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Abstract: The baby hamster kidney-21 (BHK-21) cell line is a continuous cell line used to propa-
gate foot-and-mouth disease (FMD) virus for vaccine manufacturing. BHK-21 cells are anchorage-
dependent, although suspension cultures would enable rapid growth in bioreactors, large-scale virus
propagation, and cost-effective vaccine production with serum-free medium. Here, we report the
successful adaptation of adherent BHK-21 cells to growth in suspension to a viable cell density of
7.65 × 106 cells/mL on day 3 in serum-free culture medium. The suspension-adapted BHK-21 cells
showed lower adhesion to five types of extracellular matrix proteins than adherent BHK-21 cells,
which contributed to the suspension culture. In addition, a chemically defined medium (selected
by screening various prototype media) led to increased FMD virus production yields in the batch
culture, even at a cell density of only 3.5 × 106 cells/mL. The suspension BHK-21 cell culture could
be expanded to a 200 L bioreactor from a 20 mL flask, which resulted in a comparable FMD virus
titer. This platform technology improved virus productivity, indicating its potential for enhancing
FMD vaccine production.

Keywords: adherent; baby hamster kidney cell; foot-and-mouth disease; virus productivity; suspension
culture; vaccine

1. Introduction

Foot-and-mouth disease (FMD) is a highly contagious acute disease with significant
economic impacts; it affects almost all types of cloven-hoofed domestic and wild animals
globally. The disease presents with fever, lameness, and vesicular lesions on the foot and
tongue. The causative agent, foot-and-mouth disease virus (FMDV), is a positive-sense,
single-stranded RNA virus belonging to the Picornaviridae family. This virus has seven
antigenically variable serotypes (O, A, C, Asia1, SAT1, SAT2, and SAT3) as well as various
subtypes [1].

Several attempts have been made to develop FMD vaccines to prevent infection. The
first inactivated FMD vaccine was developed by Waldmann et al. in 1937, using virus from
vesicular fluid obtained from the tongues of deliberately infected cattle [2]. In the 1950s,
Frenkel devised a large-scale in vitro culture technology for virus production in slices of
surviving bovine tongue epithelium [3]. However, Frenkel’s method is difficult to scale
up due to a limited supply of tongue epithelium. To overcome these limitations, further
research was initiated to identify a cell line susceptible to FMDV infection. Mowat and
Chapman demonstrated that BHK-21, clone 13, previously developed by Macpherson and
Stocker in 1962 was capable of supporting FMDV growth [4–6]. For industrial-scale vaccine
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production, Capstick et al. (1962) adapted BHK-21 for growth in suspension, and Telling
and Elsworth (1965) used the adapted BHK-21 cells to produce an inactivated FMD vaccine
in a large-scale bioreactor in serum-containing medium [7,8].

However, culturing cells in medium with serum has some disadvantages [9,10].
First, serum may contain potential factors such as bacteria, fungi, viral contaminants,
mycoplasma, prion proteins, endotoxins, and unknown components that contaminate a
cell culture and interfere with downstream processing and product purification. Serum
also has lot-to-lot qualitative, quantitative, geographical, and seasonal variations, which
lead to inconsistent cell growth and productivity. In addition, serum is not economical for
large-scale bioreactor culture due to the high cost of serum.

Large-scale virus production with adherent mammalian cells is feasible using a roller
bottle [11], but suspension-culture systems grown in shake flasks and stirred in a bioreactor
are easier to scale up and control, and have high volumetric productivity due to higher
maximum viable cell densities (MVCDs) than are possible when compared to adherent
cells [12]. The simplest strategy for suspension adaptation is a direct method that involves
the direct change from an adherent-culture condition with serum-containing medium to an
agitation-culture condition with serum-free medium. However, interruption of cell-surface
protein signaling, such as the loss of integrin signaling after removing cell-adhesive surface
proteins and disrupting extracellular matrix (ECM)–cell contacts, leads to a specific form of
apoptosis called anoikis [13].

