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Microglia are the tissue-resident macrophages of the central nervous system (CNS).
Recent studies based on bulk and single-cell RNA sequencing in mice indicate high
relevance of microglia with respect to risk genes and neuro-inflammation in Alzheimer’s
disease (AD). Here, we investigated microglia transcriptomes at bulk and single-cell
levels in non-demented elderly and AD donors using acute human postmortem cortical
brain samples. We identified seven human microglial subpopulations with heterogeneity
in gene expression. Notably, gene expression profiles and subcluster composition of
microglia did not differ between AD donors and non-demented elderly in bulk RNA
sequencing nor in single-cell sequencing.
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INTRODUCTION

Alzheimer’s disease (AD), one of the most prevalent age-related neurodegenerative disorders,
is characterized by extracellular deposition of β-amyloid protein (Aβ) and intraneuronal
neurofibrillary tangles in the neocortex (Hyman and Trojanowski, 1997).

Functional changes occurring inmicroglia cells have been proposed as an important factor in AD
pathology (Zhang et al., 2013; Mhatre et al., 2015). AD single nucleotide polymorphism heritability
was recently found to be highly enriched in microglia enhancers (Nott et al., 2019). Multiple genes
associated with increased susceptibility for sporadic AD are preferentially expressed in microglia,
including APOE, CR1, CD33, INPP5D, PLCG2, MS4A6A, and TREM2 (Ulrich et al., 2014; Sarlus
andHeneka, 2017). In ADmousemodels, microglia have been implicated in Aβ seeding, Aβ plaques
are surrounded by activated microglia, microglia protrusions physically interact with insoluble Aβ

aggregates, and microglia around Aβ plaques undergo transcriptional changes (Rogers and Lue,
2001; Kamphuis et al., 2016; Keren-Shaul et al., 2017; Krasemann et al., 2017; Venegas et al., 2017;
Yin et al., 2017). Sustained depletion of microglia in 5xFAD mice prevents Aβ plaque formation
in parenchymal tissue and rather shows Aβ accumulation in the brain vasculature (Spangenberg
et al., 2019). The functional changes occurring in microglia during AD pathology seem to be diverse
(Friedman et al., 2018), and the exact role that microglia play in AD pathology is still unknown.
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Many efforts have been made in AD mouse models
to identify subpopulations of microglia that are associated
with AD pathology. A subpopulation of microglia associated
with neurodegeneration was discovered by Krasemann et al.
(2017) that was associated with Aβ plaques and triggered by
the phagocytosis of apoptotic neurons. This transcriptional
phenotype was characterized by increased Spp1, Itgax, Axl,
Lilrb4, Clec7a, Ccl2, Csf1, and Apoe and decreased P2ry12,
Tmem119, Olfml3, Csf1r, Rhob, Cx3cr1, Tgfb1, Mef2a, Mafb,
and Sall1 expression levels (Krasemann et al., 2017). At the
same time, a highly similar gene expression change, associated
with microglia surrounding Aβ plaques was reported by Keren-
Shaul et al. (2017), termed disease-associated microglia (DAMs).
Using single-cell RNA-sequencing (scRNAseq) these DAMs
were subdivided into two sequential stages, aTrem2-independent
stage, marked by increased expression of Tyrobp, Apoe, and
B2m and decreased expression of homeostatic genes, followed
by a Trem2-dependent activation stage marked by induction of
genes involved in lipid metabolism and phagocytosis (Trem2,
Spp1, Itgax, Axl, Lilrb4, Clec7a, Cts7, Ctsl, Lpl, Cd9, Csf1, Ccl6,
Cd68, and more). Sala Frigerio et al. (2019) described a microglia
subpopulation in AppNL-G-F mice that appears in response
to Aβ deposition and shares gene expression changes with
DAMs. They identified mutually exclusive subtypes of activated
response microglia overlapping with DAMs and, in addition, an
independent subtype of interferon response microglia.

Studies investigating human microglia subtypes are limited,
probably due to the technical and logistical difficulties of
isolating pure, viable microglia from acute human brain tissue.
Olah et al. (2018) investigated acutely isolated single human
microglia from donors with a large variety of neuropathological
backgrounds. They observed 23 clusters of microglia, where
5 out of 23 clusters were enriched for DAM signature
genes. However, the neuropathological background of donors
was too diverse to associate the observed changes with AD.
Mathys et al. (2019) used single-nucleus sequencing and
subclustered ∼2,400 microglia of 48 donors. The study was
focused on cell-type specific responses to AD development, and
profiling of ∼50 microglia per donor was insufficient to fully
define microglia diversity in AD.

In this study, we aimed to identify transcriptomic changes in
human microglia at the end stage of AD by applying both bulk
and scRNAseq of microglia acutely isolated from postmortem
central nervous system (CNS) tissue. We isolated and sequenced
a pure population of microglia after CD11B+CD45+-based
FACS sorting and investigated effects of sex, brain region,
and diagnosis.

MATERIALS AND METHODS

Human Brain Specimens
Autopsy brain specimens from the superior parietal lobe (LPS)
and the superior frontal gyrus (GFS) were obtained from
25 donors of the Netherlands Brain Bank (NBB)1 and two donors
of the NeuroBiobank of the Institute Born-Bunge (NBB-IBB,

1https://www.brainbank.nl/

Wilrijk, Antwerp, Belgium, ID: BB190113). All donors have
given informed consent for autopsy and use of their brain
tissue for research purposes. The performed procedures and
research protocols were approved by the corresponding ethical
committees of the NBB. On average, the autopsies were
performed within 6 h after death. Detailed information about
brain specimens used for bulk and scRNAseq can be found in
Supplementary Tables S1, S2, respectively.

Microglia Isolation and Sorting
Microglia were isolated as described previously (Galatro et al.,
2017a,b) with minor modifications. All procedures were
performed on ice and all centrifugation steps were performed
at 4◦C. The tissue was homogenized by mechanical dissociation
using a glass Dounce homogenizer in Medium A (HBSS (Gibco,
14170-088) containing 15 mM HEPES (Lonza, BE17-737E) and
0.6% glucose (Sigma–Aldrich, G8769) and was filtered through a
300- and 106-µm sieve. Homogenate was centrifuged at 220× g
for 10 min, and myelin and other lipids were removed through
two Percoll gradient centrifugation steps. A 100% Percoll
solution was prepared consisting of 90% Percoll (GE Healthcare,
UK) and 10% 10× HBSS (Gibco, 14180-046), from which the
dilutions were prepared. First, cells were resuspended in 24.5%
(vol/vol) Percoll in Medium A. A layer of PBS was added, and
the gradient was centrifuged at 950× g for 20 min with reduced
acceleration speed and brakes off. After the supernatant was
removed, cells were resuspended in 60% (vol/vol) Percoll in 1×
HBSS (Gibco, 14170-088), and a layer of 30% (vol/vol) Percoll
in 1× HBSS (Gibco,) and PBS, respectively, were added and
centrifuged at 800× g for 25 min (acc: 4, brake: 0). The cells in
between the 30%/60% Percoll layer were collected and washed in
1×HBSS (Gibco, 14175-053) and pelleted at 600× g for 10 min.

