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Abstract

Normal and painful stimuli are detected by specialized subgroups of peripheral

sensory neurons. The understanding of the functional differences of each neuronal

subgroup would be strongly enhanced by knowledge of the respective subgroup

transcriptome. The separation of the subgroup of interest, however, has proven

challenging as they can hardly be enriched. Instead of enriching, we now rapidly

eliminated the subgroup of neurons expressing the heat-gated cation channel

TRPV1 from dissociated rat sensory ganglia. Elimination was accomplished by

brief treatment with TRPV1 agonists followed by the removal of compromised

TRPV1(+) neurons using density centrifugation. By differential microarray and

sequencing (RNA-Seq) based expression profiling we compared the transcriptome

of all cells within sensory ganglia versus the same cells lacking TRPV1 expressing

neurons, which revealed 240 differentially expressed genes (adj. p,0.05, fold-

change.1.5). Corroborating the specificity of the approach, many of these genes

have been reported to be involved in noxious heat or pain sensitization. Beyond the

expected enrichment of ion channels, we found the TRPV1 transcriptome to be

enriched for GPCRs and other signaling proteins involved in adenosine, calcium,

and phosphatidylinositol signaling. Quantitative population analysis using a recent

High Content Screening (HCS) microscopy approach identified substantial

heterogeneity of expressed target proteins even within TRPV1-positive neurons.

Signaling components defined distinct further subgroups within the population of

TRPV1-positive neurons. Analysis of one such signaling system showed that the
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pain sensitizing prostaglandin PGD2 activates DP1 receptors expressed

predominantly on TRPV1(+) neurons. In contrast, we found the PGD2 producing

prostaglandin D synthase to be expressed exclusively in myelinated large-diameter

neurons lacking TRPV1, which suggests a novel paracrine neuron-neuron

communication. Thus, subgroup analysis based on the elimination rather than

enrichment of the subgroup of interest revealed proteins that define subclasses of

TRPV1-positive neurons and suggests a novel paracrine circuit.

Introduction

Painful stimuli are detected by peripheral so called nociceptive neurons. They

transmit sensory information from the peripheral target tissue along their neurites

to neurons in the spinal cord. Further signal transmission to various brain areas

results then in the experience of pain [1, 2]. Sensory neurons are classically

categorized into distinct subgroups by their anatomy (thick myelinated versus

thin non-myelinated fibers), their electrophysiological properties (responsiveness

to various modalities and action potential properties), and/or their protein

repertoire (ion channels and neuropeptides) [3]. These subgroups have been

investigated intensively especially with electrophysiological approaches for their

contribution to heat, cold, and/or mechanical pain [4–8]. The identification of

components determining the functional differences between neuronal subgroups

is of great interest not least for the development of mechanism-based

pharmacological therapies. But, the challenge to separate subgroups of neurons

from their neighboring glia and other neuronal subgroups occluded the detailed

analysis of their molecular composition by e.g. transcriptome analysis. Thus it

remains currently unknown, to what extent neuronal subgroups differ in their

transcriptome and/or proteome and which differentially expressed proteins are

important for the functionality of individual subgroups.

One nociceptive subgroup of high interest is the subgroup of TRPV1-positive

neurons. TRPV1 is a non-selective cation channel, which was initially discovered

by its responsiveness to noxious heat (.43uC) and to the chili pepper ingredient

capsaicin [9, 10]. TRPV1 knock-out mice show insensitivity to capsaicin and

impaired responses to inflammatory heat hyperalgesia [11, 12]. Specific binding

sites for capsaicin have been identified by comparing avian and mammalian

TRPV1 proteins [13]. Treatment of sensory neurons with capsaicin or its potent

analog resiniferatoxin (RTX) causes calcium cytotoxicity that rapidly compro-

mises and selectively deletes TRPV1(+) neurons [14–17]. This approach has been

extensively applied to chemically ablate these neurons in vivo resulting in

substantial improvement of various pain conditions in rodents, dogs, and

monkeys [18–21]. Further research has demonstrated that chemical or genetic

ablation of TRPV1(+) neurons predominantly abolishes heat pain, but not cold or

mechanical sensitivity in mice [5, 7, 8]. These findings are currently being
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translated to humans in form of topical, subcutaneous, intraganglionic, or even

intrathecal application of TRPV1 agonists to ameliorate various persistent pain

conditions [22].

Substantial work demonstrates that TRPV1(+) neurons are heterogeneous

themselves. This heterogeneity could be derived by differential activation of

TRPV1 modulating signaling in cells of similar proteome. Indeed, a large number

of mechanisms have been shown to dynamically regulate TRPV1 responses

[23, 24]. For instance, TRPV1 directly binds to and is sensitized by protons [25],

phosphoinositides (PIPs) [26, 27], calmodulin [28], scaffolding proteins [29, 30],

and microtubules [31]. TRPV1 is also regulated via phosphorylation of

intracellular residues by protein kinase A (PKA), protein kinase C (PKC), and

Ca2+/calmodulin-dependent protein kinase (CaMKII) [32–34], or dephosphor-

ylation by calcineurin [35]. Moreover, the quantity of active TRPV1 at the cell

membrane is regulated by insertion from internal pools [36] and protein

translation [37–38].

Alternatively, the heterogeneity of TRPV1 responses could be the result of

differential expression of e.g. modulating signaling proteins. Although such a large

number of molecular and cellular sensitizing mechanisms has been described, it is

barely known if sensitizing signaling components are co-expressed with TRPV1 in

a subgroup-specific manner. In a recent study, we could proof that indeed there is

nociceptor specific expression of a signaling component. We found the regulatory

PKA subunit RIIb to show subgroup-specific expression in about 60% of sensory

neurons that also express classical nociceptive subgroup markers including

TRPV1 [39]. Accordingly, it needs to be addressed, if further signaling

components are differentially expressed as well.

Instead of investigating them one by one, we performed a transcriptome

analysis of TRPV1(+) neurons in combination with a quantitative subgroup-

population analysis. In contrast to fluorescence-activated cell sorting (FACS) and/

or antibody panning, which require a specific TRPV1 antibody or genetic labeling,

our method is based on the chemical ablation of TRPV1-positive neurons.

Accordingly, we treated dissociated dorsal root ganglia (DRG) with TRPV1-

specific agonists followed by the removal of compromised TRPV1(+) neurons

using density gradient centrifugation. To elucidate novel aspects of pain

sensitization signaling, we then compared all dorsal root ganglia (DRG) cells

including TRPV1(+) neurons with DRG cells lacking TRPV1(+) neurons by gene

expression profiling and tested for subgroup-specific expression or activity of

respective targets using an High Content Screening (HCS) microscopy approach

established by us [39, 40].

Results

TRPV1 is expressed in about 44% of rat DRG neurons

Reports about the size of the subgroup of TRPV1-positive neurons are varying

greatly [5, 41, 42]. We now employed a highly defined quantification approach
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using immunocytochemical labeling followed by HCS microscopy to analyze the

expression pattern of TRPV1 in DRG cultures of adult rat [39, 40]. The HCS

microscopy system automatically acquires images of labeled DRG cultures in

multi-well plates in up to four fluorescence channels. Neurons are identified by

automated image analysis according to their expression of the neuronal marker

ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) in combination with

object selection parameters optimized for the sphere-like geometry of neurons

after short-term culture (Fig. 1A and B, and Material and Methods). TRPV1

intensities showed a broad bimodal distribution in cultured neurons and frozen

sections indicating subgroup-specific but variable expression levels (Fig. 1C). To

estimate the number of the TRPV1(+) neurons, we applied a fixed threshold on

normalized data sets revealing 44% TRPV1(+) neurons in culture (total of 8453

neurons). This number fits with the subgroup size in DRGs in vivo. Analyzing

frozen sections, we found 42% of DRG neurons to express TRPV1(+) (total of

1363 neurons, Fig. 1C). Corroborating the specificity of the antibody, competi-

tion experiments with the TRPV1 antigen peptide completely abolished the

binding of the TRPV1 antibody (data not shown). In addition, the antibody

detected a protein of the appropriate molecular weight in western blots (TRPV1

,95 kDa, first lane in Fig. 1E).

Agonist-treatment enables the selective removal of TRPV1(+)
neurons

Next, we set out to identify transcripts predominantly expressed in TRPV1(+)

neurons. As enrichment of TRPV1-positive neurons turned out to be difficult if

not impossible, we developed a method to selectively remove TRPV1(+) neurons

from dissociated DRGs based on the treatment with specific TRPV1 agonists

(Fig. 1D and Materials and Methods). Agonist induced opening of TRPV1 results

calcium induced cytotoxicity [17]. We now found that TRPV1 agonist responsive

neurons change their cellular density, which enabled us to separate them from

other cells by density gradient centrifugation.

DRG neurons were treated with capsaicin (Cap, 10 mM) for 30–120 min. The

treatment resulted in a substantial decrease of TRPV1 in the remaining pellet

fraction determined by immunoblotting (Fig. 1E). The separated TRPV1 agonist

responsive neurons could not be recollected from the supernatant. Apparently,

many of the TRPV1(+) neurons disintegrated by the harsh capsaicin treatment.

Thus, we set out for an inverse approach. Instead of analyzing enriched TRPV1(+)

neurons directly, we compared all DRG-derived cells versus DRG cells lacking

TRPV1(+) neurons.

We then performed time course experiments and quantified TRPV1 transcripts

in the cell pellet by qPCR (Fig. 1F). Capsaicin as well as the more potent

resiniferatoxin (RTX, 100 nM) time-dependently reduced TRPV1 mRNA.