Cell death can occur after removing adhesive surface proteins or serum withdrawal.
Serum contains diverse components with biological functions, such as growth factors,
cytokines, supplemental metabolites, transport proteins, and hormones [14], as well as
physiological factors that function in pH buffering, toxin and protease inactivation, and
protection from shear stress [15]. Moreover, serum has an anti-apoptotic effect that is
independent of nutrient deprivation [16]. To address the problem of cell aggregation and
apoptosis caused by direct adaptation, we incrementally reduced the serum concentration
while maintaining high viability (>80%) during adaptation. This gradual reduction of
serum over time increases the probability of successful suspension adaptation, since even a
small amount of serum that remains during adaptation may contribute to adapting the new
environment. During the adaptation process, it is important to monitor the cell-growth rate
since an increase is the first sign of successful adaptation. To achieve successful adaptation
with increased cell growth, it is common to add supplements that support cell growth,
such as commercial serum replacements or defined feeding media.

Here, we developed suspension-adapted BHK-21 (BHK-S) cells capable of growth to
a high cell density in serum-free medium and evaluated the adhesive properties of the
suspension-adapted cells. We also developed serum-free medium for high-yield FMDV
production. Suspension cell cultures were scaled up from flasks to 200 L bioreactors. FMDV
can be divided into several particles (146S, 75S, and 12S) and 146S is intact virions [17]. Since
146S antigens are the most efficient immunogens in the FMD vaccine, 146S antigens were
also quantified in each production scale [18]. This cell-culture-based FMDV-production
technology can be employed to develop an effective viral vaccine within a short period
against newly spreading FMDV strains.

2. Materials and Methods
2.1. Cell Lines, Cell Culture Media, and FMDV

An adherent BHK-21 cell line (C-13, ATCC CCL-10) was grown in T-75 flasks at 37 ◦C
and 5% CO2 in Dulbecco’s modified Eagle’s medium (DMEM; Gibco, Grand Island, NY,
USA) supplemented with 10% fetal bovine serum (FBS; Gibco, USA). The culture was
diluted and passaged every 3 or 4 days. The VCD and cell viability were measured by
trypan blue exclusion using a Vi-CELL XR analyzer (Beckman Coulter, Fullerton, CA, USA).
FMDV O/Jincheon/SKR/2014 (Mya-98 lineage strain) was used in this study for virus
titration with adherent and suspension adapted BHK-21 cells [19].



Vaccines 2021, 9, 505 3 of 13

2.2. Suspension Adaptation of Adherent BHK-21 Cells and Maintenance of a BHK-21 Suspension
(BHK-S) Culture

Adherent BHK-21 cells were directly adapted to ProVero-1 medium (Lonza, Basel,
Switzerland) containing 10% v/v FBS, 4 mM L-glutamine, 5% v/v homemade feed medium-1
(FM-1; 25 g/L, pH 7.4), 1 g/L PF-68, and 0.2 g/L dextran sulfate (Sigma-Aldrich, St. Louis,
MO, USA) in Erlenmeyer flasks. The cells were incubated at 37 ◦C and 5% CO2, with
agitation at 110 rotations/min (rpm), and FBS was progressively eliminated during the
weaning procedure. Once the cells were adapted to growth in suspension, the resulting
BHK-S cells were serially passaged every 3 or 4 days until they showed stable growth in
the serum-free medium. The suspension-adapted cells were cryopreserved at different
passages for analysis, and fully adapted BHK-S cells were deposited in the Research Cell
Bank under serum-free conditions (KCTC 12945BP, KCTC18706P; Korean Collection for
Type Cultures, Korea Research Institute of Bioscience and Biotechnology).

2.3. Cell-Adhesion Assay

Cell adhesion assay was performed under sterile conditions using the CytoSelect
48-Well Cell Adhesion Assay, ECM Array (Cell Biolabs, San Diego, CA, USA). Briefly, the
plates coated with various ECM components (fibronectin, collagen I, collagen IV, fibrinogen,
and laminin or bovine serum albumin as a negative control) were warmed up at room
temperature for 10 min. 1 × 106 cells/mL cells were then prepared in serum-free medium,
150 µL of cell suspension was added to appropriate wells, and the plates were incubated for
60 min at 37 ◦C in a humidified atmosphere in the presence of 5% CO2. The medium was
removed, and each well was washed 4 times with 250 µL phosphate-buffered saline (PBS).
The PBS was removed and 200 µL of the cell-staining solution (provided in the kit) was
added to each well and the plates were incubated for 10 min at room temperature. After
incubation, the cell-staining solution was removed, and each well was washed 4 times with
500 µL deionized water. The final wash was removed, and the wells were dried. Then,
200 µL extraction solution (provided in the kit) was added to each well, and the plates
were incubated for 10 min on an orbital shaker at room temperature. Finally, 150 µL of each
sample was transferred to each well in a 96-well microtiter plate (Thermo Fisher Scientific,
Waltham, MA, USA), and the optical density at 560 nm (OD560nm) was measured using a
Synergy HT (BioTek Instruments, Winooski, VT, USA). Each experiment was carried out
in triplicate.

