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Abstract: The toxic gas carbon monoxide (CO) is fatal to human beings and it is hard to detect
because of its colorless and odorless properties. Fortunately, the high surface-to-volume ratio of the
gas makes two-dimensional (2D) materials good candidates for gas sensing. This article investigates
CO sensing efficiency with a two-dimensional monolayer of gallium selenide (GaSe) via the vacancy
defect and strain effect. According to the computational results, defective GaSe structures with a Se
vacancy have a better performance in CO sensing than pristine ones. Moreover, the adsorption energy
gradually increases with the scale of tensile strain in defective structures. The largest adsorption
energy reached −1.5 eV and the largest charger transfer was about −0.77 e. Additionally, the CO
gas molecule was deeply dragged into the GaSe surface. We conclude that the vacancy defect and
strain effect transfer GaSe to a relatively unstable state and, therefore, enhance CO sensitivity. The
adsorption rate can be controlled by adjusting the strain scale. This significant discovery makes the
monolayer form of GaSe a promising candidate in CO sensing. Furthermore, it reveals the possibility
of the application of CO adsorption, transportation, and releasement.

Keywords: two-dimensional material; CO sensing; vacancy; strain effect; first-principles study

1. Introduction

Two-dimensional (2D) layered materials have displayed a new stage ever since
graphene was successfully fabricated in 2004 [1]. Recently, more and more 2D materi-
als have been synthesized and investigated [2]. These include layered transition metal
dichalcogenides (TMDs) AB2 (A = Mo, W, and Re and B = S and Se) and layered group
III-VI semiconductors such as GaS and GaSe. The extraordinary physical and chemical
properties for these 2D materials have drawn huge attention and have been widely stud-
ied [3,4]. One of the interesting properties of 2D materials is their high surface-to-volume
ratio, which provides many reactive sites that are good candidates in gas sensing ap-
plications [5–8]. Further studies [9] have reported that some procedures, such as defect
functionalization [10] (defects, doping, grain boundaries, and edge sites), heterojunction uti-
lization [11], and electrical field application [12], can also improve gas sensing performance
for 2D materials.

Since the industrial revolution, the global environment has been seriously polluted
with the emission of carbon monoxide (CO). The capture and storage of these gas molecules
is an important problem which needs to be solved as soon as possible. The toxic carbon
monoxide gas can cause immediate death for humans, and it is colorless, tasteless, and hard
to detect [13]. Therefore, finding proper materials for CO sensing is critically important.
Early studies have shown that for metal-oxide semiconductor (MOS) sensors, their resis-
tance changes with the environmental CO concentration [14,15]. If we can develop new
devices to sense this toxic gas, this will benefit humans. Many 2D materials have been

Molecules 2021, 26, 812. https://doi.org/10.3390/molecules26040812 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules26040812
https://doi.org/10.3390/molecules26040812
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26040812
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/26/4/812?type=check_update&version=2


Molecules 2021, 26, 812 2 of 13

investigated in terms of their CO sensitivity, such as graphene [16,17], graphene oxide [18],
silicene [19], WS2 [20], WSe2 [21], MoS2 [22,23], PtSe2 [24], and so on [25,26].

In experiments, the strain can be applied on 2D materials in several ways, such as
deforming the substrate, creating wrinkles, using pre-patterned substrates, deforming a
suspended membrane, lattice mismatch, and out-of-plane compression [27]. There are
many interesting properties induced by the strain effect. The modulations were band
structures [28], electrical properties [29], magnetic properties [30], optical properties [31],
thermal conductivity [32], catalytic properties [33], phase transition and fracture [34],
and interlayer coupling [35]. Therefore, the stain is regarded as a powerful tool cooperating
with an investigation of 2D materials.

