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1 UMR_S996, INSERM/Université Paris-Sud 11, Clamart, France, 2 Service de Microbiologie-Immunologie Biologique, Assistance Publique-Hôpitaux de Paris/Hôpital
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4 Service d’Anatomie et de Cytologie Pathologiques, Assistance Publique-Hôpitaux de Paris/Hôpital Antoine-Béclère, Clamart, France

Abstract

Background: Little is known about the molecules that contribute to the growth of epithelial ovarian carcinomas (EOC),
which remain the most lethal gynecological cancer in women. The chemokine Fractalkine/CX3CL1 has been widely reported
to play a biologically relevant role in tumor growth and spread. We report here the first investigation of the expression and
role of CX3CL1 in EOC.

Results: Epithelial cells from the surface of the ovary and the Fallopian tubes and from benign, borderline and malignant
tumors all stained positive for CX3CL1. In tumor specimens from 54 women who underwent surgical treatment for EOC
diagnosis, CX3CL1 immunoreactivity was unevenly distributed in epithelial tumor cells, and ranged from strong (33%) to
absent (17%). This uneven distribution of CX3CL1 did not reflect the morphological heterogeneity of EOC. It was positively
correlated with the proliferation index Ki-67 and with GILZ (glucocorticoid-induced leucine zipper), previously identified as
an activator of the proliferation of malignant EOC cells. Hierarchical clustering analysis, including age at diagnosis, tumor
grade, FIGO stage, Ki-67 index, CX3CL1, SDF-1/CXCL12 and GILZ immunostaining scores, distinguished two major clusters
corresponding to low and high levels of proliferation and differing in terms of GILZ and CX3CL1 expression. GILZ
overexpression in the carcinoma-derived BG1 cell line resulted in parallel changes in CX3CL1 products. Conversely, CX3CL1
promoted through its binding to CX3CR1 AKT activation and proliferation in BG1 cells. In a mouse subcutaneous xenograft
model, the overexpression of GILZ was associated with higher expression of CX3CL1 and faster tumor growth.

Conclusion: Our findings highlight the previously unappreciated constitutive expression of CX3CL1 preceding
tumorigenesis in ovarian epithelial cells. Together with GILZ, this chemokine emerges as a regulator of cell proliferation,
which may be of potential clinical relevance for the selection of the most appropriate treatment for EOC patients.
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Introduction

Epithelial ovarian cancer (EOC) constitutes the sixth most

common cancer and the fifth leading cause of cancer-related death

among women in developed countries [1]. Due to the silent nature

of early-stage disease, most women with EOC have disseminated

disease (i.e. expansion in the peritoneum and metastasis in the

omentum) at the time of diagnosis and present advanced disease,

with a five-year survival rate below 30% [2]. Despite the high

incidence and mortality rates of EOC, the etiological factors

involved in ovarian carcinogenesis remain poorly defined, limiting

the efficacy of treatment protocols.

The epithelial tumor microenvironment consists of a complex

tissue containing several cell types. Most of these cells produce

and/or respond to chemokines, which may play key roles in the

development and progression of primary epithelial tumors [3–5].

We have shown, for example, that the a-CXC chemokine Stromal

cell-Derived Factor-1 SDF-1/CXCL12 contributes to the immu-

nosuppressive network within the tumor microenvironment,

notably by orchestrating the recruitment of pre-DC2s [6]. We

have also shown that CXCL12 regulates tumor angiogenesis and

that this is critical for tumor growth [7]. By contrast, little if

anything is known about the role of the chemokine Fractalkine/

CX3CL1 in EOC, although it has been evidenced to mediate
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strong cell adhesion [8] and its presence in epithelial tissues is