Capsaicin and RTX decreased the TRPV1 transcript level to 21¡1% and 13¡3%

after 30 minutes of treatment, respectively (n53, p,0.001). The RTX induced
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Fig. 1. Agonist-treatment enables the selective removal of TRPV1(+) neurons. (A) Immunolabeling of the neuronal marker UCHL1 and TRPV1 in frozen
DRG sections and cultured sensory neurons from rat. TRPV1 is selectively expressed in a subpopulation of sensory neurons. (B) Representative view field
showing the automated image analysis to quantify TRPV1 expression in cultured sensory neurons. Green encircled objects represent sensory neurons
marked by UCHL1. (C) Distribution of TRPV1 immunofluorescence intensities in frozen DRG sections (red line) and cultured sensory neurons (blue line).
The scattered line indicates the threshold used to determine the number of TRPV1(+) neurons. (D) Work flow to remove TRPV1(+) neurons from freshly
isolated sensory neurons. (E) Immunoblot showing the reduction of TRPV1 protein following depletion of TRPV1(+) neurons with 10 mM capsaicin for 30–
120 min. (F) Time-dependent reduction of TRPV1 mRNA after removal of TRPV1(+) neurons with 10 mM capsaicin or 100 nM RTX determined by qPCR.
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TRPV1-depletion was also dose-dependent with a half-maximal effective

concentrations below 0.1 nM after 30 min treatment (Fig. 1G).

To demonstrate that TRPV1(+) neurons were effectively removed, we cultured

the agonist-treated cells overnight, immunostained for TRPV1, and applied HCS

microscopy as described above (Fig. 1H). The number of TRPV1(+) neurons were

reduced from 42¡2% in the control treated sample (n53, 3092 neurons) to

11¡1% after Cap (n53, p,0.01, 2808 neurons) or 2¡2% after RTX treatment

(n53, p,0.01, 1727 neurons) (Fig. 1I). The size distribution of TRPV1-negative

neurons was unchanged indicating specific removal of TRPV1(+) neurons

(Fig. 1H).

Transcriptome analysis of TRPV1(+) neurons with microarrays

The selective removal of TRPV1(+) neurons as described above allowed us to

perform differential transcriptome analysis with Illumina’s microarray platform.

To gain statistical power and account for biological variation, we performed four

biological replicate experiments. For each experiment, the suspension of freshly

dissociated DRG neurons of a single rat was separated into three parts and treated

for 30 min with DMSO (0.1%), capsaicin (10 mM), or RTX (100 nM),

respectively. To verify the successful removal of TRPV1(+) neurons, we quantified

TRPV1 mRNA levels by qPCR. As before, capsaicin and RTX reduced TRPV1

mRNA to 23¡1% (24.3-fold, n54, p,0.0005) or 12¡1% (28.3-fold, n54,

p,0.0005), respectively (Fig. 2A).

We then hybridized the samples on Illumina RatRef-12v1 microarrays (22519

probes for 21792 genes). The analysis of normalized signal intensities revealed a

3.0-fold or 4.6-fold reduction of TRPV1 expression levels in capsaicin- or RTX-

treated samples (Fig. 2B). In addition, we observed a strong correlation between

biological replicates of the same condition indicating a reproducible setup

(Fig. 2C).

Filtering for expressed genes (detection p-value ,0.01) resulted in 9782 genes

(10131 probes) representing 45% of genes on the array (Fig. 2D, S1 Table). Of

those we found 402 and 1015 being differentially expressed in the capsaicin- and

RTX-treated conditions, respectively (Benjamini and Hochberg adjusted p-value

,0.05, S2 Table). The higher number of significantly regulated genes in RTX-

treated samples reflects the stronger effect of RTX. The genes identified using RTX

included 89% of genes found with capsaicin indicating a similar effect of both

compounds. Microarray data were deposited at GEO database (GSE59727).

(G) Dose-dependent reduction of TRPV1 mRNA following depletion of TRPV1(+) neurons with RTX for 30 min determined by qPCR. (H) Agonist-treated
neurons were cultured overnight, immunostained for TRPV1, and analyzed by quantitative microscopy. Both agonists effectively reduced the number of
TRPV1(+) neurons. Scattered lines indicate the threshold used to determine the number of TRPV1(+) neurons. (I) Quantification of TRPV1(+) neurons
following treatment with 10 mM Cap or 100 nm RTX, respectively (n53, p,0.01, one-way ANOVA with Bonferroni’s multiple comparisons test).

doi:10.1371/journal.pone.0115731.g001
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Fig. 2. Transcriptome analysis reveals novel pain targets enriched in TRPV1(+) neurons. (A) qPCR quantification of TRPV1 mRNA levels in samples
hybridized on microarrays (n54, p,0.001, One-way ANOVA). (B) Relative expression levels of TRPV1 mRNA determined by microarray hybridizations (n54,
p,0.001, One-way ANOVA with Bonferroni’s multiple comparisons test). (C) Correlation matrix of the expression level of all genes (normalized fluorescence
intensities) detected using micorarrays. Clustering of overall gene expression is visible between RTX and capsaicin treated samples. (D) qPCR quantification of
TRPV1mRNA levels in samples used for RNA-Seq (n53, p,0.001, paired two-tailed t-test). (E) Relative expression levels of TRPV1mRNA determined by RNA-
Seq (n53, p,0.001, One-way ANOVA). (F) Overview of the number of target transcripts identified by microarray hybridizations and RNA-Seq. Raw fluorescence
intensities of microarrays were background corrected, log2 transformed, normalized, and filtered for expressed genes (Illumina detection p-value ,0.01 in at least
one of the samples, seeMaterial andMethods sections for details). Sequencing was performed using a 5500xl SOLiD System resulting in 664million reads in total
(seeMaterial andMethods sections for details). The reads were filtered to remove ribosomal RNA, tRNAs, and vector sequences. The remaining readsmapped to
16590 genes of the reference genome (rn5). Read counts were transformed to RPKM values (Reads per kilo base per million), normalized, and filtered to remove
weakly expressed transcripts (RPKM.0.1). P-values of differentially expressed genes identified with both methods were adjusted for multiple testing with
Benjamini and Hochberg’s method, adjusted p-values ,0.05 were considered significant.

doi:10.1371/journal.pone.0115731.g002
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Transcriptome analysis of TRPV1(+) neurons with RNA-Seq

We also applied RNA sequencing (RNA-seq), which provides advantages over

microarrays such as a larger dynamic range of detection, the number of reads

mapping to a gene is proportional to the transcript abundance, and it reveals

alternatively spliced transcript variants [43].

Since RNA-Seq required larger amounts of RNA, we performed three

replicate experiments with pooled RNA from DRG neurons of three rats per

experiment. Dissociated neurons were split up in two parts, treated with

solvent DMSO (0.1%) or RTX (100 nM), followed by gradient centrifugation.

Quantification of TRPV1 mRNA levels by qPCR verified a reduction to

18¡2% (25.6-fold, n53, p,0.0005) (Fig. 2C). Sequencing as a pool of

barcoded samples on three lanes of a SOLiD 5500xl flowchip resulted in 664

million reads in total mapping to 16590 unique genes (Fig. 2F). To provide a

comparable quantitative approximation of transcript abundance, read counts

were transformed to RPKM values (Reads per kilo base per million) [44]. As an

approximation, ,1 RPKM corresponds to weak expression, 10–100 RPKM to

moderate expression, and.100 FPKM to high expression. Filtering for genes

with expression levels.0.1 RPKM to exclude weakly expressed genes resulted

in 13095 genes (S3 Table). This is comparable to recent RNA-Seq data on DRG

neurons of mice [45]. As expected, we found TRPV1 with an expression level of

104 RPKM indicating high expression in sensory neurons. Testing for

statistically significant differences (adjusted p-value ,0.05) revealed 282 genes

of which 208 were higher and 74 were lower expressed in TRPV1(+) neurons,

respectively (S4 Table). TRPV1 ranked at position eleven with a fold-change of

4.1 (Fig. 2E).

Microarray and RNA-Seq substantially overlap

We then merged the microarray and sequencing results obtained using RTX

and selected candidates with p-values ,0.05 and fold-changes.1.5 using one

of the two approaches (S5 Table). Of the remaining candidate genes, 235 were

higher and 87 were lower expressed in TRPV1(+) neurons, respectively

(Fig. 2F). Of note, the overlap of genes enriched in TRPV1(+) neurons

detected with both methods was substantial (34%). In addition, the fold-

changes of these candidates correlated significantly (Spearmans r50.66,

p,0.0001, Fig. 3A). A list with the top 50 transcripts found with higher

expression levels in TRPV1(+) neurons is shown in Table 1. The larger

number of genes detected by microarray analysis is likely caused by increased

statistical power due to a larger number of replicates (n54 for microarrays vs.

n53 for RNA-Seq). Further disparities between the platforms include wrong

microarrays probes or expression of splicing variants lacking the comple-

mentary probe sequences.
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The reduction of differentially expressed transcripts is dose-

dependent

To confirm the results obtained by transcriptome analysis, we selected a set of 14

target transcripts according to fold-change, RPKM-value, and relevance in the

context of nociceptor functionality. These targets were validated by qPCR in

independent samples treated with two different doses of capsaicin (1 mM and

10 mM) to achieve a half-maximal and full elimination of TRPV1(+) neurons. We

found a dose-dependent reduction of transcript levels for all 14 targets (Fig. 3B).