Cells were incubated with antihuman Fc receptor
(0.005 µg/ml eBioscience, 14-9161-73) for 10 min in Medium A
without phenol red (HBSS, Gibco, 14170-053) containing 15mM
HEPES (Lonza, BE17-737E), 0.6% glucose (Sigma–Adrich,
St. Louis, MO, USA, G8769), 1 mM EDTA (Invitrogen,
15575-038), followed by incubation with FITC antihuman
CD45 (5 µg/ml, BioLegend, 304006) and PE antihuman
CD11B (3.75 µg/ml, BioLegend, 301306). Prior to sorting, DAPI
(0.15µg/ml, Biolegend, 422801) and eBioscience DRAQ5 (2µM,
Thermo Fisher Scientific, Waltham, MA, USA, 63351) were
added. Single, viable microglia defined as DAPI−, DRAQ5+,
CD45+, and CD11B+ were FACS sorted on a Beckman Coulter
MoFlo XDP or Astrios. Microglial subpopulations might be
reflected by a slight difference in CD45 and CD11B expression.
Since only scRNAseq allows for the disentanglement of
microglial subpopulations, we applied a broader CD45+CD11B+
gate to collect microglia for scRNAseq and a narrower
CD45+CD11B+ gate for bulk RNA sequencing (bulk RNAseq).

For bulk microglia RNAseq, microglia were sorted into
low-retention Eppendorf tubes (Sigma–Adrich, St. Louis, MO,
USA, Z666548-250EA) containing 200 µl RNA later (Qiagen,
76104). Following centrifugation at 4◦C and 5,000× g for
10 min, supernatant was carefully removed, and microglia were
resuspended in 350 µl RLTplus lysis buffer (Qiagen, 1053393)
and stored at −80◦C. For barcoded 3’ single-cell sequencing,
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15,792 single microglia were collected in 384-well PCR plates
containing cell lysis buffer [0.2% Triton (Sigma–Adrich, St.
Louis, MO, USA, T9284), 4 U RNAse inhibitor (Takara, 2313A),
10 mM dNTPs (Thermo Fisher Scientific, Waltham, MA, USA,
#R0193), and 10 µM barcoded oligo-dT primer] and were
stored for maximally 1 month at−80◦C until further processing.
For 10× Genomics Chromium single-cell RNA sequencing,
approximately 25,000 single microglia were sorted from each
sample (2018-135, 2019-010) into low-retention Eppendorf tubes
(Sigma, Z666548-250EA) containing 5 µl Medium A and were
immediately processed with the Single Cell 3’ Reagent Kit v2
(10× Genomics). FACS data was analyzed with FlowJo (Becton,
Dickinson and Company).

Bulk Microglia RNA Sequencing Library
Preparation
Total RNA was extracted from the bulk sorted microglia samples
using the RNeasy Plus Micro kit (Qiagen, 74034) according to
the manufacturer’s protocol. RNA quality and quantity were
determined with the Experion RNA HighSens Analysis Kit (Bio-
Rad, #7007105). All 25 RNA samples, with RIN values varying
between 5.1 and 9.9, were enriched for poly(A) + messenger
RNA using NEXTflex Poly(A) Beads (BIOO Scientific, #NOVA-
512980) according to the manufacturer’s protocol, and 14 µl
of this mRNA-enriched poly(A)-tailed RNA was used as the
input for the NEXTflex Rapid Directional qRNA-Seq kit
(BIOO Scientific, #NOVA-5130-04). Library preparation was
performed according to themanufacturer’s protocol. Quality and
concentration of libraries from individual samples were assessed
using the High Sensitivity dsDNA kit (Agilent, 067-4626) on a
2100 Bioanalyzer (Agilent) and a Qubit 2.0 Fluorometer (Life
Technologies). Subsequently, individual libraries were combined
into two sequencing pools of 13 samples each with equal molar
input, and 75 bp paired-end sequencing was performed on an
Illumina NextSeq 500 system. PhiX was added at 5% to both
pools as an internal control before sequencing.

Single-Cell RNA Sequencing Library
Preparation
The scRNAseq library preparation method that was used here is
based on the Smart-seq2 protocol by Picelli et al. (2014) with the
modification of obtaining 3’ instead of full-length RNA/cDNA
libraries as in Uniken Venema et al. (2019). After cell lysis
and barcoded poly-dT primer annealing (73◦C, 3 min), RNA
was reversed transcribed (RT) based on the template switching
oligo mechanism using 0.1 µM biotinylated barcoded template
switching oligo (BC-TSO, 5’-AAGCAGTGGTATCAACGC
AGAGTACATrGrG+G-biotin-3’), 25 U SmartScribe reverse
transcriptase, first-strand buffer, and 2 mM DTT (Takara,
639538), 1 U RNAse inhibitor (Takara, 2313A), and 1 M betaine
(Sigma–Aldrich, B0300-5VL) with the following PCR program:
(1) 42◦C, 90 min; (2) 11 cycles of 50◦C, 2 min, 42◦C, 2 min;
(3) 70◦C, 15 min. To account for amplification bias and to allow
multiplexing of cells, the barcoded poly-dT primer contains a
cell-specific barcode and a unique molecular identifier (UMI)
and a known sequence that is used as a primer-binding site
during the first amplification step. This same primer-binding

site is linked to the BC-TSO, enabling the use of one primer
pair (custom primer) during the first amplification. After the
RT reaction, primer-dimers and small fragments were removed
by 0.5 U Exonuclease (GE Healthcare, E70073Z) treatment for
1 h at 42◦C. cDNA libraries were amplified with KAPA Hifi
HotStart ReadyMix (KAPA Biosystems, KK2602) and custom
PCR primer (5′-AAGCAGTGGTATCAACGCAGAGT-3′) with
the following PCR program: 98◦C, 3 min, 25 cycles of 98◦C,
20 s, 67◦C, 15 s, 72◦C, 6 min; 72◦C, 5 min. cDNA libraries of
84 cells were multiplexed, and short fragments were eliminated
by Agencourt Ampure XP beads (Beckman Coulter, A63880,
ratio of 0.8:1 beads to library volume). The quality of multiplexed
cDNA libraries was examined with a 2100 Bioanalyzer (Agilent)
according to the manufacturer’s protocol. cDNA libraries
with an average size of 1.5–2 kb were tagmented and indexed
during a second PCR amplification step with the Illumina
Nextera XT DNA preparation kit (Illumina, FC-131-1024).
Tagmentation was performed according to the manufacturer’s
protocol with an input of 500 pg cDNA and amplicon tagment
mix for 5 min at 55◦C. The tagmentation reaction was stopped
using neutralize tagment buffer. Next, tagmented cDNA was
amplified with Nextera PCR master mix, the Nextera indices
(12 pool-specific indices, Illumina, FC-131-2001) and 10 µM
P5-TSO hybrid primer (5′-AATGATACGGCGACCACC
GAGATCTACACGCCTGTCCGCGGAAGCAGTGGTATC
AACGCAGAGT*A*C-3′) with the following PCR program:
(1) 72◦C, 3 min; (2) 95◦C, 30 s; (3) 10 cycles of 95◦C, 10 s,
55◦C, 30 s, 72◦C, 30 s; and (4) 72◦C, 5 min. Tagmented cDNA
libraries were purified by a 0.6:1 ratio of Agencourt Ampure
XP beads (Beckman Coulter, A63880) to library volume. The
quality and concentration of tagmented cDNA libraries were
determined with a 2100 Bioanalyzer (Agilent). cDNA pools
with an average size of 300–600 bp were multiplexed using a
balanced design with pools from 10 different donors (in total,
840 cells) per sequencing run. In other words, cells from each
donor were distributed over several sequencing runs to avoid
potential batch effects. To eliminate short fragments, the final
superpool was gel-purified from 2% agarose gel (Invitrogen,
10135444) with the Zymoclean Gel DNA Recovery kit (Zymo
Research, D4007). The concentration was determined using
a 2100 Bioanalyzer (Agilent) and Qubit 3.0 (ThermoFisher
Scientific) according to the manufacturer’s protocol. Pools
were loaded on an Ilumina NextSeq at a final concentration of
2 pM with a 7% spike in PhiX DNA; 0.3 µM BC read 1 primer
(5′-GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAG
TAC-3′) was used for the sequencing run. The libraries were
sequenced on an Illumina NextSeq 500 system with an average
sequencing depth of 26 million reads per pool. The exact
number of cell barcodes per pool varied, but approximately
∼350,000 raw reads per cell were sequenced. After read
alignment, exonic read count, and deduplication, this resulted in
an average of 19,050 UMIs per cell.