In this article, we use a monolayer of gallium selenide (GaSe) as a sensing material.
GaSe is a III-VI semiconductor with extraordinary piezoelectric properties [36]. The elec-
tronic structure of GaSe has already been theoretically investigated [37,38]. For the mono-
layer structure, the energy gap decreases by applying a tensile strain [39]. In practical
applications, because of the interesting properties of the material, such as continuous band
gap tunability and photoluminescence enhancement, GaSe can be designed for use in
wearable human devices [40]. An experimental study has also shown that GaSe can be
fabricated as an ultrathin layer field-effect transistor [41]. Moreover, electrical resistance
variation for two-dimensional wrinkle-based thin-film GaSe strain sensors is very sensitive
to strain [42].

Recent research has indicated that biaxial strain does not significantly influence the
adsorption stability of gas molecules on the GaSe monolayer [43]. Therefore, we combine
the strain and defect effects to investigate how CO adsorbs on a monolayer GaSe. In this
work, we calculate the variation of the electronic structure, differential charge density
(DCD) patterns, adsorption energy, and charge transfer. According to the calculated results,
the adsorption efficiencies of the Se-defected structures are better than those of the pristine
ones. Furthermore, the biaxial tensile strain enhances the adsorption ability. By controlling
the scale of tensile strain, we can change the adsorption rate. This discovery may be used
in applications that deal with adsorbing, transporting, and releasing CO molecules.

2. Results
2.1. Pristine GaSe Crystal Structure

GaSe is a III-VI semiconductor which has many kinds of structures. In this study, we focus
on the β-GaSe, which has a hexagonal structure and belongs to the P63/mmc group space [44].
For the bulk phase, the lattice constants of a unit cell are a = 3.75 A, b = 3.75 A, and c = 16 A,
and the corresponding angles are α = 90◦, β = 90◦, and γ = 120◦. The crystal structure of
the bulk phase is shown in Figure 1a. The crystal structures of a monolayer GaSe unit cell,
which contains two Ga atoms and two Se atoms, are shown in Figure 1b,c. In the following
section, we focus on different sizes of monolayer GaSe.
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Figure 1. The crystal structure for the gallium selenide (GaSe) unit cell. (a) Side view of bulk. (b) Side
view of 1 × 1 monolayer. (c) Top view of 1 × 1 monolayer. The colors gray and purple indicate Ga
and Se atoms, respectively.
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2.2. The Structure and Adsorption Energy of CO Adsorbed on a Monolayer GaSe Supercell

To investigate CO adsorption with a monolayer GaSe, we enlarged the unit cell into 2×
2 and 3× 3 supercells, with one CO gas molecule on each surface. This allows us to compare
the adsorption efficiencies between different CO concentrations. The corresponding crystal
structures of the 2 × 2 and 3 × 3 supercells are shown in Figure 2a,b, respectively. The Se
atom on top of the monolayer GaSe is removed when considering the defect effect.
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and red, respectively.

2.2.1. Crystal Structure of CO Adsorbed on the GaSe Monolayer

Firstly, we chose the Se atom on the top of the GaSe surface as the site where the CO
molecule absorbed. To find the most favorable configuration, we investigated four different
initial orientations of the CO gas molecule as adsorbed on the monolayer GaSe. The crystal
structures, with the two in the horizontal direction and the two in vertical direction, are
shown in Figure 3a–d, respectively. The initial vertical distance between the CO molecule
and the top Se atom in the GaSe surface is 3 A.
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Figure 3. Crystal structures for CO adsorption on a 2 × 2 monolayer GaSe supercell. (a) Horizontal
orientation with a C atom above the Se stom. (b) Horizontal orientation with an O atom above the Se
atom. (c) Vertical orientation with a C atom below and an O atom above. (d) Vertical orientation with
an O atom below and a C atom above.