2.4. Development of Serum-Free Medium for BHK-S Cells

A prototype media-formulation library was prepared using a design-of-experiments-
based approach, which is supported by Thermo Fisher Scientific (Waltham, MA, USA).
Twenty milliliters of each base medium was added into a 125 mL Erlenmeyer flask, followed
by 0.3 × 106 BHK-S cells/mL, after which the cells were incubated at 37 ◦C and 5% CO2
with shaking at 110 rpm. Sixteen prototype media (eight chemically defined and eight
protein-free media) and ProVero-1 medium were screened in triplicate after adaptation
for three passages. BHK-S cells in each medium were analyzed to assess their growth
kinetics every 24 h for 6 days, which enabled us to determine the maximum viable cell
concentration reached for each experimental condition tested. After developing serum-free
media, BHK-S cells were adapted to the new environment until cell growth and viability
were stable.

2.5. Propagation and Titration of FMDV

FMDV vaccine strain O/Jincheon/SKR/2014 (Mya-98 lineage strain) were obtained
from Jincheon County (Korea) in 2014. Virus propagation was conducted in a biosafety-
level 3 containment facility at the Animal and Plant Quarantine Agency in South Korea.
On day 3 after passaging adherent BHK-21 cells and BHK-S cells, the medium was changed
and the cells were infected with FMDV O/Jincheon/SKR/2014 (Mya-98 lineage strain)
at a multiplicity of infection (MOI) of 0.01 or 0.001. Supernatants from infected cultures
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were harvested at 16, 20, or 24 h post-infection (hpi). FMDV titers were determined in the
adherent BHK-21 cells via an endpoint titration using the Spearman–Kärber calculation and
were presented as the tissue culture infective dose affecting 50% of the cultures (TCID50)
per mL [20,21]. Each experiment was carried out in triplicate.

2.6. 146S Antigen Quantification

The clarified virus culture supernatant of 50 mL was inactivated with 3 mM binary-
ethylenimine (Sigma-Aldrich) treatment at 26 ◦C for 24 h and concentrated by polyethylene
glycol (PEG, MW 6000, Sigma-Aldrich) precipitation. The precipitate was resuspended
in tris-KCl (TK) buffer (pH 7.6) and then layered onto 15–45% sucrose density gradients
(SDGs) and ultracentrifuged at 100,000× g for 4 h at 4 ◦C using a SW41Ti rotor(Beckman
Coulter, Brea, CA, USA). The ultra-centrifuged SDG was fractionated using a continuous
density gradient fractionator (Teledyne ISCO, Lincoln, NE, USA) [22], and the absorbance of
each fraction at 254 nm was consecutively recorded with the spectrophotometer component
of the instrument. The area under the peak for specific fractions was measured to calculate
the quantity of 146S antigens (µg/mL) according to a previous study [22]. Each experiment
was carried out in triplicate.

2.7. Optimizing BHK-S Batch Culture

BHK-S cells were expanded in various culture modes, including batch, fed-batch,
and enhanced-batch cultures. In the fed-batch culture, a 5% v/v of FM-1 (25 g/L, pH 7.4)
was added to chemically defined medium (CDM)-2 on day 0 and day 2. Enhanced batch
cultures were tested by adding FM-1 (25 g/L, pH 7.4) to the initial medium at a ratio of 5,
10, 15, or 20% (v/v). Each experiment was carried out in triplicate.