In contrast, relative expression levels of the house keeping genes Actb and Gapdh

were not significantly affected.

Fig. 3. Validation of transcriptome data. (A) Correlation of fold-changes obtained by microarray hybridizations and RNA-Seq (Spearmans r50.66,
p,0.0001). (B) qPCR validation of 14 transcripts identified as differentially expressed by microarray hybridizations or RNA-Seq. The depletion of TRPV1(+)
neurons was performed with capsaicin (1 and 10 mM) for 30 min. The reduction of all target transcripts is dose-dependent.

doi:10.1371/journal.pone.0115731.g003
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Table 1. Top 50 transcripts found with higher expression levels in TRPV1(+) neurons by microarrays and/or RNA-Seq (adj. p,0.05, fold-change.1.5,
RPKM.0.5).

Symbol Description Gene ID RPKM Fold-changes Adj. p-values

Seq Array Seq Array

Iapp Islet amyloid polypeptide 24476 19.5 7.5 11.6 4.6E-26 6.1E-07

Cartpt Cocaine- and amphetamine-regulated transcript 29131 9.9 8.9 11.0 3.7E-38 1.9E-07

Crh Corticotropin-releasing hormone 81648 3.8 7.5 8.0 1.0E-23 4.8E-05

Mrgprx3 Mas-related G-protein coupled receptor member A 252960 20.8 3.8 6.8 1.6E-25 1.0E-08

Hal Histidine ammonia-lyase 29301 1.1 6.7 6.2E-13

Kcnip1 Kv channel-interacting protein 1 65023 31.5 2.9 6.6 2.8E-18 2.7E-04

Ptgdr Prostaglandin D2 receptor 498475 3.1 5.0 2.0E-13

Trpv1 Transient receptor potential cation channel subfamily
V member 1

83810 64.3 4.1 4.6 1.4E-35 3.4E-09

Nos1 Nitric oxide synthase, brain 24598 1.8 4.6 3.3E-21

Slc16a12 Monocarboxylate transporter 12 309525 8.9 4.6 7.4E-28

Lpar3 Lysophosphatidic acid receptor 3 66025 10.6 3.6 4.6 1.4E-22 4.6E-05

Mrgprd Mas-related G-protein coupled receptor member D 293648 27.8 4.4 3.4 3.2E-31 6.7E-05

Gfra3 GDNF family receptor alpha-3 precursor 84422 31.3 3.6 4.4 8.3E-28 2.4E-06

Slc51a Solute carrier family 51, alpha subunit 303879 4.3 6.2E-08

Lmx1a LIM homeobox transcription factor 1 alpha 289201 1.4 3.8 3.9E-11

Adcyap1 Pituitary adenylate cyclase-activating polypeptide 24166 33.6 2.9 3.6 4.7E-18 5.3E-08

Trpc4 Short transient receptor potential channel 4 isoform beta 84494 0.9 3.4 1.8 2.1E-06 2.7E-03

Ascl4 Protein Ascl4 299687 3.4 4.8E-05

Pnmal1 PNMA-like protein 1 361515 1.1 3.4 1.1E-04

Vwa5a von Willebrand factor A domain-containing protein 5A 301097 2.6 3.3 1.0E-15

Tcf15 Transcription factor 15 296272 0.9 3.3 2.3 1.9E-08 1.2E-04

Tac1 Protachykinin-1 24806 256.4 3.3 2.8 2.9E-26 1.8E-06

Ewsr1 RNA-binding protein EWS 100912481 1.2 3.2 1.0 1.0E-04 9.4E-01

Slc51a Organic solute transporter subunit alpha 303879 7.2 3.2 5.0E-14

Zic5 Zinc finger protein ZIC 5 361095 9.0 3.2 3.3E-17

Kcnk2 Potassium channel subfamily K member 2 isoform 2 170899 7.3 2.5 3.2 4.0E-12 2.6E-05

Amdhd1 Probable imidazolonepropionase 299735 4.4 3.0 3.3E-09

LOC257642 rRNA promoter binding protein 257642 31.1 3.0 3.6E-21

Gal Galanin 29141 16.3 2.2 3.0 2.6E-06 2.1E-05

Trpc3 short transient receptor potential channel 3 60395 12.3 2.4 2.8 2.4E-12 2.1E-05

Rgs14 Regulator of G-protein signaling 14 114705 1.4 2.7 1.1 9.2E-06 3.0E-01

Cd72 B-cell differentiation antigen CD72 313498 3.0 2.7 1.9 8.5E-06 3.2E-01

Ramp3 Receptor activity-modifying protein 3 56820 20.6 2.7 1.8 2.8E-14 1.8E-02

Chrna6 neuronal acetylcholine receptor subunit alpha-6 81721 34.1 2.6 2.6 7.4E-15 1.2E-05

Acpp Prostatic acid phosphatase 56780 82.9 1.7 2.6 1.1E-04 2.9E-06

Oprk1 Kappa-type opioid receptor 29335 5.3 2.2 2.6 9.0E-05 7.0E-04

Prdm8 Uncharacterized protein 305198 2.6 6.1E-07

Cpne5 copine-5 309650 1.7 2.5 1.8 2.5E-07 3.6E-03

Tnni3k serine/threonine-protein kinase TNNI3K 295531 1.1 2.5 1.7 4.3E-04 4.7E-03

Grik1 glutamate receptor, ionotropic kainate 1 isoform 3 29559 75.1 2.3 2.5 1.3E-13 5.3E-07

Ipcef1 Interactor protein for cytohesin exchange factors 1 361474 1.8 2.5 2.3E-03
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TRPV1(+) neurons are enriched for heat pain relevant genes

To demonstrate the functional relevance of our dataset, we examined whether our

candidate gene list includes genes known to be relevant for pain. For this purpose,

we compared our top 235 candidates (Fig. 2F and S5 Table) with all 367 entries in

the Pain Networks database [46]. We found a significant overlap of 27 genes

(p56.5e-14, modified Fisher’s exact test), most of which are well-studied targets

for pain (S6 Table). We also observed an overlap of 29 genes (p52.5e-16) when

comparing our gene set with all 340 entries in the Pain Genes database [47], which

lists all genes that induce a significant behavioral pain phenotype if knocked out in

mice (S6 Table). Moreover, we determined the intersection of our gene set with

the results of a recent genome-wide Drosophila screen for genes involved in heat

nociception identifying 580 candidate genes mapping to the rat genome [48]. Six

rat orthologs of these genes were also present in our gene set (Galr2, Kcnip1,

Kcnip2, Kcnip4, Slc5a7, Trpv1, p50.56).

TRPV1(+) neurons are enriched for potassium channels

To deeper understand the biological meaning of the dataset, we analyzed the

combined dataset of TRPV1 associated genes (fold-change .1.5, p,0.05, 240

genes) for overrepresentation of Gene Ontology (GO) terms, Kegg pathways, and

Interpro protein domains using DAVID [49]. Several GO terms for general

neuronal processes such synapse, dendrite, and axon terminus were enriched in

the dataset (S7 Table). In addition, terms such as ‘‘response to pain’’ and ‘‘sensory

perception of pain’’ indicated enrichment of pain relevant genes and included

well-known pain targets (Calca, Grik1, Trpv1, P2rx3, Tac1, Iapp, Npy1r).

Apparently most of the top GO categories were related to ion channel activity (32

genes in total) with superior emphasis on cation channel activity (27 genes). This

gene cluster contained 11 potassium channel subunits of the voltage-gated

(Kcna3, Kcnc4, Kcne3, Kcnf1, Kcng1, Kcnh6), two-pore (Kcnk2, Kcnk18),

inwardly rectifying (Kcnj5), calcium-activated (Kcnmb2) and sodium-activated

Table 1. Cont.

Symbol Description Gene ID RPKM Fold-changes Adj. p-values

Seq Array Seq Array

Kcnj5 G protein-activated inward rectifier potassium channel 4 29713 6.6 2.5 1.9 6.5E-07 3.7E-02

Spata32 spermatogenesis associated 32 287747 1.6 2.4 2.2E-02

Rgs4 Regulator of G-protein signaling 4 29480 561.0 2.4 2.3 5.2E-15 5.1E-07

Sepw1 selenoprotein W 3.5 2.4 1.1 6.3E-03 4.6E-01

Krt75 keratin 75 300247 1.6 2.3 1.9 2.1E-03 3.8E-02

Pfn2 Profilin-2 100909840 1.1 2.3 0.8 1.4E-04 4.0E-02

Foxs1 forkhead box protein S1 311547 2.7 2.3 1.0 1.4E-04 9.9E-01

Inadl InaD-like (Drosophila) 140581 2.3 5.5E-05

Galr2 Galanin receptor type 2 100910349 19.5 2.3 6.7E-06

doi:10.1371/journal.pone.0115731.t001
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subfamilies (Kcnt1) as well as three Kv channel-interacting proteins (Kcnip1,

Kcnip2, Kcnip4). Moreover, calcium channels (Cacna1e, Cacna2d1), Trp channels

(Trpc3, Trpc4, Trpv1), the voltage-gated sodium channel NaV1.9 (Scn11a), as

well as ionotropic glutamate (Grik1, Grik3) and nicotinic acetylcholine receptors

(Chrne, Chrna6) were found with increased expression in TRPV1(+) neurons.