The calculation results are listed in Table 1. The pristine structures with initial orienta-
tion A, B, C, and D are shown in Figure 3a–d, respectively. The adsorption parameters are
described as follows: Erel is the relative energy, Ead is the adsorption energy, ∆Q is charge
transfer, and h is the final vertical distance between CO and the GaSe surface. d1 is the final
distance between the lower atom in the CO molecule and the nearest Se atom in the top
GaSe surface. When considering a Se vacancy, the final distance between the lower atom in
CO and the nearest Ga atom is noted as d2. As a reference, we set the lowest total energy of
the GaSe-CO system to zero. The relative energy Erel denotes this lowest total energy was
subtracted from the higher total energies.
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Table 1. The comparison of different initial orientations of CO adsorbed on a 2 × 2 GaSe supercell.

GaSe Orientation Erel (eV) Ead (meV) ∆Q (e) h (Å) d1 (Å) d2 (Å)

Pristine

A 0.01 −64.89 −0.017 3.50
(C-Se) 1

3.53
(C-Se) -

B 0 −70.13 −0.013 3.13
(C-Se)

3.54
(C-Se) -

C 0.04 −33.85 −0.005 3.85
(C-Se)

3.85
(C-Se) -

D 0.03 −36.42 −0.007 3.66
(O-Se)

3.67
(O-Se) -

Se-
defective

A 0 −238.49 −0.143 0.37
(C-Se)

3.86
(C-Se)

2.79
(C-Ga)

B 0.01 −321.60 −0.119 0.58
(C-Se)

3.92
(C-Se)

3.93
(C-Ga)

C 0.24 −91.38 −0.012 2.54
(C-Se)

4.59
(C-Se)

4.19
(C-Ga)

D 0.25 −79.81 −0.015 2.39
(O-Se)

4.50
(O-Se)

4.05
(O-Ga)

(C-Se) 1 represents the distance measured between a C atom and a Se atom.

For both the pristine and defective cases, the total energies of the initial horizontal
orientations were lower than the vertical ones. The total energies of two horizontal orienta-
tions, A and B, were almost the same, with only a 10 meV difference. Moreover, the Ead
values indicate that the horizontal orientations were more sensitive than the vertical ones,
no matter whether considering pristine or Se-defective GaSe. Therefore, in the following
discussion, we emphasize the horizontal orientation A for both pristine and Se-defective
GaSe.

2.2.2. CO Adsorption without Strain Effect

In order to discuss how different CO concentrations adsorb on monolayer GaSe,
we constructed 2 × 2 and 3 × 3 supercells. The adsorption parameters for CO adsorption
on the monolayer GaSe are listed in Appendix C, Table A1. For the pristine 2 × 2 supercell,
the vertical distance was enlarged to 3.5 A after relaxation. The adsorption energy of CO
adsorbed on GaSe was −64.89 meV. The charge transfer was −0.017 e. The negative sign
represents charge transfer from GaSe to the CO molecule. For the defective 2 × 2 supercell,
the CO molecule was attracted toward GaSe surface with a final vertical distance of 0.37 A.
The adsorption energy was −238.49 meV and the amount of charge transfer was −0.143 e.
Both the adsorption energy and charge transfer in the defective structure were far larger
than in the pristine structure.

The behaviors for the 3 × 3 supercell were similar to those for the 2 × 2 supercell.
For the pristine 3 × 3 supercell, the vertical distance was 3.53 A. The adsorption energy
was −65.59 meV and the amount of charge transfer was −0.015 e. For the defective 3 × 3
supercell, the adsorption energy was −146.07 meV and the amount of charge transfer was
−0.055 e. After the relaxation process, the CO molecule approached the GaSe surface and
the final vertical distance was 1.93 A. Both the increase in the adsorption energy and charge
transfer were weaker than that with the 2 × 2 supercell, which can be explained by the
lower concentration of Se vacancy in the 3 × 3 supercell.

2.2.3. CO Adsorption with Strain Effect

For the pristine structures, the strain effect did not influence the CO sensitivity in both
the 2 × 2 and 3 × 3 supercells; however, the adsorption energies were obviously enhanced
in the defective structure. When considering the strain effect, we modulated the scaling
factor of a reciprocal lattice vector in each crystal structure file. The original scaling factor
without strain effect was 1.0, while 1% tensile strain was denoted as 1.01. According to
Table A1, while the tensile strain gradually increased from 1% to 5%, the adsorption energy
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correspondingly enhanced from −428.67 meV to −844.39 meV in the 2 × 2 supercell and
from −141.65 meV to −1515.68 meV in the 3 × 3 supercell.