2.8. Scaled Up FMDV Production in 50 L and 200 L Bioreactors

A scale-up study was performed using stirred tank bioreactors. Briefly, a 50 L and
a 200 L bioreactor were filled with 50 L and 200 L CDM-2, respectively, inoculating
0.5 × 106 BHK-S cells/mL. The temperature, dissolved oxygen level, and pH in the biore-
actor were controlled at 37 ◦C, 40% air saturation, and 7.2 ± 0.2, respectively. The agitation
speeds of the impellers in the 50 and 200 L bioreactors were 80 and 50 rpm, respectively.
After 3 days of culture, the BHK-S cells were allowed to settle down without agitation
for 12 h, and 80% of the old medium was replaced with fresh CDM-2. After the medium
exchange, the cells were infected with FMDV at an MOI of 0.01, and the infected cultures
were harvested at 16 hpi for FMDV quantification.

3. Results
3.1. Suspension Adaptation and BHK-S Cell Growth

Before suspension adaptation, we screened various commercial serum-free media in
Erlenmeyer flasks to select an optimal serum-free medium for suspension adaptation of
BHK-21 cells, with active cell growth and fewer aggregates. ProVero-1 medium was found
to be optimal for BHK-21 growth. The commercial serum-free media tested contained
abundant components as serum replacements, several of which are biologically active,
such as growth factors, cytokines, supplemental metabolites, transport proteins, and
hormone and survival factors that elicit anti-apoptotic and protective effects independently
of nutrient deprivation. However, under stressed conditions (removal of serum or adhesive
surface proteins, or exposure to shear stress), cell cycle arrest occurred and cell growth was
delayed [23,24]. Therefore, homemade FM-1 feed, which contained nutrients such as lipids,
amino acids, and vitamins, was added to support cell growth [25].

Adherent BHK-21 (C13) cells were directly adapted to ProVero-1 medium in Erlen-
meyer flasks. The FBS was eliminated by stepwise weaning from 10 to 0%. During
suspension adaptation, the BHK-21 cells easily formed aggregates and attached to the
culture vessel due to hydrodynamic effects [26]. These aggregates resulted from DNA
released from dead cells due to a failure to adapt to suddenly changed culture conditions
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and can significantly influence nutrient uptake, the cell-proliferation rate, shear stress, and
cell death, which are ultimately detrimental to the cell culture process [27]. Surfactant
PF-68 is widely used in mammalian cell cultures to protect cells from shear stress, and
dextran sulfate is also used as an anti-aggregation agent [28,29]. Therefore, we used both
reagents in combination to efficiently prevent cell aggregation, and we removed formed
cell aggregates by filtering.

The complete adaptation to serum-free suspended cultivation took 150 days, and
the resulting cell line was designed as the BHK-S cell line. BHK-S cell morphology was
compared to adherent BHK-21 cells grown in DMEM with 10% FBS (Figure 1A). The BHK-S
cells showed a typical round shape without aggregate formation, and the morphology
was retained during several passages (Figure 1B). After suspension adaptation, BHK-S
cells had stable cell growth and viability over 30 days (Figure 1C), during which time
the VCD reached 7.65 (±0.71) × 106 cells/mL on day 3. Compared to BHK-21 cells,
BHK-S cells showed a comparable doubling time and growth rate, and a dramatically
higher volumetric VCD (Table 1). To compare FMDV productivity between BHK-21 and
BHK-S cells, they were infected with FMDV in T-75 flasks and 125 mL Erlenmeyer flasks,
respectively. The BHK-S cells generated a 5.6-fold higher virus titer than the BHK-21 cells,
due to volumetric productivity (Figure 1D). Finally, BHK-S cells having robust cell growth
and lower aggregate formation were banked as a host cell line for viral infection.
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each passage. Production of FMDV by BHK-21 and BHK-S cells was compared using the same culture volume (D). Each
experiment was carried out in triplicate. Data expressed as mean ± standard deviation.
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Table 1. Characteristic comparison between adherent BHK-21 (C13) and BHK-S.

