colonic organoids [23]. In short, these results
suggest that both primary gut stem cell—derived and
iPSC-derived organoids provide suitable tools to study
SARS-CoV-2 cellular tropism and infection biology and
validate antiviral drug effects.

3D renal organoids
Acute kidney injury constitutes a common complication
in severely ill COVID-19 patients, occurring in 0.5—7%

of cases and in 2.9—23% of intensive care unit patients
[45]. The SARS-CoV-2 entry factors ACEZ2 and
TMPRSS2 are expressed in podocytes and proximal
tubule cells, suggesting that these are the primary target
cell types. Notably, upon ex vivo culture, ACEZ expres-
sion was twice as high in 3D proximal tubule organoids
compared with conventional 2D culture, suggesting that
3D cultured cells might be more readily infectable in
organotypic culture configurations [46].

Infectivity with SARS-CoV-2 was also modeled using
hPSC-derived kidney organoids that featured clear
tubular structures and podocyte-like cells (Figure 11)
with molecular phenotypes resembling second-
trimester human fetal kidneys [47,48]. Importantly,
viral entry in kidney organoids could be blocked dose
dependently by human, but not mouse soluble recom-
binant ACE2 [48]. Notably, the effect of human soluble
recombinant ACE2 was additive with the intracellular
viral replication inhibitor remdesivir, suggesting that
combinatorial therapies of agents with mechanistically
distinct targets might provide promising strategies for
COVID-19 [49].

Conclusions

Although conventional monolayer cultures of cell lines
were the predominant 7 vitro models to study virus
biology and antiviral drug action during previous coro-
navirus outbreaks of MERS and SARS-CoV-1, these cell
systems were mostly superseded by organotypic 3D
human culture systems of various pulmonary and
extrapulmonary  tissues during the COVID-19
pandemic, developments, which were made possible
by the rapid advancements in primary tissue and orga-
noid culture methods in the last decade. While the
added value of these changes is difficult to accurately
quantify, these physiological systems have demonstrated
their translational value for the identification of poten-
tial targets and the development and testing of antiviral
candidates in phenotypically appropriate contexts. On
the basis of these experiences, further investments into
human tissue engineering, as well as initiatives to
improve the benchmarking, standardization, and acces-
sibility to such models thus seem warranted to increase
the preparedness for current and future public health
emergencies.
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