TRPV1(+) neurons are enriched for GPCRs and associated

signaling components

Genes associated with G-protein coupled receptor signaling pathways were

significantly enriched in TRPV1(+) neurons (S7 Table). These include orphan

GPCRs (Gpr27, Gpr35, Gpr68), phospholipid and prostanoid receptors (Lpar3,

Ptgdr, Ptgdrl, Ptger3, Ptgir), Mas-related GPCRs (Mrgprd, Mrgprx3), peptide

receptors (Galr2, Npy1r, Npy5r, Rxfp1, Sstr1), dopamine receptors (Drd2), and

opioid receptors (Oprk1). Several GPCR ligands such as pituitary adenylate

cyclase-activating polypeptide (Adcyap1), calcitonin-related polypeptide a

(Calca), cocaine-and amphetamine-regulated transcript protein (Cartpt), corti-

cotropin-releasing hormone (Crh), galanin (Gal), and amylin (Iapp) were

expressed at higher levels in TRPV1(+) neurons. The GPCR-related GO categories

also contained G-proteins (Gnaq, Gna14), regulators of G protein signaling and

GPCR kinases (Rgs4, Rgs7, Rgs14, Ramp3, Adrbk2), and GPCR signaling proteins

(e.g. adenylate cyclase V, Adcy5).

Signaling proteins define distinct subgroups of TRPV1-positive

neurons

Subsequently, we analyzed whether the enrichment of target transcripts in

TRPV1(+) neurons is also reflected at the protein and cellular level. We focused

on proteins involved in exemplary aspects of signaling such as the neuropeptide

cocaine- and amphetamine-regulated transcript protein (CART), the intracellular

signaling enzymes neuronal nitric oxide synthase (Nos1) and Ca2+/calmodulin-

dependent protein kinases (CaMKs), as well as Kv channel-modulating proteins

(KChIPs). High fold-changes detected by the transcriptome analysis of this

heterogeneous cell system can have various reasons including (I) the target is

expressed exclusively in the same subpopulation as TRPV1, (II) the target is

selectively expressed in a subpopulation of TRPV1(+) neurons, or (III) the target

is expressed in all neurons, but with higher levels in TRPV1(+) neurons. We

therefore correlated the cellular expression pattern of selected targets proteins

with TRPV1 using quantitative HCS microscopy. The targets were selected based

on their fold-change, RPKM value, and availability of specific monoclonal

antibodies. To facilitate the triple staining of UCHL1, TRPV1, and various targets,

we established a second TRPV1 antibody derived from goat (go-TRPV1). The

staining intensities derived with goat and rabbit TRPV1 antibodies correlated

significantly (Spearmans r50.96, p,2.2E-16, Fig. 4A, B).
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The neuropeptide CART was found being differentially expressed using

microarrays (Cartpt, 11.0-fold) and RNA-Seq (8.9-fold, RPKM518) (Table 1).

The reduction of CART mRNA was also dose-dependent shown by qPCR

(Fig. 3B). The receptor of CART is yet unknown, but it has been suggested to

potentiate spinal pain transmission [50]. A previous study in mice reported that

,50% of the peptidergic nerve terminals in lamina I of the dorsal horn also

contain CART [51]. We found high CART expression levels in a small

subpopulation of sensory neurons by HCS microscopy (2.9¡0.1%, n53, total of

11091 neurons, Fig. 4C), most of which coexpressed TRPV1 (79¡4%). The

immunoreactivity for CART was also significantly higher in TRPV1(+) neurons

(5.4-fold, p,0.0001, Fig. 4H) verifying our transcriptome data at protein level.

We then analyzed the expression pattern of the neuronal nitric oxide synthase

(Nos1, 4.6-fold, RPKM53). Nitric oxide has a well-established role for the

nociceptive signal transmission in the spinal cord. Several animal studies have

shown that inhibition of NO reduces inflammatory and neuropathic pain [52].

Similar as for CART, we observed high Nos1 expression in a small subgroup of

sensory neurons (2.0¡0.2%, n53, total of 18397 neurons, Fig. 4D). Most of these

neurons were TRPV1(+) (86¡1%) and also the signal intensity was significantly

higher in TRPV1(+) neurons (1.7-fold, p,0.001, Fig. 4H).

We noticed enriched Ca2+/calmodulin-dependent protein kinase activity in

TRPV1(+) neurons by GO analysis. CaMKs are downstream effectors of calcium

and phosphorylate substrates involved in exocytosis, transcriptional, and

translational processes [53]. The genes included in this category encode the

CaMKII a subunit (Camk2a, 1.7-fold, RPKM538.4), CaMKIV (Camk4, 1.7-fold,

RPKM515.1), and death-associated protein kinase 1 (Dapk1, 1.8-fold,

RPKM529.7). Quantification by HCS microscopy revealed a clearly bimodal

expression pattern with 45¡0.7% being positive for CaMKIIa (Fig. 4G, I).

Double labeling with TRPV1 showed that 56¡2% of CaMKIIa(+) neurons also

expressed TRPV1 and that mean signal intensities were higher in TRPV1(+)

neurons (1.5-fold, p,0.05). Also the expression level of CaMKIV known to be

crucial for the regulation of CRE-dependent transcription in neuronal nuclei was

increased in TRPV1(+) neurons (data not shown, 2.1-fold, p,0.0001).

Next, we analyzed the expression pattern of two Kv channel-interacting

proteins (KChIPs) encoded in Kcnip1 and Kcnip2, respectively. KChIP1-4 are

small calcium-binding proteins important for regulating neuronal excitability by

modulating the dynamic inactivation of voltage-gated Kv4 A-type potassium

currents [54]. Kcnip1 (2.8-fold, RPKM546.5), Kcnip2 (2.1-fold, RPKM51.2),

and Kcnip4 (1.6-fold, RPKM541.6), but not Kcnip3 (RPKM579.3) were higher

expressed in TRPV1(+) neurons (Table 1). Supporting this, we obtained higher

signal intensities in TRPV1(+) neurons using a monoclonal KChIP1 antibody

(1.5-fold, p,0.01, Fig. 4E, H). In line with the low RPKM value of 2 for Kcnip2,

we observed weak signal intensities for KChIP2 in DRG neurons (Fig. 4F). Our

data therefore indicate a rather specific expression of Kcnip1 and perhaps Kcnip4

within subpopulations largely overlapping with TRPV1(+) neurons.
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PGD2 predominantly acts on TRPV1(+) neurons
Next, we analyzed the functional details of one further signaling system of interest

that had shown up in our transcriptome data. We found the PGD2 receptor DP1

(Ptgdr) to be enriched in TRPV1(+) neurons (5.0-fold, RPKM55.2, Table 1). To

demonstrate that PGD2 acts on TRPV1(+) neurons, we applied an assay to

monitor the activation of protein kinase A type II (PKA-II) based on measuring

phosphorylation of PKA-RII subunits (pRII) recently introduced by us [39]. We

observed a dose-dependent induction of RII phosphorylation after 1 min

stimulation, which occurred specifically in neurons but not non-neuronal cells

(Fig. 5A, B). Moreover, the response was rapid and resulted in long-lasting

elevation of pRII levels above baseline (Fig. 5C), which also resulted in the

transactivation of the MAPK pathway (Fig. 5D). To analyze if PGD2 specifically

acts on TRPV1(+) neurons, we stimulated DRG neurons for 1 min with a high

dose of PGD2 (10 mM) followed by triple staining for UCHL1, pRII, and TRPV1

(Fig. 5E). Indeed, the response to PGD2 was significantly higher in TRPV1(+)

compared to TRPV1(2) neurons (1.8 vs. 1.1-fold, p,0.001, n53, total of 17970

neurons, Fig. 5F).

PGD2 is synthesized in myelinated large-diameter neurons

We then aimed to determine, which cell types may be the source of PGD2 in

sensory ganglia. The synthesis of PGD2 involves cyclooxygenases (COX), which

are targets for non-steroidal anti-inflammatory drugs (NSAIDs) representing

well-known analgesics. COX enzymes convert arachidonic acid to prostaglandin

H2 (PGH2), a precursor of pain relevant prostanoids PGI2, PGE2, and PGD2.

Interestingly, among the 87 genes showing elevated expression in cells lacking

TRPV1 (,0.67-fold, p,0.05, S5 Table) such as larger myelinated neurons and

glia cells, only Ptgs2 encoding COX-2 was detected by microarrays and sequencing

(0.65-fold, RPKM511.5). In addition, also the lipocalin-type prostaglandin D

synthase converting PGH2 to PGD2 was higher expressed in cells devoid of TRPV1

(Ptgds, 0.66-fold, RPKM566.6). To evaluate which cell types express PTGDS, we

stained cultured DRG neurons with a rabbit monoclonal PTGDS antibody. To

our surprise, we detected PTGDS expression in 19¡2% of the investigated

neurons (n53, total of 19769 neurons) all of which were negative for TRPV1

(Fig. 5G). PTGDS(+) neurons co-expressed the myelination marker neurofila-

ment 200 (NF200) and were of larger size than the total neuron population

(Fig. 5H, I). This suggests a paracrine circuit in which PGD2 is synthesized by

Fig. 4. Validation of the transcriptome data by single cell based quantitative High Content Screening (HCS) microscopy focusing on selected
signaling-relevant proteins. (A) Triple staining of the neuronal marker UCHL1 and two different TRPV1 antibodies derived from rabbit and goat,
respectively, to facilitate the analysis of various targets. The staining intensities obtained with both TRPV1 antibodies correlated significantly (Spearmans
r50.96, p,2.2e-16). (B-E, G) Co-labeling of TRPV1 and CART (B), Nos1 (C), KChIP1 (D), KChIP2 (E), and CaMKIIa (G). Plots of respective controls are
shown in S1 Fig. (F) Average fluorescence intensities of TRPV1 and the indicated targets in TRPV1-negative (grey) and -positive (black) neurons. Signal
intensities of all analyzed targets were significantly higher within the TRPV1(+) population (n53 with.3000 analyzed neurons per experiment, paired two-
tailed t-tests).