The relaxation structures of CO adsorption in the 2 × 2 and 3 × 3 defective GaSe
supercells are shown in Figure 4a,b, respectively. We applied the strain effect on both
supercells from −5% to 5%. A mid-value tensile strain scale of +3% is chosen as an
example. For the 2 × 2 supercell, the CO molecule reaches a vertical C-down and O-up
configuration, as shown in Figure 4a. For 3 × 3 dimensions, the CO molecule tilts with the
C atom slightly lower than O atom, as shown in Figure 4b. In Figure 4a, d1 is the nearest
distance between a C atom and Se atom, while d2 is the nearest distance between a C atom
and a Ga atom. As CO molecules are deeply attracted into GaSe in both cases, the C atom
is closer to the Ga atom rather than the Se atom. Therefore, the d2 value is smaller than d1.
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2.3. Electronic Structure Analysis
2.3.1. Pristine GaSe

The intrinsic properties of GaSe have already been systematically studied in earlier
research [39]. Our calculations show similar results. Thus, the calculation results are only
briefly mentioned and the details are provided in Appendix A.

For bulk GaSe, the energy gap is 1.01 eV with a direct band gap. This result was
smaller than the experimental data, with about 2.1 eV [45]. It is not surprising to see the
underestimation of the band gaps because of the restriction of the generalized gradient
approximation (GGA) method [46]. For the monolayer, the result shows an indirect band
gap with a 1.79 eV energy gap.

In previous theoretical study, the energy gap of GaSe has been systematically inves-
tigated from bulk, four-layer, bilayer, to monolayer forms [39]. The direct gap is about
0.995 eV for the bulk form and the indirect gap is about 2.252 eV for the monolayer form.

2.3.2. Pristine Monolayer GaSe with Strain Effect

We investigated the biaxial strain effect with a monolayer unit cell, considering both
compressive and tensile strain. The strain effect was achieved by adjusting the scaling
factor of a reciprocal lattice vector. The original scaling factor was 1.0, larger than 1.0 for
tensile strain, and lower than 1.0 for compressive strain. The scaling factor of 1.01 was
defined as 1% tensile strain, while 0.99 corresponded to −1% compressive strain. The scale
of strain in our study ranges from −5% to 5%.

The calculation results for the corresponding energy gaps are listed in Table A1.
The energy gap decreased with an increase in tensile strain, while raising with an increase
in compressive strain. This behavior is consistent with previous studies [39,47]. The reason
for the slight decrease in the energy gap for−4% and−5% compressive strain is the change
of the conduction band minimum. Detailed descriptions of the electronic structures are
shown in Appendix B in Figures A2 and A3.

2.3.3. CO Adsorption with Monolayer GaSe

The electronic structures of CO adsorption on 3 × 3 pristine and defective GaSe
supercells with 3% tensile strain are shown in Figure 5a,b, respectively. The Fermi level has
been shifted to 0 eV and the red dots demonstrate the occupation of electrons contributed
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by the CO molecule. For CO the molecule adsorption on pristine GaSe in Figure 5a, the
energy gap is 1.17 eV. The electron occupation is barely contributed by the CO molecule,
which is in the energy range of −3 eV to 3 eV; however, for a CO molecule adsorbing on
the defective GaSe, the CO molecule decomposes the band structure and has an obvious
distribution near the Fermi level, as shown in Figure 5b. This special phenomenon has
been caused by the CO molecule being tightly trapped in the defective monolayer of GaSe.
In addition, this would induce dramatic variation in charge transfer and adsorption energy
values.
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Figure 5. The electronic structures of 3 × 3 monolayer GaSe adsorbed with a CO molecule with a
tensile strain of 3% and initial orientation A. (a) Pristine structure. (b) Defective structure.