10× Genomics Chromium Single-Cell 3’
Library Construction
The scRNAseq barcoded libraries were constructed according
to the instructions of the Single-Cell 3’ Reagent Kits v2 (10×
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Genomics). Briefly, cells were loaded into a slot of a Chromium
chip and GEMs were incubated in a thermal cycler to generate
barcoded cDNA. After amplification, the cDNA was fragmented
and processed for sequencing by ligating adapters and sample
indices. The libraries were sequenced on an Illumina NextSeq
500 system with an average sequencing depth of ∼42,500 raw
reads per cell; this resulted in an average of 629 UMIs per cell.

Immunohistochemistry
Immunohistochemistry was performed as described previously
(Yin et al., 2017). Briefly, 16 µm sections of PFA-fixed
human brain tissue were vacuum-dried, post-fixated for 10 min
with 4% PFA, and washed with PBS. Heat-induced antigen
retrieval was performed in sodium citrate solution (pH 6.0) for
10 min in a microwave. Endogenous peroxidase was blocked
by incubating the slides in 0.3% H2O2 for 30 min. After
three washing steps with PBS, primary antibodies against IBA1
(WAKO, 019-19741, 1:1,000), Phospho-TAU (Thermo Fisher
Scientific, Waltham, MA, USA, MN1020, clone AT8, 1:750),
and Beta-Amyloid (Dako, M0872, 1:100) were diluted in Bright
Diluent (ImmunoLogic, BD09-500) to prevent background
staining and incubated overnight at 4◦C. After three washing
steps in PBS, secondary biotinylated horse antimouse IgG
antibody (0.000125 mg/ml Vector BA-2001) was incubated for
1 h at room temperature. The tissue sections were washed
three times in PBS. The signal was amplified with avidin-
biotin complexes (Vectastain Elite ABC-HRP, Vector, PK-6100)
for 30 min at RT and visualized with 3,3′-diaminobenzidine
(Sigma–Adrich, St. Louis, MO, USA, D-5637). Additionally,
after the phospho-TAU staining, we performed a crystal violet
counterstaining. The slides were dehydrated with an ethanol
series (50%, 70%, 80%, 90%, 2× 96%, and 3× 100% ethanol) and
air-dried for 30 min prior to mounting a coverslip with DePeX
(Serva, 18243). Imaging was performed with a Hamamatsu
Nanozoomer at 40x magnification.

Preprocessing of RNA-Sequencing Data
For bulk samples, NEXTflex barcodes (nine base pairs) were
stripped from the sequence. Sequencing reads were then
aligned with HISAT2 (version 2.1.0; Kim et al., 2015) to the
GRCh38.92 reference genome with Ensembl annotation. Further
processing with samtools (version 1.9) and Picard Tools (version
1.140) included sorting, read group assignment, verification of
mate pair information, and marking of duplicates. Reads were
further quantified using featureCounts (Subread version 1.6.2;
Liao et al., 2014) and based on NEXTflex barcodes deduplicated
with a bash script developed by BIOO Scientific (version 2,
release date 11/1/14) to eliminate PCR duplicates.

Reads from bc-Smart-seq2 single cells were demultiplexed
with UMI-tools (version 0.5.3; Smith et al., 2017). A cell barcode
whitelist was used to filter barcodes for downstream processing.
Cell barcodes and the UMI from each read were extracted to the
read name of the sequence using the UM-tools extract function.
Reads were single-end aligned with HISAT2 (version 2.1.0) to the
GRCh38.91 reference genome with Ensembl annotation using
default parameters, followed by sorting and indexing of BAM
files. Primary counts were quantified with featureCounts (version

1.6.0) using the flag -primary. PCR duplicates were removed, and
unique molecules were counted per gene and per cell using the
UMI-tools function count (Smith et al., 2017). Nine pools in
which less than 10% of total sequenced reads were assigned to
features were excluded.

Reads from 10× Genomics Chromium single cells
were demultiplexed and aligned with Cell Ranger to the
GRCh38 genome with Ensembl transcriptome annotation using
default parameters. Barcode filtering was performed with the
R package DropletUtils using a threshold of >100 UMIs per
barcode (Griffiths et al., 2018).

Downstream Analysis
Samples were sequenced with a median of 32 million total
reads, 25 million uniquely mapped reads, and 20 million
exonic reads. The sequencing depth fulfilled the ENCODE
Consortium guidelines for RNA sequencing experiments with
the aim to investigate the similarity between transcriptional
profiles of polyA+ samples (The ENCODE Consortium, 2016).
A data-adaptive flag method (George and Chang, 2014) was
applied to remove lowly expressed genes. Only genes with an
expression level higher than three counts per million (CPM) in
at least two samples were included in the analysis. After both
gene-filtering steps, the average library size was 3.8 M counts
(standard deviation ±2.2 M) for downstream analysis. Counts
per million (CPM) were calculated as (counts gene i/sample
library size) × 106. For plotting gene expression in boxplots
and heat maps log2(CPM + 1) was used. For Figure 1B, cell
type markers from three independent data sets (Lake et al.,
2016; Galatro et al., 2017a; Zhong et al., 2018) were combined,
and the top 25 most abundant genes were plotted. Principal
component analysis was computed on rlog transformed counts
of the top 500 most variable genes using the prcomp function.
We applied upper quartile normalization to adjust for library
size with calcNormFactors function of edgeR (version 3.28.1;
Robinson et al., 2010). For the designmatrix of the within-subject
comparison of the brain region, we used the factors ‘‘Brain
Region’’ and ‘‘Donor.’’ For the between-subject comparison
between the sexes, we included ‘‘Sex’’ while controlling for
‘‘Age.’’ For the between-subject comparison of donor conditions,
we used the factor ‘‘Donor Group’’ (CTR, CTR+, AD) while
controlling for variables ‘‘Age’’ and ‘‘Sex.’’ The brain regions
(LPS and GFS) were analyzed separately for between-subject
comparisons. Differences between groups were tested with
likelihood ratio tests as implemented in edgeR, resulting in FDR
values. For a subset of significantly altered genes, we observed
a large absolute increase in predictive log fold changes (logFC)
computed by edgeR compared to regular log fold changes
computed by subtracting average log2CPMs between groups.
We opted to report the most conservative of the two, in this
case the regular logFC. Thresholds were set at FDR<0.05 and
abs(logFC)>1 to define differentially expressed genes.