VCD at Day 3
(106 cells/cm2

or cells/mL)

Doubling Time
(h)

Specific Growth Rate
(h−1)

BHK-21 (C13) 0.45 (±0.02) 15.53 (±0.69) 0.045 (±0.002)
BHK-S 7.65 (±0.71) 15.97 (±0.57) 0.043(±0.002)

3.2. ECM Properties of BHK-S Cells

The ECM is one factor that determines the adhesive properties of cells cultured in
suspension. To evaluate whether the BHK-S cells had adhesive properties, we performed
cell-adhesion assays for five ECM proteins (fibronectin, collagen I, collagen IV, laminin I,
and fibrinogen) with adherent BHK-21 cells, intermediately adapted BHK-S cells (grown in
medium containing 5% FBS), and BHK-S cells (Figure 2). The intermediately adapted BHK-
S cells (in 5% FBS) and BHK-S cells exhibited dramatically reduced adhesion to all five ECM
proteins, when compared to BHK-21 cells. The intermediately adapted BHK-S cells showed
slightly higher adhesion to all five ECM proteins, except for collagen I, when compared
to BHK-S. Consequently, BHK-S cells showed significantly lower adhesion characteristics
in serum-free medium, which likely contributed to suspension adaptation. Additionally,
BHK-S cell aggregates gradually disappeared and the suspension ratio increased from 67.5
(±0.4)% to 93.5 (±3)%.
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Figure 2. Suspension BHK-S cells and intermediately adapted BHK-S cells (+5% FBS) showed reduced cell attachment to
the ECM proteins fibronectin, collagen type I, collagen type IV, laminin I, and fibrinogen (A). Colorimetry was performed to
quantify the OD 560 nm values after cell staining and extraction. The BHK-S cells showed less aggregation than the intermedi-
ately adapted BHK-S cells (+5% FBS) (B). Each experiment was carried out in triplicate. Data expressed as mean ± standard
deviation. Statistical analyses were performed using Student’s t-test. p < 0.001 was considered statistically significant.

3.3. FMDV Susceptibility and Productivity of BHK-S Cells

To evaluate whether virus sensitivity remained after suspension adaptation, BHK-S
cells were infected at a density of 6 × 106 cells/mL with FMDV (MOI = 0.01 or 0.001)
immediately after fresh medium replacement. FMDV was propagated for 16, 20, and
24 hpi, and the cytopathic effect increased to >90%. At different MOIs, the FMDV titers
were similar, but decreased at increasing hpi. Therefore BHK-S cells retained efficient



Vaccines 2021, 9, 505 7 of 13

sensitivity to FMDV infection, even at an MOI of 0.001, although the production yield of
FMDV diminished over time (Figure 3A).
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To compare the volumetric productivity of FMDV, we evaluated the correlation be-
tween the cell density and FMDV productivity. BHK-S cells were infected at different
cell concentrations (approximately 1 × 105, 1 × 106, and 1 × 107 cells/mL). As the cell
concentration increased, FMDV productivity also increased (Figure 3B).

3.4. Developing Serum-Free Medium for BHK-S Cells

To develop serum-free medium for enhanced FMDV production, we screened 16 types
of serum-free and animal-component-free prototype media for BHK-S cells, which were
obtained from Thermo Fisher Scientific, Inc. The prototype media consisted of two groups,
including CDM and hydrolysate-derived protein-free media (PFM). The optimal serum-free
medium was selected, based on both the cell-growth rate and the virus titer. The VCDs of
BHK-S cells in ProVero-1 medium (control medium) and 16 serum-free prototype media
were determined at days 3, 4, and 5 (Figure 4A). Among the CDMs, CDM-5 showed the
highest maximum viable cell concentration (MVCC) with BHK-S cells on day 4, which
was approximately 7.1 × 106 cells/mL. BHK-S cells grown in PFM-2 reached a density of
11.22 × 106 cells/mL on day 4 and 19.06 × 106 cells/mL on day 5, resulting in the highest
MVCC among all prototype media tested. The FMDV titers in these prototype media were
also evaluated (Figure 4B). Effective FMDV productivity was achieved with BHK_S cells
grown in CDM-2, CDM-3, and CDM-4, and specifically, CDM-2 had the highest FMDV
productivity of 17 × 106 TCID50/mL. Although most PFMs facilitated higher cell growth
than CDMs, the virus titers were higher with the CDM prototypes. Although the MVCC of
cells grown in PFM-2 was 4-fold higher than that of cells grown in CDM-2, cells grown in
CDM-2 produced 6.6-fold more virus than cells grown in PFM-2. Consequently, CDM-2
was selected as the optimum serum-free medium for high-yield FMDV production.
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Figure 4. Serum-free medium was developed for increasing FMDV productivity. The growth profile
of BHK-S cells was monitored using eight CDM prototypes and eight PFM prototypes (A). FMDV
titers were measured on the third day of BHK-S cell culture using the indicated prototype media (B).
Each experiment was carried out in triplicate. Data expressed as mean ± standard deviation.