2.4. Differential Charge Densities Pattern Analysis

To demonstrate the charge accumulation/depletion between a CO gas molecule and
monolayer GaSe, we calculated differential charge densities (DCDs) by using the following
equation [48]:

ρDCDs = ρsystem − (ρGaSe + ρCO), (1)

where ρsystem is the charge density for the system of the monolayer GaSe when adsorbing
a CO gas molecule, while ρGaSe and ρCO correspondingly represent charge densities of
monolayer GaSe and the individual CO molecule.

The DCD patterns of CO adsorption on the pristine and defective GaSe, corresponding
to the 2 × 2 and 3 × 3 supercells, correspond to Figures 6 and 7, respectively. We demon-
strate a 3% tensile strain in both figures. In Figures 6 and 7, section (a) indicates a pristine
GaSe structure, while sections (b) and (c) represent side and top views of a defective struc-
ture, respectively. The isosurfaces are all set as 0.0005 e/bohr3 for consistency. The electron
accumulation is demonstrated by a yellow color, while the light blue color represents
charge depletion.
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Figure 7. Differential charge density patterns of 3 × 3 monolayer GaSe adsorbed with a CO molecule,
while considering a 3% tensile strain. The isosurface is 0.0005 e/bohr3. (a) Pristine structure; (b) side
view of defective structure; (c) top view of defective structure.

For the pristine structures, the charge transfer amounts were −0.014 e for the 2 × 2
supercell and −0.017e for the 3 × 3 supercell. Both values are very small, as shown in
Figures 6a and 7a. For the defective structure, the amount of charge transfer was −0.096 e
for the 2 × 2 supercell and −0.776 e for the 3 × 3 supercell. Both values are very large
when compared with the pristine GaSe, as shown in Figure 6b,c and Figure 7b,c.

In the DCD patterns, the regions of charge accumulation and depletion were signifi-
cantly different between the pristine and defective forms. This phenomenon arises due
to the enhancement of charge transfer, which also provides a good explanation for the
improvement of the sensing ability. It is easy to comprehend that for a defective structure,
the arrangement of the atoms is destroyed, and this results in a nonuniform distribution of
electrons. This unstable system forms a net force, which pulls the CO molecules toward
the GaSe surface and then finally reaches a new equilibrium situation.

3. Discussion

The calculation results of |Ead|, |∆Q|, h, d1, and d2 are shown in Figure 8a–d. The no-
tations of 22 and 33 represent the 2 × 2 and 3 × 3 supercells, which are symbolized as
triangles and bars, respectively. The notations P and D represent the pristine and defective
structure shown in red and black, respectively.

In Figure 8a, the magnitudes of the adsorption energy |Ead| for pristine structures
are very small and are in the range of 64.54 meV to 61.31 meV from 1% to 5% strain for
a 3 × 3 supercell, respectively. When considering Se defect vacancy, there is a significant
increase in the range of 141.65 meV to 1515.68 meV from 1% to 5% strain for a 3× 3 supercell,
respectively. While applying tensile strain of +5%, the magnitudes of the adsorption energy
exceed 0.8 eV in the 2 × 2 supercell and 1.5 eV in the 3 × 3 supercell.

In Figure 8b, the magnitudes of charge transfer |∆Q| for pristine structures are also
very small and are in the range of 0.017 e to 0.014 e from 1% to 5% strain for a 3 × 3
supercell, respectively. While considering both the vacancy and strain effect, the values are
in the range of 0.052 e to 0.75 e from 1% to 5% strain for a 3 × 3 supercell. The magnitudes
of charge transfer approach about 0.2 e in a 2 × 2 supercell and 0.8 e in a 3 × 3 supercell
with defect and strain effect.