For bc-Smart-seq2 single cells, approximately 25% of the cells
were filtered out during preprocessing. To remove empty cells
while respecting variation across donors, we set a threshold
for each donor individually, removing cells with library sizes
exceeding median of log(total counts) ±3 median absolute
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deviation (MAD). In addition, cells with more than 3,000 unique
genes and were considered doublets (genes per cell median 520;
MAD± 276) and were excluded. Cells with>10%mitochondrial
transcripts were excluded. Genes not detected in at least three
cells were removed. Downstream analysis started with 14 donors
and 9,764 cells for clustering analysis. After filtering, we detected
a median of 13,441 UMIs and median 513 unique genes per
cell. We clustered a median of 714 cells per donor for bc-
Smart-seq2 data. Raw counts were normalized by total expression
per cell, scaled by 10,000, and log-transformed with the CRAN
package Seurat (version 3.1.5; Butler et al., 2018). We used
the mean variability method to select highly variable genes
(HVGs). Briefly, this method identifies variable genes while
controlling for the strong relation between gene variability and
gene average expression. We allowed lowly expressed genes
in the highly variable gene list, since some disease-associated
genes (e.g., TREM2, TYROBP, CTSD) are biologically relevant
but also lowly expressed. These extra ∼600 lowly expressed
HVGs did not change clustering results and were included in
the final clustering analysis. The number of detected genes,
ribosomal, and mitochondrial content per cell were regressed
out as they were considered unwanted sources of variation.
In addition, smaller technical variations due to sequencing
superpool or i7 sample index were regressed out. We used the
first 15 principal components for PCA-Louvain clustering as
implemented by Seurat (version 3.1.4). Cluster resolution was set
at 0.5 since seven clusters was the most stable cluster number
when considering resolutions from 0.1 to 2.0. Resolutions above
0.5 were investigated and did not give AD-associated subclusters.
Cluster-enriched genes were identified using logistic regression
as implemented in Seurat’s FindAllMarkers function with default
thresholds and only.pos = TRUE. Gene ontology enrichment
(GO) for cluster-enriched genes was computed against the
human genome as background (‘‘org.Hs.eg.db’’ version 3.10.0)
using ClusterProfiler (version 3.14.3; Yu et al., 2012) with p-value
cutoff of 0.01 and q-value cutoff of 0.05.

10× Genomics Chromium single cells were analyzed for each
donor individually. Low-quality cells with >10% mitochondrial
gene (MT) content were removed in donor 2018-135. Donor
2019-010 had very high cell quality, so a >5% MT threshold was
applied. Duplicate cells were filtered by setting an upper UMI
threshold that was based on the multiplet rate as mentioned in
the 10× Genomics user guide. Genes not detected in at least
three cells were removed. We analyzed 3079 single cells for MCI
donor 2019-010 and 2,881 single cells for AD donor 2018-135.
We regressed out total UMI count, ribosomal, andmitochondrial
content per cell. The first 20 principal components were used for
PCA-Louvain clustering. Each donor was analyzed individually.
To gain sufficient detail to detect small subpopulations within
one donor, the cluster resolution was set at 0.6 for each donor.
Cluster-enriched genes were identified using logistic regression
implemented in Seurat’s FindAllMarkers function with default
thresholds and only.pos = TRUE.

Gene Set Analysis
Raw counts were normalized by total expression per cell, scaled
by 10,000, and log transformed. The DAM gene set used here

consists of the top 500 most significantly increased mouse
genes between microglia3 and microglia1 from Keren-Shaul
et al. (2017) subsetting to genes expressed and detectable in
human single microglia. The neurodegeneration-related gene set
consists of the 126 human genes from Friedman et al. (2018),
reported in Data S4 as myeloid activation ‘‘neurodegeneration-
related.’’ For the single-nucleus gene set, 77 cluster marker
genes from microglia1 cluster reported by Mathys et al. (2019)
were used. Gene set score was defined as average expression
of genes in a set per cell. Next, the mean gene set score in
any cluster was calculated and compared to the mean of all
other clusters. To compare gene set cluster means we used
linear regression with gene set score as dependent variable and
independent variables cell library size (z-transformed), number
of detected genes per cell (z-transformed), donor, and the cluster
number as categorical variable. P-values were adjusted with a
Bonferroni correction. Visualizations were made with the R
package ‘‘ggplot2.’’

RESULTS

Isolation of Pure Microglia From Acute
Postmortem Brain Tissue
To investigate transcriptomic changes in microglia during
AD, bulk and single-cell RNA sequencing (scRNAseq) were
performed. Postmortem tissue samples of the superior parietal
lobe (LPS) and superior frontal gyrus (GFS) were obtained
from 27 donors (Supplementary Tables S1, S2). The samples
were classified into three experimental groups based on a
clinical diagnostic report provided by the Netherlands Brain
Bank/NeuroBiobank Born-Bunge and immunohistochemical
analysis of Aβ and hyperphosphorylated tau (PHF-tau): CTR (no
dementia, absence of Aβ plaques and PHF-tau, n = 6), CTR with
plaques (CTR+, no dementia, presence of Aβ plaques and/or
PHF-tau, n = 9), and AD (dementia, AD diagnosis, presence
of Aβ plaques and/or PHF-tau, n = 11). One donor diagnosed
with mild cognitive impairment (MCI) and presence of Aβ and
PHF-tau plaques was included as well. Representative images of
immunohistochemical Aβ and PHF-tau stainings of donor CNS
tissues are shown in Supplementary Figure S1. The stratification
of CTR and CTR+ donors ensured that the CTR group was
free of undiagnosed AD donors. Microglia were isolated from
mechanically dissociated tissue using fluorescence-activated cell
sorting (FACS) of single, viable CD11B and CD45 positive
cells. Twenty-five microglia samples (13 LPS and 12 GFS) from
17 donors were sequenced as bulk samples, and 14 LPS samples
from 14 donors were single-cell sequenced (bc-Smart-seq2 and
10× Genomics; Figure 1A). Four donors (1 CTR, 3 CTR+)
were included in both single-cell and bulk cohorts. A pure
microglia population was obtained based on the expression of
known microglia marker genes and the absence of expression
of genes associated with other CNS cell types (Figure 1B). Cell
type–specific genes were selected based on previously published
gene expression profiles of adult human microglia (Galatro et al.,
2017a), early human prefrontal cortex cell types (Zhong et al.,
2018), and human CNS nuclei (Lake et al., 2016).
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FIGURE 1 | Microglia gene expression profiling of four groups of donors from acute postmortem human brain tissue. (A) Tissue samples from GFS and LPS were
classified into four experimental groups (CTR, CTR+, AD, MCI) based on Aβ and PHF-tau immunohistological stainings and the clinical report of the donor (scale
bar = 50 µm). Microglia were mechanically isolated and collected by CD11B+CD45+ -based FACS sorting. Sorted microglia were used for bulk or single-cell
sequencing (barcoded Smartseq2 and 10× Genomics sequencing techniques). (B) Heat map depicting log2 CPM expression of cell type-specific markers in
bulk-sorted microglia, as previously published in different data sets (Lake et al., 2016; Galatro et al., 2017a; Zhong et al., 2018). Abbreviations: AD, clinically
diagnosed Alzheimer’s Disease; AST, astrocytes; Aβ, amyloid beta; CPM, counts per million; CTR, Control; CTR+, Control with Aβ plaques and/or
hyperphosphorylated tau; END, endothelial cells; EX_NEU, excitatory neurons; GFS, superior frontal gyrus; GRA, granulocytes; IN_NEU, inhibitory neurons; LPS,
superior parietal lobe; MCI, mild cognitive impairment; MIC, microglia; NPC, Neural Progenitor Cells; OLI, oligodendrocytes; OPC, Oligodendrocyte Precursor Cells;
PER, pericytes; PHF-tau, hyperphosphorylated tau; scRNAseq, single-cell RNA sequencing.