3.5. Optimizing BHK-S Batch Culture and Scaled-Up FMDV Production in a Bioreactor

Culture modes were developed to enhance the cell growth rate. To simplify the culti-
vation process and minimize contamination, the initial CDM-2 medium was supplemented
with various feeding concentrations for enhanced batch culture. As the concentration of FM-
1 increased from 5 to 20%, the MVCC were increased in a dose dependent manner, whereas
20% FM-1 dramatically suppressed cell growth (Figure 5). BHK-S cells grown in CDM-2
containing 15% FM-1 reached a density of approximately 11.5 (±1.34) × 106 cells/mL on
day 4, which represented a higher MVCC than the fed-batch culture, and high viability
was also sustained on day 5.
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Figure 5. Various culture modes were tested to increase cell density of BHK-S cells and to simplify the culture process.
BHK-S cell growth was compared between batch culture (•), fed-batch culture (�), and enhanced batches grown in CDM-2
supplemented with 5 (#), 10 (�), 15 (4), and 20 (3)% home-made FM- 1 (25 g/L, pH 7.4). On days 0 and 2, the media used
for the fed-batch cultures were supplemented with 5% v/v FM-1. Solid line is viable cell density and dash line is cell viability.
Each experiment was carried out in triplicate. Data expressed as mean ± standard deviation.

Scaled-up cultures were performed in both 50 and 200 L bioreactors to confirm whether
FMDV production was applicable in a large-scale bioreactor (Table 2). In the 50 L bioreactor,
the cell density was similar to that of the flask on day 3, but in the 200 L bioreactor, the
cell density was lower than that in the smaller bioreactor. Nevertheless, the virus titer
was 11 × 106 TCID50/mL in the 200 L bioreactor, higher than that in the 50 L bioreac-
tor, and the 146S antigen concentrations were 2.56 and 2.1 µg/mL in the 50 and 200 L
bioreactors, respectively.

Table 2. Scaled-up production of FMDV.

Scale-Up Cell Density at
Infection (cells/mL)

Virus Titer
(TCID50/mL)

146S Antigen
(µg/mL)

250 mL Flask 7.98 (±0.14) 25.00 (±2.35) 2.30 (±0.28)
50 L bioreactor 10.83 9.70 2.56

200 L bioreactor 6.58 11.00 2.10

4. Discussion

Suspension cell culture in serum-free medium is a major platform for the commercial
production of therapeutics in mammalian cell cultures because this approach reduces
the production cost, eliminates pathogens from animal-component sources, and shows
consistent cell-based performance. However, most mammalian cells, such as Chinese
hamster ovary (CHO) and BHK-21 cells originally required anchorage and serum for
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vigorous cell proliferation. In this study, we developed a suspension BHK-21 cell line and
animal-component-free CDM for FMDV vaccine production.

In addition to morphological changes, we observed changes in the cell-adhesion
properties of BHK-S cells. Some methods are available for analyzing differently expressed
genes (DEGs) related to cell adhesion after suspension adaptation, such as microarray
and qRT-PCR (quantitative real time-polymerase chain reaction) analysis [30–32]. Instead
of DEG analysis, we performed cell-adhesion assays with five types of ECM protein to
evaluate changes in the cell-adhesion properties of adherent and suspension-adapted BHK-
21 cells [33]. Suspension-adapted BHK-21 cells showed significantly lower adhesion to all
five ECM proteins than wild-type adherent BHK-21 cells (Figure 2). We suggest that during
suspension adaptation, for survival and proliferation in serum-free conditions, the adhesive
properties of the cells decreased through integrin rearrangements on the cell membrane and
the actin cytoskeleton [34,35]. The microenvironment is a fundamental regulator of cellular
behavior, and the ECM is a key factor in the microenvironment that is necessary for cell
adhesion. Cellular interactions with the ECM occur primarily through the integrin family of
cell-surface receptors, which are activated by cytoskeletal components [36,37]. Interactions
between the ECM and integrins activates inside-out and outside-in signaling pathways
that control cell behaviors such as cell-cycle arrest and proliferation [38,39]. However
when anchorage-dependent cells detach from the ECM, they can undergo anoikis [40,41].
Occasionally, detached cells gain resistance to anoikis and adapt to their new environment,
after which they have probably become anchorage-independent and finally survive in
the absence of signaling from the ECM. This phenomenon is one of the hallmarks of
cancer cells [42–44]. Indeed, malignantly transformed cells secrete their own ECM ligands,
enabling them to escape proliferative growth suppression and to survive in an anchorage-
independent manner [45]. Furthermore, cancer-related genes may be related with the
suspension adaptation of CHO-K1 and HEK293 cells [46,47].