In Figure 8c, the final vertical distance for the pristine structure is about 3.5 A, which
is farther than the initial distance of 3 A. While considering the defect and strain effects, the
CO molecules are attracted toward the GaSe surface. Therefore, the final vertical distances
are smaller than 3 A and even become negative with strain effect. The negative value
represents that the C atom of the CO molecule is lower than the top Se atom in the GaSe
surface.
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In Figure 8d, the values of nearest distance between the CO and GaSe surfaces in the
pristine structure are similar to the vertical distance (the red symbols). For the defective
structure, because CO molecules are attracted toward the GaSe surface, the CO molecules
are closer to the Ga atom than the Se atom. Therefore, the d2 values (the blue symbols) are
smaller than the d1 values (the black symbols).

4. Materials and Methods

This study was performed with first-principles calculations based on density func-
tional theory (DFT), which were performed via a pseudopotential method. A projector-
augmented-wave (PAW) was employed and the calculation was implemented in the Vi-
enna ab initio simulation package (VASP) [49]. For the exchange-correlation term in the
Kohn–Sham equation, the generalized gradient approximation (GGA) [50] in the Perdew–
Burke–Ernzerhof (PBE) scheme [51] was used. The van der Waals force calculations were
evaluated with the DFT-D2 correction of Grimme [52]. The k-point meshes were set as
13 × 13 × 3 for the bulk phase and 10 × 10 × 1 for the monolayer. The cutoff energy was
set to 400 eV for the plane-wave expansion. The energy convergence criterion was set 10−5

eV to ensure the accuracy in the self-consistent process. The force convergence tolerance
for each atom was less than 0.02 eV/Å.

The crystal structures and differential charge density patterns were demonstrated
by visualization for electronic and structural analysis (VESTA) [53]. To avoid interaction,
the vacuum regions between adjacent slabs were set to about 20 A along the Z-axis.
The charge transfer values between the monolayer GaSe and CO gas molecule were
calculated via Bader charge analysis [54,55].
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The adsorption energy (Ead) was calculated with following equation [56,57]:

Ead = Esystem − (EGaSe + ECO), (2)

where Esystem is the total energy for the system after CO is adsorbed on the monolayer
GaSe. EGaSe and ECO correspond to the total energies of the monolayer GaSe and the CO
gas molecule before adsorption. The negative value of the adsorption energy reveals that
gas adsorption may spontaneously occur.

5. Conclusions

A defective monolayer of GaSe with Se vacancy has better sensitivity than a pristine
structure, where both the adsorption energy and charge transfer are significantly enhanced.
The adsorption energies of a CO molecule adsorbed on pristine and defective monolayers
of GaSe here ranged from −64.89 meV to −238.49 meV in the 2 × 2 supercell and from
−65.59 meV to −146.07 meV in the 3 × 3 supercell, respectively. The charge transfer
increased from −0.017 e to −0.143 e in the 2 × 2 supercell and from −0.015 e to −0.055 e in
the 3 × 3 supercell.

In addition, when considering the strain effect with Se vacancy, the adsorption energies
gradually increased with the strain scales. The adsorption energies raised from −428.67
meV to −844.39 meV in the 2 × 2 supercell and from −141.07 meV to −1515.68 meV in
the 3 × 3 supercell. This behavior can be inferred from the imperfect structure, which
causes the redistribution of electrons and induces an attractive force on the CO molecules.
Evidence is given by the relaxation structure where CO molecules are pulled toward the
GaSe surface in the final position.

Both electronic structure and differential charge density patterns show obvious varia-
tion with the defective condition. For electronic structures, the emergence of a flat band
near the Fermi level and the redistribution of electron occupation illustrate the enhance-
ment of the charge transfer amount. For differential charge density patterns, the extension
of the charge accumulation and depletion area indicate the enhancement of the interaction
between the CO molecule and defective monolayer of GaSe.