No Differences in Bulk RNA Sequencing
Profiles of Microglia Between CTR, CTR
With Plaques (CTR+), and AD Donors
To investigate general transcriptional characteristics of microglia
in AD, we bulk sorted and transcriptionally profiled microglia
from CTR (n = 3), CTR+ (n = 7) and AD (n = 7) samples. The
CTR, CTR+, and AD samples had comparable sequencing depth
(Supplementary Figures S2A–C) and fulfilled the recommended
sequencing depth of ENCODE Consortium guidelines. In
addition, median RNA integrity numbers were ∼8–9, indicating
high RNA quality (Supplementary Figure S2D). Thus, bulk gene
expression profiles of microglia were likely not influenced by
quality metrics, such as sequencing depth and RIN value.

Principal component analysis (PCA) revealed no clear
segregation between donor groups (Figure 2A). Variation in
the first principal component could potentially be attributed
to individual gene expression differences between donors. The
second principal component showed segregation of microglia
samples on sex and age but not on brain region.

To further examine the effect of sex, male and female
microglia samples from GFS (female n = 5, male n = 7)
and LPS (female n = 6, male n = 7) were compared while
accounting for the effect of age. Besides the expected expression
differences of genes located on sex chromosomes, two genes in
GFS and seven genes in LPS, which were localized on autosomal
chromosomes, were differentially expressed in microglia from

male compared to female donors. None of the differentially
expressed genes located on autosomal chromosomes overlapped
between the GFS and LPS (Supplementary Table S3). This
suggests that, besides the expression of genes located on sex
chromosomes, microglia gene expression profiles of males and
females are similar.

Gene expression differences between microglia from frontal
and parietal brain regions were assessed for eight donors, and
a within-subject comparison was performed. Expression of four
genes (CST7, HBEGF, JAML, TREM1) was increased in LPS
compared to GFS, and one long noncoding RNA (AC011451.1)
was decreased in LPS compared to GFS (Supplementary
Figure S3, Supplementary Table S4). This indicates that the
bulk gene expression profiles of microglia isolated from frontal
(GFS) and parietal (LPS) brain regions are very similar in terms
of gene expression.

To assess the effect of AD, we compared microglia from the
AD group to the CTR/CTR+ group. The effect of age and sex
in the AD-CTR/CTR+ comparison was accounted for, because
subtle effects were visible in the PCA. LPS- and GFS-derived
microglia were analyzed separately.

Microglia from the AD group were compared to the CTR
group. In GFS microglia, the expression level of one gene was
significantly increased (CTR n = 2, AD n = 6), but this was
one finding using a small reference group (CTR n = 2). In
LPS, no significant gene expression changes were detected (CTR
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FIGURE 2 | Transcriptomic analysis of microglia populations isolated from CTR, CTR+, and AD donors. (A) Principal component analysis (PCA) of RNA-sequencing
data from acutely isolated microglia illustrating the effect of donor (each sample is indicated with a donor label), donor groups, sex, brain region, and age. (B)
Differentially expressed genes between AD and CTR+ donors (likelihood ratio test, SIGLEC1 ***FDR = 0.002, CXCL10 *FDR = 0.02 and CXCR2 ∗FDR = 0.02). (C)
Selected examples of expression levels (log2 CPM) of disease-associated microglia genes in bulk microglia samples. (D) Heat map depicting expression of most
abundant disease-associated microglia genes in bulk microglia samples from three donor groups in row z scores of log2 CPM values. Donors are ordered by age
(young to old) within the donor group. Abbreviations: AD, Alzheimer’s Disease; CPM, counts per million; CTR, Control; CTR+, Control with Aβ plaques and/or
hyperphosphorylated tau; F, female; M, male; GFS, superior frontal gyrus; LPS, superior parietal lobe.

n = 3, AD n = 4; Supplementary Table S5). Therefore, no
gene expression differences were observed between the CTR and
AD group.

Next, microglia from the AD group were compared to the
CTR+ group. In GFS (CTR+ n = 4, AD n = 6), the expression
level of four genes was increased, and 13 genes were decreased in
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AD. For example, expression of the phagocytic marker SIGLEC1
(Bogie et al., 2018) was decreased in AD compared to CTR+
microglia (Figure 2B, Supplementary Table S5). In LPS (CTR+
n = 6, AD n = 4), five genes were less expressed in AD
compared to CTR+ microglia, including CXCL10 (Figure 2B,
Supplementary Table S5). CXCL10 has been implicated in AD
studies with contrasting results. CXCL10 protein levels were
reported to be increased in AD donors in prefrontal cortical
tissue (Bradburn et al., 2018). However, CXCL10 protein levels
were increased in MCI donors but not in severe AD donors
in the cerebral spinal fluid (Galimberti et al., 2006). Expression
of 20 genes was increased in the LPS of AD compared to
CTR+ microglia, including chemokine receptors CXCR1 and
-2 (Figure 2B, Supplementary Table S5). Several studies claim
that CXCR2 could augment AD pathology in mouse models and
that deficiency in CXCR2 decreases amyloid-beta deposition (Xia
and Hyman, 2002; Bakshi et al., 2011; Veenstra and Ransohoff,
2012; Ryu et al., 2015). All gene expression differences detected
between AD and CTR+ microglia were restricted to either the
GFS or the LPS brain region (Supplementary Table S5).

In 5xFADmice, a subset of microglia is reported that emerges
with increasing amyloid pathology. These disease-associated
microglia (DAMs) progressively express a specific set of genes,
associated with lipid metabolism and phagocytosis (Keren-
Shaul et al., 2017). Expression levels of the most significantly
increased genes in the mouse DAM cluster, including APOE,
TREM2, ITGAX, were investigated in our bulk human microglia
data set and did not differ between control- and AD-derived
human microglia in both LPS and GFS regions (Figures 2C,D,
Supplementary Table S5).

To summarize, although some gene expression changes
were detected in CTR+ compared to AD bulk microglia,
microglia transcriptomes from AD and CTR donors did not
significantly differ.