doi:10.1371/journal.pone.0115731.g004
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Fig. 5. PGD2 is a paracrine mediator synthesized in myelinated large-diameter neurons that acts on TRPV1(+) neurons. (A) Dose-dependent induction
of RII phosphorylation in sensory neurons after 1 min stimulation with PGD2 (EC505377 nM, n53,.2000 neurons/condition; one-way ANOVA with Bonferroni’s
multiple comparisons test). (B) PGD2 did not induce pRII in non-neuronal cells of the same cultures shown in A. (C) Time course of RII phosphorylation indicating long-
lasting effects of PGD2 (10 mM) on sensory neurons. (D) Stimulationwith PGD2 also results in phosphorylation of the ERK1/2measured in the same cultures shown in
D. (E) Representative experiment demonstrating that induction of RII phosphorylation is enhanced in TRPV1(+) neurons (total of 3664 neurons). Plots of respective
controls are shown in S2 Fig. (F) Fold changes of pRII intensities in TRPV1(2) (grey bars) and TRPV1(+) (black bars) neurons after 1 min stimulation with 10 mM
PGD2 (n53,.2000 neurons/condition, one-wayANOVAwith Bonferroni’smultiple comparisons test). (G) Co-labeling of TRPV1 andPTGDS revealing that PTGDS is
expressed in neurons lacking TRPV1 (total of 9951 neurons, also refer to S2 Fig. for control plots). (H) Co-labeling of NF200 and PTGDS showing that PTGDS(+)
neurons express NF200 (total of 12966 neurons, also refer to S2 Fig. for control plots).(I) Size distribution of PTGDS(+) (green), NF200(+) (red), and all sensory
neurons (black) indicating that PTGDS(+) neurons are larger than other neurons. (J) Suggested pathway of interneuronal communication between subgroups of
sensory neurons. Large-diameter mechanosensitive neurons express PTGDS resulting in the production of PGD2, which activates DP1 receptors present on
nociceptive neurons expressing TRPV1.

doi:10.1371/journal.pone.0115731.g005
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larger myelinated neurons and activates DP1 receptors predominantly expressed

by TRPV1(+) neurons (Fig. 5J).

Discussion

With our data we present a transcriptomic approach to analyze subgroups of

primary nociceptive neurons on the basis of a functional selection procedure. This

resulted in the first subgroup specific transcriptome data. The differentially

expressed proteins highlight that in addition to the mostly investigated ion

channels and classical nociceptive markers, also signaling components are

differentially expressed. Even further, the subgroup of TRPV1(+) neurons is not

homogeneous but can be differentiated into further subclasses on the basis of the

specific expression of signaling systems. The analysis of one such system indicates

an interesting novel paracrine communication between nociceptive and non-

nociceptive neurons.

The sensation of different sensory modalities is considered to reside to a large

extent within distinct subgroups of specialized sensory neurons [55]. However,

the identification of molecular markers and the assignment of physiological

functions to subpopulations of sensory neurons remains challenging. One reason

for that is the lack of methods to separate the neuronal subgroup of interest from

the heterogeneous cell population within sensory ganglia. To achieve this, we

established a novel agonist-based approach to selectively remove TRPV1(+)

neurons from the heterogeneous cell population within sensory ganglia. Since

multiple regulatory circuits control the gating and presentation of TRPV1 at the

cellular surface, expression levels may not correlate with its activity. Our strategy

therefore did not rely on measuring TRPV1 expression levels, but on the

functional response induced by TRPV1 agonists. The method is rapid and also

minimizes the influence of non-neuronal cells, which are in excess but remain

unchanged in the control and agonist-treated samples.

The method allowed the identification of transcripts enriched in TRPV1(+)

neurons by microarrays and sequencing based expression profiling. With the

exception of two microarray based studies applying laser microdissection to

compare either small- with large–diameter neurons or dorsal root and nodose

ganglion neurons labeled from the peritoneal cavity [56, 57], subgroups of sensory

neurons were not analyzed using whole transcriptome approaches yet. Other

studies compared whole DRGs with closely related neuronal tissues such

trigeminal, genticulate, or nodose ganglia to identify DRG enriched transcripts

[45, 57, 58], analyzed pain relevant animal models [59], or in vitro stimulated

DRG neurons [60]. RNA-Seq has been applied only recently to study gene

expression in mouse trigeminal and dorsal root ganglia [45]. During the review

process of this manuscript, Goswami and colleagues reported a first RNA-Seq

based transcriptome of TRPV1(+) DRGs in mice and trigeminal ganglia in rats

[61]. They compared FACS-enriched TRPV1(+) neurons from genetically labeled

mice with DRG neurons of mice in which TPRV1(+) neurons were deleted by
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expressing diphtheria toxin in TRPV1(+) neurons. Transcriptome data of these

experiments were compared with data of rats in which TRPV1(+) neurons were

chemically ablated in vivo in trigeminal ganglia. Of note, although technically

rather distinct, both studies identified highly similar gene sets with TRPV1-

enriched expression.

Data of both studies suggest that not expression of TRPV1 alone, but also the

presence of other ion channels, GPCRs, and several signaling components define

the subgroup of TRPV1(+) neurons. Comparing the identified genes with known

pain genes and analyzing their GO annotation verified a significant enrichment of

pain-relevant genes. In addition, novel candidates were identified some of which

we analyzed by us in more detail using HCS microscopy. The coexpression of

components was proven to be essential for the functional outcome of nociceptive

responses. In a landmark paper, Rush et al. showed that indeed the coexpressed

nociceptive component NaV1.8 defines whether a single point mutation in the

related NaV1.7 results in neuronal gain or loss of function [44]. Thus, our dataset

will provide a rich source for the evaluation of the functional interplay of TRPV1

with other differentially expressed components.

Ion channels enriched in TRPV1(+) neurons
Our analysis revealed multiple ion channels, especially potassium channels, being

enriched in TRPV1(+) neurons (Table 1 and S5 Table). Voltage-gated potassium

and sodium channels are essential for the generation of neuronal action potentials

and therefore critical for the modulation of pain. For instance, we found the two-

pore potassium channels TREK-1 (Kcnk2, 2.5-fold, RPKM511) and TRESK

(Kcnk18, 1.6-fold, RPKM528) being differentially expressed. TREK-1 can be

opened by anesthetics, is sensitive to thermal and mechanical stimulation, and was

found to colocalize with TRPV1 [62, 63]. TRESK is activated by calcium involving

the calcium/calmodulin-dependent protein phosphatases in cell models and has

been suggested being the target of the Sichuan pepper ingredient sanshool in

sensory neurons [64]. Also the tetrodotoxin-sensitive sodium channel NaV1.9

(Scn11a, 1.6-fold, RPKM5218) is involved in the transmission of pain signals in

small nonpeptidergic DRG neurons [65]. Interestingly, also gain-of-function

mutations in human SCN11A result in loss of pain perception [66]. Moreover, we

detected the sodium activated potassium channel Slack (Slo2.2, KCa4.1) encoded

by Kcnt1 (1.7-fold, RPKM530). Opening of Slack channels normally dampens

neuronal excitability, but internalization results in neuronal hyperexcitability [67].

Indeed, knockdown of Slack increases thermal and mechanical sensitivity in rats

[68]. Also the b2 subunit of the large conductance calcium-activated potassium

(BKCa) channel (Kcnmb2, 2-fold, RPKM58) was higher expressed in TRPV1(+)

neurons. Mutant mice lacking BKCa have increased nociceptive behavior in

models of persistent inflammatory pain [69].

We detected robust expression of all three a2d family calcium channel subunits

Cacna2d1-3 in sensory ganglia, but only Cacna2d1 was significantly enriched in

TRPV1(+) neurons (1.6-fold, RPKM567.3). The ortholog of Cacna2d3 in flies
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was identified in a genome-wide screen for genes involved in heat nociception and

also mice as well as humans mutant for Cacna2d3 show reduced sensitivity to

noxious heat [48]. Our data now indicate that especially Cacnad1 may be relevant

for heat pain as well. Also knock down of the potassium channel interacting

proteins Kcnip1 and 4 resulted in reduced heat pain sensitivity in Drosophila [48].

We also found Kcnip1, 2, and 4 transcripts with increased expression in

TRPV1(+) neurons and verified the results at protein level by HCS microscopy.

The encoded proteins KChIP1-4 are calcium-binding proteins important for

regulating neuronal excitability by modulating the dynamic inactivation of

voltage-gated Kv4 A-type potassium currents [54]. Several studies demonstrated

that KChIPs are auxiliary subunits of Kv4.1 and Kv4.3 [70, 71], which we found to

be robustly expressed in DRG neurons (RPKM560.5 and 50.1, respectively).