According to the investigation results, the CO sensitivity in defective monolayer
GaSe structure can be affected by the scale of the tensile strain. A previous study has
revealed that the strain effect can be fulfilled in two-dimensional wrinkle-based GaSe [40].
At present, it is also possible to fabricate a defective material via experimental technology.
As the adsorption ability can be tuned by the scale of strain, GaSe can be regarded as a
potential candidate to capture, transport, and release CO gas molecules.
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Appendix A. Electronic Structure for Pristine GaSe

The electronic structures of GaSe are shown in Figure A1, where (a) and (b) represent
a bulk and 1 × 1 monolayer unit cell. For bulk GaSe, the van der Waals force with the
DFT-D2 method was considered. The calculation results demonstrate a direct energy gap of
1.01 eV for the bulk state and an indirect band gap value of 1.79 eV for the 1 × 1 monolayer
configuration. A detailed description of the calculation is included in the text.
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Figure A1. Electronic structure for (a) a bulk phase (b) and a 1 × 1 monolayer unit cell.

Appendix B. Electronic Structure for Monolayer GaSe with Strain Effect

The definition of the strain scale has been mentioned in the text and the values of the
energy gaps are listed in Table A1. The electronics structures for the 1 × 1 monolayer unit
cell of GaSe are shown in Figures A2 and A3, corresponding to compressive and tensile
strain. The energy gaps increase with the increase in compressive strain and decrease with
the increase in tensile strain.

Table A1. Energy gap for monolayer GaSe with the strain effect.

Strain −5% −4% −3% −2% −1% 0% 1% 2% 3% 4% 5%

Eg(eV) 2.29 2.43 2.45 2.24 2.02 1.79 1.58 1.37 1.18 1.00 0.83
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Appendix C. Calculation Results of Monolayer GaSe Adsorbed with CO

Table A1 lists the parameters for CO adsorption on GaSe supercells (initial orientation
A). In this table, 2 × 2 and 3 × 3 supercells are considered with pristine and defective
structure, both with and without strain effects. The parameters are defined in the main
text. Erel is the relative energy. The total energy of the GaSe-CO system without adding
strain is set to zero in each case. The relative energy denotes the total energy without strain
subtracted from total energy with strain.

Table A2. Parameters of CO adsorption on a monolayer of GaSe.

Supercell
GaSe
Struc-
ture

Strain
(%) Erel (eV) Ead (meV) ∆Q (e) h (Å) d1 (Å) d2 (Å)

2 × 2

Pristine

0 0 −64.89 −0.017 3.50 3.53 -
1 0.13 −64.79 −0.015 3.60 3.62 -
2 0.32 −64.41 −0.016 3.54 3.56 -
3 0.55 −62.64 −0.014 3.48 3.51 -
4 0.82 −62.00 −0.015 3.49 3.52 -
5 1.13 −63.72 −0.018 3.52 3.55 -

Se-
defective

0 0 −238.49 −0.143 0.37 3.86 2.79
1 0.1 −428.67 −0.188 −0.20 3.81 2.44
2 0.24 −524.80 −0.160 −0.23 3.80 2.49
3 0.35 −684.13 −0.096 −0.16 3.94 3.24
4 0.53 −771.41 −0.081 −0.06 3.98 3.31
5 0.74 −844.39 −0.079 −0.13 4.01 3.30

3 × 3

Pristine

0 0 −65.59 −0.015 3.53 3.53 -
1 0.32 −64.54 −0.017 3.54 3.54 -
2 0.74 −63.58 −0.013 3.53 3.53 -
3 1.26 −62.56 −0.017 3.51 3.51 -
4 1.87 −62.64 −0.017 3.54 3.54 -
5 2.55 −61.31 −0.014 3.54 3.54 -

Se-
defective

0 0 −146.07 −0.055 1.93 3.86 3.44
1 0.4 −141.65 −0.052 1.97 3.89 3.47
2 -0.25 −1275.20 −0.784 −0.66 3.65 2.09
3 0.22 −1374.28 −0.776 −0.60 3.71 2.11
4 0.78 −1456.81 −0.763 −0.59 3.73 2.12
5 1.42 −1515.68 −0.750 −0.55 3.78 2.13

1 (C-Se) represents the distance between a C atom and a Se atom.
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