Single-Cell Gene Expression Profiling
Identifies Seven Subsets of Microglia but
No AD-Associated Subpopulation
AD-associated gene expression changes might occur in only a
small subpopulation of microglia that are in closer proximity
to Aβ plaques. In bulk RNAseq, gene expression changes in
such a microglial subpopulation might remain undetected as
bulk RNAseq provides the average gene expression profile
of all microglia in a sample. To address this possibility, we
employed scRNAseq to assess AD-associated gene expression
changes in individual microglia. Microglia derived from the
LPS region were analyzed with a median of 714 cells per
donor from four CTR, five CTR+, one donor with MCI, and
four AD donors. Clustering analysis identified seven microglia
subsets, indicating heterogeneity in microglia transcriptomes
(Figure 3A). The sequencing depth and number of uniquely
detected genes were variable between donors (Supplementary
Figures S4A,B), but comparable across clusters (Supplementary
Figures S4D,E). The percentage of mitochondrial transcripts
detected were comparable across donors and clusters except
for the smallest cluster 6 (n = 29 cells; Supplementary

Figures S4C,F). Each donor contributed cells to most clusters,
including the larger clusters 0–2 (Figure 3B). The absence
of the formation of donor-specific clusters indicates that
cluster formation was likely not influenced by donor-specific
effects. The expression of cell type–specific markers across all
clusters showed that all analyzed cells were microglia (ITGAX)
without contamination of neurons (RBFOX3), oligodendrocytes
(MOG), astrocytes (GFAP), circulating monocytes (CCR2), and
erythrocytes (HBA1; Figure 3C).

Differential gene expression analysis between any cluster
compared to all other clusters was used to identify cluster-
enriched genes (Supplementary Table S6). The small clusters
3–6 contained relatively few cells of the total microglia
population (0.3%–1.6%) and were marked by a very low number
of unique cluster-enriched genes (Supplementary Table S6).
Notably, cluster-enriched genes in the small clusters were
expressed in more than 75% of the cells in the small clusters,
whereas cluster-enriched genes were detected in ∼30% of the
cells in the large clusters 0–2. In addition, expression levels of
cluster-enriched genes were higher in the smaller clusters than in
the larger clusters (Figure 3D, Supplementary Table S7). This
very frequent expression of few genes with strong enrichment
could have resulted in the formation of the smaller clusters 3–6.
The small clusters showed a unique enrichment for SMIM11A
and -B (cluster 3); MEF2C, GPR89A, and -B (cluster 4); SERF1A
and -B (cluster 5); and FRG1 and FRG1CP (cluster 6; Figure 3D,
Supplementary Tables S6, S7). Gene ontology (GO) enrichment
analysis revealed no biological annotation associated with the
small clusters.

Microglia in cluster 0 were uniquely enriched in the
genes AXL, CLEC7A, CYBB (Figure 3D, Supplementary
Tables S6, S7). These genes were associated with a hyper-
responsive inflammatory phenotype conserved in aging and
neurodegenerative-related mouse models that is involved
in functions, such as phagocytosis (Holtman et al., 2015).
In addition, microglia in cluster 0 were uniquely enriched
in cytoskeleton-related genes (FGD2, ACTB, SRGAP2;
Figure 3D, Supplementary Tables S6, S7). These genes
were associated with GO terms involved in locomotion,
endocytosis, and filopodium assembly (Supplementary
Figure S5, Supplementary Table S8). Microglia in cluster
1 uniquely expressed genes involved in transcriptional activity
(ZNF302, NEAT1, and ANKRD11; Figure 3D, Supplementary
Tables S6, S7), and the associated GO terms included RNA
splicing (Supplementary Figure S5, Supplementary Table S8).
Microglia in cluster 2 were uniquely enriched in genes associated
with neurodegenerative diseases (TREM2, GLUL, S100A;
Keren-Shaul et al., 2017; Krasemann et al., 2017; Cristóvaõ and
Gomes, 2019) and immune activated microglia (CD63, HLA
genes, CD14, TSPO; Beschorner et al., 2002; Kamphuis et al.,
2016; Beckers et al., 2018) and in ribosomal genes (RPL genes;
Figure 3D, Supplementary Tables S6, S7). Associated GO
terms included protein targeting and active immune response
(Supplementary Figure S5, Supplementary Table S8). Cells of
all clusters showed higher expression of DAM genes compared
to homeostatic microglia markers (Figure 3D, Supplementary
Table S7).
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FIGURE 3 | Single-cell expression profiling of microglia identified seven subsets of microglia but no AD-associated cluster using bc-Smart-seq2. (A) UMAP
visualization and unsupervised clustering of microglia derived from AD (n = 4), MCI (n = 1), CTR+ (n = 5), and CTR (n = 4) donors. Colors represent cluster identity.
(B) Cluster contribution normalized to donor. (C) Expression of cell type–specific markers for neurons (RBFOX3), oligodendrocytes (MOG), astrocytes (GFAP),
circulating monocytes (CCR2), erythrocytes (HBA1), and microglia (ITGAX ). (D) Dot plot visualizing scaled average expression and the percentage of cells expressing
the indicated genes. (E) Average expression of the mouse DAM (Keren-Shaul et al., 2017), myeloid neurodegeneration-related (Friedman et al., 2018), and human
AD-related single-nucleus (Mathys et al., 2019) gene sets per cell across clusters (multiple linear regression with Bonferroni correction, *indicate p-value < 0.001).
Horizontal lines in the boxplots represent the mean; the lower and upper hinges represent the 25th and 75th percentiles. Abbreviations: AD, Alzheimer’s Disease;
avg, average; CPM, counts per million; CTR, Control; CTR+, Control with Aβ plaques and/or hyperphosphorylated tau; DAM, disease-associated microglia; MCI,
mild cognitive impairment; UMAP, uniform manifold approximation and projection.
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To determine if expression of the DAM-associated gene set
was altered in our human microglia clusters, average expression
of the DAM gene set was calculated per cell. Mean expression per
cluster was compared to all other clusters. The mean expression
level of the DAM gene set was significantly reduced in clusters
0 and 1 and significantly increased in cluster 2 (Figure 3E,
Supplementary Table S9). To validate these observations, the
same analysis was performed for two other gene sets. The
first was obtained from gene expression modules in myeloid
cells from a comparison between AD tissue and multiple
neurodegeneration-related mouse models (Friedman et al., 2018)
and the second from a study investigating single-nucleus
transcriptomes in the prefrontal cortex of human AD donors
(Mathys et al., 2019). Similar to the results of the DAM gene
set, cells in cluster 1 showed a significant decrease in mean gene
expression of the myeloid neurodegeneration-related and human
AD-related single-nucleus gene sets (Figure 3E, Supplementary
Table S9). Cluster 2 showed a significant increase in mean gene
expression of the DAM gene set and the human AD-related
single-nucleus gene set (Figure 3E, Supplementary Table S9).
Although statistically significant, mean expression level changes
are likely too small to be biologically relevant. Together
with the identified cluster-enriched genes and associated GO
terms, cluster 2 might have increased immune activated gene
expression. However, cluster 2 was not enriched in AD-donor
derived microglia (Figure 3B), indicating that the immune
activated phenotype of this microglial subpopulation is not
unique to AD pathology.

Taken together, scRNAseq analysis of approximately
10,000 microglia from 14 donors identified subtle microglial
heterogeneity but no AD-specific microglia subpopulation.