Kv4.3 levels were significantly increased in the TRPV1(+) population (Kcnd3, 1.4-

fold). These observations may explain differences in the inactivation kinetics of

potassium currents among sensory neurons. Since KChIPs bind calcium they may

interlink calcium channels and other cation channels such as Trp channels with

voltage gated potassium channels. Many other Trp channels such as Trpa1

(RPKM543), Trpc1 (18), Trpc3 (18), Trpc4 (1.4), Trpc5 (2), Trpc6 (6), Trpm2

(8), Trpm3 (34), Trpm4 (6), Trpm7 (24), Trpm8 (54), and Trpv2 (50) were found

to be expressed in DRG neurons. However, only Trpc3 (2.4-fold) and Trpc4 (3.4-

fold) were significantly enriched in TRPV1(+) neurons above the 1.5-fold

threshold. These Trpc channels, known to be involved in the stimulus-dependent

regulation of intracellular Ca2+ signaling, were found being relevant for light

touch (Trpc3) or have been implicated with visceral pain (Trpc4) [72, 73]. In

addition, we detected the a6 (Chrna6, 2.6-fold, RPKM549) and e subunit (Chrne,

1.8-fold, RPKM521) of acetylcholine receptors enriched in TRPV1(+) neurons.

These observation may be relevant to better understand the actions of nicotine on

the peripheral nervous system and the analgesic actions of nicotinic acetylcholine

receptor agonists such as epibatidine [74, 75]. In conclusion, the presence of

multiple potassium and calcium channels as well as calcium-regulated accessory

proteins suggests that TRPV1(+) neurons express a specific system to tightly

control calcium triggered membrane depolarization. The enrichment of channels

relevant for thermo-, mechano-, and chemosensation underlines the hetero-

geneous and polymodal nature of TRPV1(+) neurons.

GPCRs enriched in TRPV1(+) neurons
We found enhanced expression of GPCRs, their ligands, and proteins relevant for

GPCR signaling in TRPV1(+) neurons (Table 1 and S5 Table). These included

well-known pain targets such as prostanoid, neuropeptide, and opioid receptors.

We detected the galanin receptor 2 (Galr2, 2.3-fold) and its ligand galanin (Gal,

2.2-fold, RPKM522.6) expressed at higher levels in TRPV1(+) neurons. Galanin

has been implicated with spinal nociception in several morphological, molecular,

and functional studies [76]. In the periphery, galanin does not induce nociception

on its own, but amplifies capsaicin induced nociceptive behaviors [77]. Our data
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now suggest an autocrine loop for galanin concerning the regulation of TRPV1

activity in nociceptive neurons. The two NPY receptor subtypes Npy1r (1.7-fold,

RPKM530) and Npy5r (1.9-fold, RPKM52) were higher expressed in TRPV1(+)

neurons. Although their ligand is not expressed in naive sensory neurons, NPY is

strongly upregulated after peripheral nerve injury suggesting another autocrine

loop in TRPV1(+) neurons [78, 79]. Another neuropeptide detected by us with a

high-fold change is CART (11-fold, RPKM518). The CART mRNA encodes two

peptides implicated in several physiological functions such as food intake, reward,

and other endocrine functions [80]. CART has been shown to potentiate spinal N-

methyl-D-aspartate (NMDA)-mediated nociceptive transmission [50, 81].

Detailed studies on spinal cord sections of mice demonstrated that ,50% of the

peptidergic nerve terminals also contain CART [51, 82]. Here we demonstrate that

CART is expressed at high levels in a tiny subpopulation (< 3%) of sensory

neurons co-expressing TRPV1. This fits to recent data on rat trigeminal ganglia in

which only 1.3% of neurons expressed CART [83].

We also found the two Mas-related GPCR family members Mrgprd (4.4-fold,

RPKM546) and Mrgprx3 (3.8-fold, RPKM533). Mrgprd is selectively expressed

in nonpeptidergic nociceptors and was shown to respond to b-alanine [84]. In

mice, Mrgprd influences the excitability of polymodal nonpeptidergic nociceptors

to mechanical and thermal stimuli [85]. However, it was reported that the

Mrgprd(+) population does not overlap with TRPV1(+) neurons in mice [5],

which may indicate a species-specific difference between mice and rats. Recent

findings indicate that members of the Mrgpr family are mediators of histamine-

independent itch [86, 87], but the functions of Mrpgdx3 remained elusive.

Three GPCRs currently classified as orphan receptors were enriched in

TRPV1(+) neurons. Gpr27 (1.6-fold, RPKM53) is conserved among mammals,

was detected in grey matter areas of the monkey brain, and was recently identified

as positive regulator of insulin production pancreatic beta cells [88, 89]. For

Gpr35 (1.6-fold, RPKM520), kynurenic acid and 2-acyl lysophosphatidic acid

have been proposed as endogenous ligands [90, 91]. Also pamoic acid, which is

used to formulate numerous drugs, has been suggested being a Gpr35 agonist that

attenuates visceral pain perception in the mice writhing test [92]. Gpr68 (OGR1,

1.7-fold, RPKM57) may represent an acid sensing Gq/11-coupled GPCR in

various cell types [93]. Knock-out studies in mice implicate Gpr68 with

osteoclastogenesis and tumor formation [94]. Gpr68 transcripts were detected in

small-diameter DRG neurons of mice [95], but its function in the context of pain

is not known yet.

In addition to GPCRs and some of their ligands, we also found the regulators of

G protein signaling Rgs4 (2.4-fold, RPKM5561), Rgs7 (1.6-fold, 51.6), and Rgs14

(2.7-fold, RPKM51.3) enriched in TRPV1(+) neurons. Especially Rgs4 was

among the most highly expressed genes with only 63 other genes showing higher

RPKM values in sensory neurons. RGs proteins are considered as modulatory

proteins that increase the GTPase activity of active Ga subunits resulting in rapid

turnoff of GPCR signaling pathways [96]. Indeed, also the Ga subunits Gna14

(1.8-fold, RPKM5132) and Gnaq (1.6-fold, RPKM5152) were higher expressed
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in TRPV1(+) neurons suggesting tight control of GPCR mediated signaling in

these neurons.

TRPV1(+) neurons present enhanced adenosine and phospholipid

metabolism

Genes relevant for several metabolic and signaling pathways were significantly

enriched in TRPV1(+) neurons (Table 1 and S5 Table). For instance we noticed

genes involved in adenosine metabolism such as prostate acid phosphatase (Acpp)

and 59-nucleotidase (Nt5e). These enzymes are secreted from nociceptive neurons

and dephosphorylate extracellular adenosine monophosphate (AMP) to adeno-

sine, which results in suppression of pain by activation of A1-adenosine receptors

in the dorsal spinal cord [97, 98].

Recently, the construction of a global heat pain network pointed towards

phospholipid signaling as a central node in pain processing [99]. The predictions

of the network were tested by analyzing the phenotype of PIP5Ka and PI3Kc

mutant mice, which both presented hypersensitivity to noxious heat pain.

Although we did not detect these isoforms being enriched in TRPV1(+) neurons,

genes associated with phosphatidylinositol signaling were overrepresented in our

dataset. Gq/11-coupled GPCRs activate phospholipase C, which cleaves phospha-

tidylinositol 4,5-bisphosphate in diacylglycerol (DAG) and inositol trisphosphate

(IP3). We detected Gq/11-coupled GPCRs (e.g. Mrgprd, Mrgprdx3, Galr2) and

phospholipase Cb3 (Plcb3, 1.7-fold, RPKM5130) with enhanced expression in

TRPV1(+) neurons. Moreover, we noticed the DAG kinases eta, iota, and zeta

(Dgkh, Dgki, Dgkz), which convert DAG to phosphatidic acid. Phosphatidic acid

is then converted by phosphatidate cytidylyltransferase 2 also found by us to be

differentially regulated (Cds2, 1.6-fold, RPKM5364) to CDP-diacylglycerol,

which is an important precursor for the biosynthesis of phosphatidylinositol.

While DAG activates proteinkinase C, IP3 induces calcium-influx from internal

stores resulting in activation of Ca2+/Calmodulin-dependent kinases of which we

found three (CaMKIIa, CaMKIV, Dapk1) in our expression analysis. CaMKIIa

has been reported to be enriched in small diameter neurons including TRPV1(+)

[100–103] and is involved in inflammatory pain responses [104, 105]. Quantifying

CaMKIIa expression by HCS microscopy resulted in a clearly bimodal

distribution that overlapped with TRPV1(+) neurons. We also observed faint

CaMKIV immunoreactivity mainly in nuclear regions of TRPV1(+) neurons.

CaMKIV is considered as a nuclear kinase that phosphorylates cyclic AMP-

response element binding protein (CREB). However, the role in sensory neurons

remains unclear, since CaMKIV knockout in mice does not influence behavioral

responses to acute noxious stimuli or to prolonged injury [106].
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PGD2 is a paracrine mediator synthesized in myelinated large-

diameter neurons that acts on TRPV1(+) neurons
We found receptors for the prostanoids PGE2, PGD2, and PGI2 with predominant

expression in TRPV1(+) neurons. Prostanoids are generally considered as

pronociceptive in the periphery and are well-known downstream targets of

NSAIDs [107]. We have recently shown that PGI2 selectively acts on PKA-RIIb(+)

neurons that include TRPV1(+) neurons, whereas PGE2 has a broader effect [39].

This is in line with our gene expression data indicating enhanced expression of

PGI2 receptors in TRPV1(+) neurons (Ptgir, 1.9-fold, RPKM532).

In contrast to the sensitizing effects of pro-inflammatory PGE2 and PGI2, data

on PGD2 are inconsistent [108]. For instance PGD2 did not sensitize primary

afferents to chemical and heat stimuli [109] and was shown to be anti-

inflammatory [110, 111]. On the other hand, PGD2 depolarized axons in the vagus

nerve [112], increased the CGRP release from trigeminal neurons [113], and

induced tetrodotoxin-resistant Na+ currents in DRG neurons [108] suggesting

pain sensitizing effects. Effects of PGD2 are mediated by receptor subtypes DP1

and DP2, which either stimulate or inhibit cAMP formation. We found increased

expression of DP1 receptors in TRPV1(+) neurons (Ptgdr, 5-fold, RPKM55.2),

whereas DP2 receptors were apparently not expressed (Ptgdr2, RPKM,0.1).