In addition to growth, morphological changes of BHK-S cells, and their ECM char-
acteristics, the productivity of cells is another important parameter. FMDV infects host
cells using integrins as receptors. The interaction between FMDV and an integrin molecule
is mediated by an Arg–Gly–Asp triplet located at the G–H loop of the capsid protein,
VP1. FMDV isolates interacting with integrins gain cell entry following clathrin-mediated
endocytosis, which induces internalization [48]. Therefore, since changes in the adhesive
properties of BHK-S cells can influence FMDV infectivity, we evaluated the FMDV sensitiv-
ity of BHK-S cells. Even at a low MOI of 0.001, BHK-S cells had a similar titer versus BHK-S
cells infected at an MOI of 0.001–0.01 (Figure 3A); thus, suspension cultures of BHK-S
cells displayed advantages in terms of high cell densities and volumetric productivities,
facilitating large-scale virus production and cost-effective vaccine production.

Suspension cultures in bioreactors, which enable cultivation to higher cell densities,
can increase the viral production yield and offer cost-effective and easy scale-up with
serum-free medium or CDM. However, with various virus production systems, the specific
virus yield per cell can be lower than expected in proportion to the cell density, an effect
referred to as the “cell-density effect” [49,50]. This phenomenon is thought to be caused by
a limitation of key nutrients, by-product inhibition, or cell-cycle arrest at high cell densities,
although the exact mechanism(s) involved remain unknown [51,52]. Some strategies have
been developed to overcome the cell-density effect, such as perfusion culture and medium
replacement before virus infection [53–56]; thus, we performed batch mode cultivation
with fresh medium replacement with the aim of developing a simple process. We tested
16 prototype media (eight CDMs and eight PFMs) and screened CDM-2, which showed
the highest virus titer even at a low cell density (Figure 4). Most PFMs enabled growth to
higher cell densities, but showed lower virus productivity than the CDMs, suggesting that
PFM may contain components that inhibit virus infection or propagation. Our findings
indicate that innovative media development can facilitate high cell-density cultivation and
high viral production [57].
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Scaled-up mass culture using a bioreactor can monitor and control detailed parameters
for cell growth, such as pH, dissolved oxygen, temperature, and agitation rate. However,
in the development of a scale-up process for a bioreactor from a flask, several variables
must be considered. In this study, scaled-up production for FMDV using enhanced batch
culture was comparable from a flask to a 300 L bioreactor. Because of process parameters,
such as agitation rate, cell growth in the 50 L bioreactor was higher than that in the flask or
300 L bioreactor, but the quantitative values of 146S antigen were similar.

5. Conclusions

In this study, we successfully developed BHK-21 suspension cells and CDM for
producing FMDV vaccines in a large-scale bioreactor. The BHK-S cells showed lower
ECM-protein adhesion than adherent BHK-21 cells, and cell aggregation was dramatically
reduced. To increase FMD vaccine productivity, a customized medium was developed,
which made it possible to determine the medium components required for rapid cell
expansion of the medium platform and to secure price competitiveness. Scaling up from a
50 L bioreactor to a 200 L bioreactor showed comparable cell growth and FMDV titers, when
compared to flask cultures. Finally, we developed an efficient cell-based FMDV vaccine-
production platform using BHK-21 suspension cells grown in CDM, which can potentially
be applied to develop an effective viral vaccine in the case of a new FMD outbreak.
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