Microglia Diversity but No DAM-Like
Cluster in an Individual MCI and AD Donor
With High Microglial Cell Numbers
The proportion of microglia associated with AD pathology in
the human brain might be relatively low and could potentially
be missed by the more limited cell numbers analyzed by bc-
Smart-seq2 expression profiling. Therefore,∼3,000microglia per
donor from two donors were analyzed using scRNAseq with
the 10× Genomics platform, leading to a considerably higher
cell number compared to the 714 microglia per donor analyzed
with bc-Smart-seq2. We hypothesized that different microglial
subpopulations, such as plaque-associated and homeostatic
microglia populations, are present in the AD brain and that
analysis of a higher number of microglia from the same
donor would allow for the identification of relatively small
subpopulations. To prevent donor-associated variables (sex,
age, postmortem delay, tissue quality, etc.) affecting microglia
clustering, each donor was analyzed individually: 2,881 cells were
analyzed from donor 1: AD, female, 81 years, LPS tissue with
high Aβ burden, and modest but visible PHF-tau protein (donor
#2018-135, Supplementary Table S2), and 3,079 single cells were
analyzed from donor 2: MCI donor, female, 77 years old, LPS
tissue with moderate Aβ pathology, and high levels of PHF-tau
deposits (donor #2019-010, Supplementary Table S2).

In both donors, three microglial clusters were identified
(Figures 4A,E, Supplementary Tables S10, S11). To identify
whether cells in any of these clusters were enriched in the
expression of genes associated with neurodegenerative diseases,
we averaged gene expression of the mouse DAM (Keren-
Shaul et al., 2017), the myeloid neurodegeneration-related
(Friedman et al., 2018), and the human AD-related single-
nucleus (Mathys et al., 2019) gene sets per cell. Next, mean
expression per cluster was compared to all other clusters
(Figures 4B–D,F–H, Supplementary Table S9). A significant
increase in mean gene expression of the human AD-associated
single-nucleus gene set was observed in cluster 1 microglia of
the AD (Figure 4D) but not the MCI donor (Figure 4H).
To summarize, although a high number of microglia was
analyzed per donor, none of the three clusters per donor could
consistently be related to known microglia gene expression
changes associated with AD.

DISCUSSION

In this study, we aimed to identify transcriptomic changes in
human microglia at the end stage of AD by applying both bulk
and scRNAseq of microglia isolated from acute postmortemCNS
tissue. In parietal and frontal cortex, we analyzed microglia as
bulk samples allowing the most sensitive detection of small gene
expression changes. Here, transcriptomic differences between
AD and CTR were not detected but were present between AD
and CTR+. Possibly, the difference between CTR vs. AD could
not be detected in our data set due to limited sample numbers
and/or relatively small changes. Alternatively, CTR+ donors
with amyloid-beta plaques and tau pathology have different
transcriptomic changes in microglia than CTR donors with
respect to AD. Disease-associated genes identified previously
in AD mouse models were not enriched in bulk human AD
microglia. Next, single-cell sequencing analysis was applied to
detect microglial subtypes that possibly consist of low cell
numbers and might be undetected in the average transcriptome
obtained by bulk RNAseq. In singlemicroglia transcriptomes, the
relative contribution to microglia clusters did not differ between
AD and control donors, when using the bc-Smart-seq2 protocol.
In addition, expression of genes related to neurodegenerative
disease from previous studies (Keren-Shaul et al., 2017; Friedman
et al., 2018; Mathys et al., 2019) were not altered with meaningful
effect sizes in any cluster.

The neurodegenerative disease-associated microglial subtype
originally described by Krasemann et al. (2017) and similarly
described by Keren-Shaul et al. (2017) represented a relatively
small fraction of the total microglia population. To rule out that
the lack of a cluster associated with AD pathology in our bc-
Smart-seq2 data was due to the analysis of low cell numbers, a
higher number of microglia from two donors were single-cell
sequenced using the 10× Genomics platform. Clustering was
performed per donor to avoid donor variation that might mask
such a potential cluster. None of the clusters identified with
10× Genomics scRNAseq were consistently enriched in mean
expression of gene sets related to neurodegenerative diseases. In
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FIGURE 4 | Single-cell expression profiling of microglia from individual
donors identified three clusters but no DAM-like cluster using 10× Genomics.
(A) UMAP visualization and unsupervised clustering of microglia from AD
donor 2018-135. (B–D) Average expression of the mouse DAM (B), myeloid
neurodegeneration-related (C), and human AD-related single-nucleus (D)
gene set expression per cell across clusters for AD donor 2018-135 (multiple
linear regression with Bonferroni correction, *indicate p-value < 0.001). (E)
UMAP visualization and unsupervised clustering of MCI donor 2019-010.
(F–H) Average expression of the mouse DAM (F), myeloid
neurodegeneration-related (G) and human AD-related single-nucleus (H)
gene set expression per cell across clusters for MCI donor 2019-010.
Horizontal lines in the boxplots represent the mean; the lower and upper
hinges represent the 25th and 75th percentiles. Abbreviations: AD,
Alzheimer’s Disease; avg, average; CPM, counts per million; CTR, Control;
CTR+, Control with Aβ plaques and/or hyperphosphorylated tau; DAM,
disease-associated microglia; MCI, mild cognitive impairment; UMAP, uniform
manifold approximation and projection.

conclusion, a DAM-like microglial subtype was absent in AD
donors profiling relatively high cell numbers.

When comparing the clustering results of the 10× Genomics
and bc-Smart-seq2 scRNAseq techniques, differences were
observed. Clusters 0–2 in the bc-Smart-seq2 data contain the
vast majority of microglia and are most similar to the three
clusters identified per donor in the 10× Genomics data set.
The smaller clusters in the bc-Smart-seq2 data (4–8) were not
identified in the microglia profiled by 10× Genomics and are
possibly associated with the plate-based protocol as we observed

similar small clusters in a different bc-Smart-seq2 data set from
our group (unpublished results).

There are multiple possible explanations for the absence of
AD-associated changes in bulk and single-cell microglia acutely
isolated from postmortem human brain tissue. Limitations of
this study are the relatively small sample sizes, especially in
the CTR group. In addition, interindividual differences between
donors might mask gene expression differences in the bc-
Smart-seq2 study. The presence of comorbidity, medication,
and varying postmortem delay (time from death to autopsies)
might interfere with AD-specific effects on the microglial
transcriptome. However, these factors are difficult to avoid in
human postmortem data. Another explanation for the lack of
AD-related transcripts in bulk and single-cell microglia could
be that the relevant microglia associated with AD plaques are
more vulnerable to the isolation procedure. This would imply
that, using conventional isolation and sorting of microglia would
enrich a population of cells that are not related to AD pathology.
Streit and colleagues first introduced the concept of dystrophic
microglia that occur around neuronal structures positive for
hyperphosphorylated tau protein (Streit et al., 2004, 2009) and
were later found to also occur around Aβ plaques (Streit et al.,
2018). Possibly, dystrophic microglia and microglia embedded
inside the Aβ plaque are more vulnerable and, therefore,
preferentially lost during FACS gating of live, single cells from
human brain tissue.

When comparing AD mouse models to human AD,
the distinction between parenchymal and plaque-associated
microglia might be more pronounced for amyloid mouse models
than for human end-stage AD samples. In transgenic amyloid
mouse models, especially 5xFAD mice, Aβ is overexpressed in
a nonphysiological manner. This results in very fast Aβ plaque
formation and, at end stages, a much higher plaque burden in
AD mouse models than in the human AD brain (Drummond
and Wisniewski, 2017; Liu et al., 2017). Transgenic mouse
models lack regional brain atrophy and show less widespread
neurodegeneration than human AD cases (Drummond and
Wisniewski, 2017). Possibly, compared to plaque-associated
microglia, parenchymal microglia are less affected in amyloid
mouse models than in human AD brain tissue. Furthermore,
single human microglia studies will most likely require
much larger cell numbers to capture sufficient plaque-
associated human microglia than studies using AD mouse
models. Additionally, interindividual variation will influence
human microglia transcriptomes more than mouse microglia
transcriptomes. Together, these factors might lead to a more
pronounced change between parenchymal and plaque-associated
microglia in amyloid mouse models than in human AD samples.