Consistently, PGD2 stimulation of cultured DRG neurons induced PKA-RII

phosphorylation predominantly in TRPV1(+) neurons, but not non-neuronal

cells (Fig. 5A-F). Moreover, we detected both enzymes of the PGD2 biosynthesis

pathway, namely COX-2 (Ptgs2, 0.65-fold, RPKM511.5) and prostaglandin D

synthase (Ptgds, 0.66-fold, RPKM566.6), with reduced expression in TRPV1(+)

neurons. Further analysis using a PTGDS-specific antibody revealed predominant

expression in myelinated large-diameter neurons by HCS microscopy (Fig. 5G-I).

These findings suggest that PGD2 is produced within sensory ganglia by

myelinated large-diameter neurons and acts as a paracrine mediator on TRPV1(+)

cells (Fig. 5J). This interneuronal communication may be of relevance within

ganglia, unmyelinated areas within nerve fibers, or at nociceptor terminals. Larger

unmyelinated areas that allow interneuronal communication apart from synapses

have recently been reported for the central nervous system [114].

Conclusions

In conclusion, our results demonstrate a rapid and function-driven method to

remove TRPV1(+) neurons from the heterogeneous cell population within

sensory ganglia. This enabled for the first time the detailed transcriptome analysis

of a defined subgroup of sensory neurons. Our findings indicate that TRPV(+)

neurons are not defined by ion channel alone, but are enriched for various ion

channels, G-protein coupled receptors, and signaling components (e.g. adenosine

and the phosphatidylinositol pathway). Indeed, the differential expression of

signalling components further divides the subgroup of TRPV1(+) neurons. The

analysis of one such signalling system identified PGD2 as a potential paracrine

mediators produced in myelinated large-diameter neurons that predominately
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acts on TRPV1(+) neurons suggesting interneuronal communication between

subgroups of sensory neurons. It remains to be analysed in detail, what differential

functionality is embodied by the novel subclasses of TRPV1(+) neurons. Further,

it will be of great interest to characterise the functional interplay of differentially

expressed components and TRPV1.

Materials and Methods

Antibodies

The following antibodies were used in this study: chicken polyclonal anti-UCHL1

(1:2000, Novus, Cambridge, UK, #NB110-58872), rabbit polyclonal anti-TRPV1

(1:1000, Alomone labs, Jerusalem, Israel, # ACC-030), goat polyclonal anti-

TRPV1 (1:500, R&D Systems, #AF3066), mouse monoclonal anti hCART,

(1:3000, R&D Systems, #MAB163), rabbit monoclonal anti NOS1 (1:500, clone

C7D7, Cell Signaling, Danvers, MA, #4231), mouse monoclonal anti CaMKIIa

(1:2000, clone 6G9, Thermo Scientific, #MA1-048), rabbit monoclonal anti

CaMKIV (1:500, Millipore, clone EP2564Y, #04-1081), mouse monoclonal anti

KChIP1 (1:500, Abcam, Cambridge, UK, #ab99013), mouse monoclonal anti

KChIP2 (1:1000, UC Davis/NIH NeuroMab Facility, Clone K60/73, #75-004),

rabbit monoclonal anti phospho RIIa (S96) (1:1000, clone 151, Abcam, #
ab32390), mouse monoclonal anti phospho-p44/42 MAPK (T202/Y204) (1:250,

clone E10, Cell Signaling, #9106), rabbit monoclonal anti-Prostaglandin D

Synthase (1:1000, clone E12357, Abcam, ab182141), mouse monoclonal anti-

NF200 (1:2000, clone N52, Sigma-Aldrich, Munich, Germany, #N0142), highly

cross-adsorbed Alexa 647, 594, and 488 conjugated secondary antibodies

(Invitrogen, Carlsbad, CA).

Drugs

Capsaicin and RTX were purchased from Sigma-Aldrich (Munich, Germany) and

dissolved in DMSO to 10 mM and 100 mM stocks. Prostaglandin D2 was

purchased from Cayman (Ann Arbor, MI). All drugs were prepared as 10 or

100 mM stocks in PBS or DMSO.

Animals

All experiments were performed with male Sprague Dawley rats (200–225 g, 8–10

weeks old) obtained from Harlan (Rossdorf, Germany). All animal experiments

were performed in accordance with the German animal welfare law and approved

by the Landesamt für Gesundheit und Soziales Berlin (Permit Number: ZH120).

The rats were sacrificed between 9–12 a.m. by CO2 intoxication and L1–L6 DRGs

were removed within 30 min per animal.
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DRG neuron cultures

L1–L6 DRGs were de-sheathed, pooled and incubated in NeurobasalA/B27

medium (Invitrogen, Carlsbad, CA) containing collagenase P (Roche, Penzberg,

DE) (0.2 U/ml, 1 h, 37uC, 5% CO2). The DRGs were dissociated by trituration

with fire-polished Pasteur pipettes. Axon stumps and disrupted cells were

removed by BSA gradient centrifugation (15% BSA, 120 g, 8 min). Viable cells

were resuspended in NeurobasalA/B27 medium, plated in poly-L-ornithin

(0.1 mg/ml)/laminin (5 mg/ml)-precoated 96 well imaging plates (Greiner,

Kremsmünster, AU) or onto glass cover slips (12 mm diameter), and incubated

overnight (37uC, 5% CO2). Neuron density was 1500 neurons/cm2.

Frozen DRG sections

Prepared L3–L6 DRGs were fixed with 2% paraformaldehyde for 4h on ice, rinsed

3x for 20 min with PBS at RT, and submerged in 30% sucrose in PBS at 4uC
overnight. The tissues were embedded in Tissue tek (EMS Science Services) and

snap frozen on dry ice. Frozen blocks were cut in 20 mm sections using a Cryostar

Cryostat HM560, mounted on slides, dried for 30 min at RT, and stored at

280uC. Thawed sections were postfixed in 2% paraformaldehyde for 10 min at

4uC, rinsed in PBS for 30 min., and stained as described below. Confocal images

were acquired using a Zeiss LSM 700 and processed using Image J [115].

Depletion of TRPV1(+) DRG neurons

Lumbar L1–L6 DRGs were removed from male Sprague Dawley rats as described

above and incubated in 5 ml MEM containing collagenase P (Roche, Penzberg,

DE) (0.1 U/ml, 1 h, 37uC, 5% CO2). The DRGs were dissociated by trituration

with fire-polished Pasteur pipettes. The cell suspension was divided in up to 5

aliquots, the TRPV1 agonists were added in the respective concentrations in a

final volume of 5 ml per condition, and incubated for 30 min (unless otherwise

stated) at 37uC. Controls were treated with the solvent DMSO up to 0.1%. The

cells were spun down (100 g, 5 min), resuspended in 1 ml Hank’s buffered salt

solution (pH 8.0) containing 0.025% EDTA and 245 U/ml trypsin (Worthington,

Lakewood, NJ), and incubated for 4 min at 37uC in a water bath. Trypsination

was stopped by the addition MgSO4 (400 mM final conc.). The cell suspension was

then loaded onto BSA gradients (15% BSA in Hank’s buffered salt solution) and

centrifuged (120 g, 8 min). The pellet was frozen in liquid nitrogen and stored at

280uC for RNA isolation.

qPCR

RNA isolation was performed with NucleoSpin RNA/Protein kits from Macherey-

Nagel according to the manufactures instructions including on column DNase

treatment. The RNA concentration and quality was measured with spectroscopy

(Nanodrop, Thermo Fisher Scientific) and capillary electrophoresis (Agilent 2100
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Bioanalyzer). Approximately 1 mg total RNA was reverse transcribed using the

Multi-Scribe RT kit (Applied Biosystems, Carlsbad, CA) with random hexamers.

Reactions were performed in triplicate using SYBR Green I master mix (Applied

Biosystems, Carlsbad, CA). Normalization and error propagation were calculated

as described [116]. Relative quantities were normalized to beta-actin. Sequences of

qPCR primer pairs are provided in S8 Table.

Gene expression profiling with Illumina RatRef-12v1 arrays

DRGs isolated from one rat were split into three aliquots during the depletion

procedure (see above) and treated with solvent DMSO (0.1%), capsaicin (10 mM),

or RTX (100 nM) for 30 min. Four replicate experiments were performed on

different days at the same day time resulting in 12 samples. RNA isolation was

performed with NucleoSpin RNA/Protein kits from Macherey-Nagel including on

column DNase treatment. The RNA concentration and quality was measured with

spectroscopy (Nanodrop, Thermo Fisher Scientific) and capillary electrophoresis

(Agilent 2100 Bioanalyzer, 28S:18S rRNA ratio.1.7, RNA integrity number

(RIN).8.2). The samples (500 ng total RNA per sample) were hybridized onto

one Illumina RatRef-12 v1.0 bead chip containing 12 arrays according to the

Illumina’s direct hybridization protocol in our in house Illumina core facility. The

microarray design is available at GEO database (GPL6101). Raw fluorescence

intensities were background corrected and exported from the Illumina Genome

studio software (V210.3). Background corrected data were log2 transformed,

normalized (quantile method), and filtered for expressed genes (Illumina

detection p-value ,0.01 in at least one of the samples) using the R package lumi

[117]. Differentially expressed transcripts were identified with the R package

limma by fitting a linear model to the expression data for each probe using the

least square regression method followed by an empirical Bayes method to rank

genes [118]. P-values were adjusted for multiple testing with Benjamini and

Hochberg’s method. Microarray data are available online at the GEO database

(GSE59727). The used R script and all input tables are provided in S1 Data.