DAMs were not only associated with neurodegenerative
diseases, but also with natural aging (Keren-Shaul et al., 2017;
Krasemann et al., 2017). This was confirmed in a study
identifying an AppNL-G-F-associated microglia subpopulation,
activated response microglia, which overlap with DAMs (Sala
Frigerio et al., 2019). Activated response microglia already
comprised a few percent of microglia in the brains of
wild-type mice at a young age and evolve naturally with
aging (Sala Frigerio et al., 2019). Furthermore, a consensus gene
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expression network module co-occurring both during aging and
neurodegeneration was previously described (Holtman et al.,
2015). The described module included DAM signature genes,
such as Csf1, Spp1, Apoe, Axl, B2m, Ctsz, Cd9, Cstb, and
Cst7. Biological annotation of module-specific genes included
phagosome and lysosomal pathways (Holtman et al., 2015),
functions associated with DAMs (Keren-Shaul et al., 2017).
Taken together, this suggests the presence of DAM-like microglia
could be expected, albeit at low levels, in aged controls as well as
AD donor-derived microglia.

It is still an unresolved question whether a subpopulation
resembling DAMs exist among human microglia. Three other
studies previously addressed this question. Olah et al. (2018)
observed 23 clusters of human microglia, where five out of
23 clusters were enriched for DAM signature genes. Three of
the 15 donors suffered from AD pathology, making it difficult to
connect their microglia subpopulations with AD-induced gene
expression changes. Srinivasan et al. (2019) investigated frozen
myeloid cells from AD brain tissue and observed that, from the
100 DAM genes, only expression of APOE did change in myeloid
cells from AD donors compared to controls. Mathys et al. (2019)
used single-nuclei sequencing and subclustered∼2,400microglia
of 48 donors into four subpopulations. They highlighted the
microglia1 cluster as AD-pathology-associated human microglia.
From the 257 DAM genes investigated by Mathys et al. (2019),
28 were overlapping with marker genes for the microglia1
cluster, and 16 of these 28 overlapping marker genes were
ribosomal genes. Although this reveals a starting point, a larger-
scale investigation of microglia nuclei is needed to identify
AD-associated microglia subpopulations in humans.

Single nucleus gene expression faithfully recapitulates cellular
gene expression profiles (Lake et al., 2017; Gerrits et al.,
2020). Therefore, single-nucleus sequencing offers an alternative
to scRNAseq that is especially useful in tissues from which
recovering intact cells is difficult (Grindberg et al., 2013; Lake
et al., 2017; Gerrits et al., 2020). An important advantage
of single-nucleus sequencing is the possibility to use frozen
samples from brain banks containing large, well-characterized
donor cohorts. For example, a donor cohort to differentiate the
effects of natural aging and AD pathology would be possible by
comparing aged-matched (young) control donors to early-onset
familial AD cases using frozen samples from brain banks. In the
future, single-nucleus sequencing of microglia, including tissues
of early, presymptomatic stages of AD will be most promising to
potentially identify microglia biomarkers for AD.
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FIGURE S1 | Donor classification based on immunohistochemistry.
Representative immunohistochemical images of Aß, PHF-tau, and IBA1 staining
of consecutive sections from the LPS of the three donor groups (CTR, CTR+, AD).
Scale bar = 300 µm, scale bar inset = 50 µm. Abbreviations: AD, clinically
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diagnosed Alzheimer’s Disease with Aβ plaques and/or hyperphosphorylated tau;
CTR, Control; CTR+, Control with Aβ plaques and/or hyperphosphorylated tau;
LPS, superior parietal lobe.

FIGURE S2 | Quality metrics of bulk RNAseq data. (A–D) Total reads (A),
uniquely mapped reads (B), exonic reads (C), RNA Integrity (RIN) values (D) are
depicted for all microglia samples (CTR, CTR+, AD) of both brain regions (GFS,
LPS). Abbreviations: AD, clinically diagnosed Alzheimer’s Disease with Aβ plaques
and/or hyperphosphorylated tau; CTR, Control; CTR+, Control with Aβ plaques
and/or hyperphosphorylated tau; GFS, superior frontal gyrus; LPS, superior
parietal lobe; M, million; RIN, RNA integrity value.

FIGURE S3 | Differentially expressed genes between parietal (LPS) and frontal
(GFS) brain regions. Selected examples of expression levels of genes differentially
expressed between LPS and GFS shown in log2 CPM (likelihood ratio test; JAML
***FDR < 0.001, CST7 ***FDR < 0.001 and TREM1 ***FDR < 0.001,
AC011451.1 * FDR = 0.04). Abbreviations: CPM, counts per million; GFS,
superior frontal gyrus; LPS, superior parietal lobe.

FIGURE S4 | Bc-Smart-seq2 single-cell RNA sequencing quality of donors and
clusters. (A–F) Boxplots displaying the number of detected UMIs, unique genes
and percentage of mitochondrial transcripts in single cells per donor (A,B,D) and
per cluster (D–F). Abbreviations: AD, clinically diagnosed Alzheimer’s Disease with
Aβ plaques and/or hyperphosphorylated tau; CTR, Control; CTR+, Control with
Aβ plaques and/or hyperphosphorylated tau, UMI; unique molecular identifier.

FIGURE S5 | Biological annotation of marker genes for each cluster. Dot plots
displaying the top 10 gene ontology terms per cluster identified in
bc-Smart-seq2 single-cell data. Gene ontology terms were ordered on gene
count. Color indicates the adjusted p-value. No GO terms were significantly
associated with genes of clusters 5 and 6.

TABLE S1 | Detailed donor information of bulk sequenced samples.

TABLE S2 | Detailed donor information of single-cell sequenced samples.

TABLE S3 | Differential gene expression analysis of male vs. female bulk
microglia samples.

TABLE S4 | Differential gene expression analysis of LPS vs. GFS bulk microglia
samples (related to Figure S3).

TABLE S5 | Differential gene expression analysis of CTR+/CTR vs. AD bulk
microglia samples (related to Figure 2B).

TABLE S6 | Cluster-enriched genes of the identified seven clusters with
bc-Smart-seq2 single-cell RNA sequencing.

TABLE S7 | Average scaled expression for and percentage of cells expressing
selected genes in clusters identified with bc-Smart-seq2 single-cell RNA
sequencing (related to Figure 3D).

TABLE S8 | GO terms associated with the cluster-enriched genes of
bc-Smart-seq2 single-cell RNA sequencing (related to Supplementary
Figure S5).

TABLE S9 | Statistics of the average gene set expression changes in single-cell
clusters (related to Figures 3E, 4B–D,F–H).

TABLE S10 | Cluster-enriched genes of the identified three clusters of donor
2018-135 with 10× Genomics single-cell RNA sequencing.

TABLE S11 | Cluster-enriched genes of the identified three clusters of donor
2019-10 with 10× Genomics single-cell RNA sequencing.
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