Transcriptome Sequencing (RNA-seq)

DRGs isolated from three rats were split into half and treated with solvent DMSO

(0.1%) or RTX (100 nM) for 30 min. Three replicate experiments were performed

at the same time on different days resulting in 6 samples. RNA isolation was

performed with NucleoSpin RNA/Protein kits (Macherey-Nagel, Dueren,

Germany) including on column DNase treatment. The RNA was quality

controlled with capillary electrophoresis (Agilent 2100 Bioanalyzer, 28S:18S rRNA

ratio.1.7, RNA integrity number (RIN) between 7.1 and 8.3). Ribosomal RNA

was removed from 5 mg total RNA per sample using Ribo-Zero rRNA Removal

Kit (Epicentre Biotechnologies, Madison, WI, USA). Sequencing libraries were

prepared using SOLiD Total RNA-Seq Kit (Life Technologies, Carlsbad, CA, USA)

according to the manufacturer’s instructions. Samples were sequenced as a pool of
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barcoded samples on three lanes of an ABI 5500xl flowchip. The yield was between

73 million and 174 million of 75 bp and 35 bp long reads per sample (664 million

reads in total). SOLiD 5500xl produces XSQ files, containing the reads in a binary

format, which were used as input for Lifescope-v2.5.1-r0 [http://www.

lifetechnologies.com/lifescope]. Lifescope is used for aligning the reads to the

reference genome (rn5). In addition to the reads in the XSQ files, three reference

input files are used: filter reference, genome reference and annotation file. The

filter reference is a fasta file containing ribosomal rna, tRNA and vector sequences

and is used in the first step to exclude reads aligning to these sequences. The

genome reference is used in the second step to align the remaining reads to the

complete reference genome. The aligned reads are then used in the third step in

conjunction with the annotation file [http://hgdownload.cse.ucsc.edu/

goldenPath/rn5/database/refGene.txt.gz, accessed 2012-11-26] to compute the

number of reads that align within exons of the transcriptome. Normalization of

read counts to RPKM values was done by Lifescope. Loess normalization of read

counts by GC content and full quantile normalization of read counts was done

using the R package EDASeq [119]. The function ‘nbinomTest’ of the package

DESeq [120] was used to compute the Benjamini-Hochberg adjusted p values for

difference between the base means. Raw RNA-Seq data are available online at the

ArrayExpress (E-MTAB-2789). The reference transcriptome, the R script for

analysis, and all input tables are provided in S2 Data.

Western blotting

L1–L6 DRGs were pulverized in liquid nitrogen and lysed in 1 ml lysis buffer

(15 mM Tris/HCl (pH 7.5), 8 M urea, 8.7% glycerol, 1% sodium dodecyl sulfate,

143 mM b-mercaptoethanol). Lysates were homogenized (QIAShredder, Qiagen,

Hilden, DE), denatured for 5 min at 95uC, loaded (10 mg), separated by SDS-

PAGE, and transferred to PVDF membranes (Immobilon-P; Millipore, Billerica,

MA). After blocking in Tris buffered saline (TBST) with 2.5% milk powder at 4uC
overnight, membranes were incubated with the primary antibody diluted in TBST

for 3 h at RT. After three washes with TBST (10 min, RT), the detection was

performed with a chemiluminescence detection system (Thermo Fisher, Rockford,

IL).

Immunofluorescence staining

After blocking and permeabilization (2% goat serum, 1% BSA, 0.1% Triton X-

100, 0.05% Tween 20, 1 h, RT) of PFA-fixed sections or cells, the cultures were

incubated with the respective primary antibodies diluted in 1% BSA in PBS at 4uC
overnight. Subsequent to three washes with PBS (10 min, RT) cells were

incubated with secondary Alexa dye-coupled antibodies (1:1000, 1 h, RT). After

three final washes (10 min, RT), wells of 96 well plates were filled with PBS,

sealed, and stored at 4uC until scanning. DRG sections were mounted with

Fluoromount-G (Southern Biotech, Birmingham, AL) onto slides.
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Quantitative microscopy

Stained cultures in 96-well plates were scanned using a Cellomics ArrayScan VTI.

Images of 5126512 pixels were acquired with a 10x objective and analyzed using

the Cellomics software package. Briefly, images of UCHL1 stainings were

background corrected (low pass filtration), converted to binary image masks

(fixed threshold), segmented (geometric method), and neurons were identified by

the object selection parameters: size: 120–4000 mm2, circularity (perimeter2/4p

area): 1–2, length-to-width ratio: 1–2, average intensity: 250–2000, total intensity:

66104256106. The image masks were then used to quantify signals in other

channels. Three respective controls were prepared for each triple staining: (1)

UCHL1 alone, (2) UCHL1 + antibody 1, and (3) UCHL1 + antibody 2. Raw

fluorescence data of the controls were used to calculate the spill-over between

fluorescence channels. The slope of best fit straight lines were determined by linear

regression and used to compensate spill-over as described (Roederer, 2002).

Compensated data were scaled to a mean value of 1 (or 1000) for the unstimulated

cells to adjust for variability between experimental days. One and two-

dimensional probability density plots were generated using R packages [121].

Gating of subpopulations was performed by setting thresholds at local minima of

probability density plots.

Statistical Analysis

Statistical analyses were performed with paired two-tailed t-tests or One-way

ANOVA as indicated in the respective figure legend. P,0.05 was considered as

statistically significant. To determine whether differentially expressed genes are

enriched for pain relevant genes listed in databases, we used the Fisher’s exact test

implemented in R with the assumption that the alternative hypothesis must be

‘greater’ indicating overrepresentation in the dataset. We assumed a total number

of 22777 coding genes in the rat genome.

Supporting Information

S1 Fig. Control plots for each triple staining shown in Fig. 4. Three respective

controls were prepared for each triple staining: (1) UCHL1 alone, (2) UCHL1 +
antibody 1, and (3) UCHL1 + antibody 2. Raw fluorescence data of the controls

were used to calculate the spill-over between fluorescence channels by linear

regression (see materials and methods). The plots show data after compensation

of spill-over. Data points aligned with the x- or y-axis in the middle plots indicate

proper compensation of spill over.

doi:10.1371/journal.pone.0115731.s001 (TIF)

S2 Fig. Control plots for each triple staining shown in Fig. 5. Three respective

controls were prepared for each triple staining: (1) UCHL1 alone, (2) UCHL1 +
antibody 1, and (3) UCHL1 + antibody 2. Raw fluorescence data of the controls

were used to calculate the spill-over between fluorescence channels by linear

The Transcriptome of TRPV1-Positive Neurons

PLOS ONE | DOI:10.1371/journal.pone.0115731 December 31, 2014 27 / 34

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0115731.s001


regression (see materials and methods). The plots show data after compensation

of spill-over. Data points aligned with the x- or y-axis in the middle plots indicate

proper compensation of spill over.

doi:10.1371/journal.pone.0115731.s002 (TIF)

S1 Table. All genes detected in sensory ganglia with a detection p-value ,0.01

using microarrays.

doi:10.1371/journal.pone.0115731.s003 (XLSX)

S2 Table. Genes identified with differential expression using microarrays after

treatment with capsaicin (402 genes) or RTX (1015 genes), respectively

(Benjamini and Hochberg adjusted p-value ,0.05).

doi:10.1371/journal.pone.0115731.s004 (XLSX)

S3 Table. All genes detected with RNA-Seq in sensory ganglia (.0.1 RPKM,

13095 genes).

doi:10.1371/journal.pone.0115731.s005 (XLSX)

S4 Table. Genes identified with differential expression using RNA-Seq after

removal of TRPV1(+) neurons with RTX treatment (Benjamini and Hochberg

adjusted p-value ,0.05).

doi:10.1371/journal.pone.0115731.s006 (XLSX)

S5 Table. Merged data of differentially expressed genes detected by

microarrays and sequencing (adjusted p-values ,0.05 and fold-changes .1.5

using one of the two approaches).

doi:10.1371/journal.pone.0115731.s007 (XLSX)

S6 Table. Overlap of genes detected by with higher expression levels within the

TRPV1(+) subgroup and databases such as the Pain Networks database [35]

and Pain Genes database [36] as well as with a genome-wide Drosophila screen

for genes involved in heat nociception [37].

doi:10.1371/journal.pone.0115731.s008 (XLSX)

S7 Table. Overrepresented Gene Ontology (GO) terms, Kegg pathways, and

Interpro protein domains with the TRPV1-associated genes detected using

microarrays and/or RNA-Seq. The analysis was performed with DAVID [38].

doi:10.1371/journal.pone.0115731.s009 (XLSX)

S8 Table. Sequences of qPCR primer pairs.

doi:10.1371/journal.pone.0115731.s010 (XLSX)

S1 Data. Supplemental information for the microarray analysis including the

used R script and all input tables.

doi:10.1371/journal.pone.0115731.s011 (ZIP)

S2 Data. Supplemental information for RNA-Seq including the used R script

and reference transcriptome.

doi:10.1371/journal.pone.0115731.s012 (ZIP)
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