widely documented [9–10]. CX3CL1 exists in two forms. The

membrane-anchored form mediates the firm adhesion of cells

expressing its sole receptor, CX3CR1, to the endothelium under

physiological flow, through its own intrinsic adhesion function and

through integrin activation [11–12]. The soluble form is released

through cleavage at a site close to the membrane [13]. Like other

conventional chemokines, it recruits immune cells bearing

CX3CR1, such as T lymphocytes and cytotoxic NK cells,

dendritic cells or a large subpopulation of CD14+ monocytes

[8]. As a result of both the adhesion and chemoattractant activities

of the chemokine, the CX3CL1/CX3CR1 complex may mediate

either pro- or anti-tumor effects [14]. Pancreatic ductal adeno-

carcinoma cells bearing CX3CR1 specifically adhere to CX3CL1-

expressing cells of neural origin and migrate in response to

CX3CL1 produced by neurons and nerve fibers, contributing to

perineural dissemination in pancreatic cancer [15]. Prostate

cancer cells that express CX3CR1 adhere to human bone marrow

endothelial cells and migrate toward a medium conditioned by

osteoblasts, which secrete the soluble form of the chemokine

contributing to the high likelihood of prostate cancer cells

metastasizing to the skeleton [16–17]. By contrast, soluble

CX3CL1 (sCX3CL1) released in the tumor microenvironment

may be an active component of the anti-tumor response [18–21],

making the vaccination of mice with carcinoma cells modified to

produce CX3CL1 a potent anti-tumor response due to the

chemoattraction of NK cells [22], or making CX3CL1 expression

by colon cancer cells a factor that drastically reduced their

metastatic potential [23].

In the present work, we have investigated the expression of

CX3CL1 in healthy and malignant ovarian tissues and its role in

the proliferation of malignant ovarian epithelial cells. This

chemokine was produced by both healthy and malignant ovarian

epithelial cells, and its production in EOC was positively

correlated to cell proliferation index. Interestingly, it was also

correlated to the expression of glucocorticoid-induced leucine

zipper (GILZ), a 17 kDa leucine zipper protein discovered as a

dexamethasone-induced transcript in murine thymocytes, and that

we have recently shown to enhance cell proliferation in EOC and

to activate AKT, a crucial signaling molecule in tumorigenesis

[24,25]. Our findings were supported by parallel and comple-

mentary data accumulated in tumor specimens from patients

diagnosed for EOC, in the BG-1 ovarian cancer cell line and in a

mouse subcutaneous xenograft model. They provide further

insight into the role of CX3CL1 in malignant cell proliferation

and tumor growth, closely associated with GILZ.

Results

Detection of CX3CL1 in healthy and malignant ovarian
tissues

The cellular expression of CX3CL1 was examined by

immunohistochemisty (IHC) in sections isolated from three

healthy ovaries, eight serous and mucinous benign tumors (some

still containing normal ovarian tissue), eight serous and mucinous

borderline tumors, two ovarian granulosa cell tumors, and from 54

specimens of invasive EOC. CX3CL1 was clearly detected in the

ovary surface epithelium (OSE) cells and in the epithelium of the

Fallopian tubes (Figure 1A). In serous and mucinous benign and

borderline tumors, CX3CL1 immunoreactivity was detected in

proliferating tumor cells derived from the epithelium (Figure 1, B

and C). CX3CL1 expression was detected in EOC specimens,

including the serous, clear-cell, endometrioid and mucinous

histological subtypes (Figure 1D). In these tumors, it was detected

mostly in malignant cells, making tumor cells the most significant

source of CX3CL1 in EOC. Consistent with this finding, CX3CL1

was detected in epithelial cells from malignant ascites, with higher

levels of expression in the CD326+ fraction (Figure 1E). CX3CL1

was confined to the cytoplasm of malignant epithelial cells and was

not detected in nuclei. CX3CL1 was absent from non-epithelial

ovarian granulosa cell tumors (Figure 1F).

Messenger RNA for CX3CL1 was visualized by RT-PCR,

which generated a product of the expected size (387 bp) from three

healthy ovary samples, in six specimens from benign ovarian

tumors, three borderline specimens and nine EOC specimens. It

was also detected in the BG1, SKOV3 and OVCAR3 ovarian

cancer cell lines. Representative data are shown in Figure 2A. The

amount of mRNA was quantified by real time PCR on five EOC

specimens. It was positively correlated with the intensity of IHC

staining on a seven-point scale (Spearman’s test, P,0.05, r = 0.88)

(Figure 2B). A 90-kDa protein, corresponding to the expected size

of the full-length CX3CL1, was detected in EOC biopsy samples,

in CD326+ epithelial cells from malignant ascites and in SKOV3,

BG1 and OVCAR3 cells (Figure 2C). CX3CL1 is a membrane-

bound molecule with the chemokine domain on a mucin-like stalk.

Cleavage at the base of this stalk by metalloproteinases generates a

soluble chemokine, which functions as a classical chemoattractant

[13]. We then investigated whether sCX3CL1 was released from

ovarian cancer cells. It was detected in malignant ascites (ranging

from 1.3 to 1.5 ng/ml). We also carried out ELISA assays on

culture supernatants. The largest amounts of sCX3CL1 were

recovered from the culture supernatant of OVCAR3 cells, which

gave the strongest signal on western blots (Figure 2D). Our

findings highlight the previously unappreciated constitutive

expression of CX3CL1 on healthy epithelia of the ovary surface

and Fallopian tubes, indicating that EOC may originate from

either of these epithelia. We further reveal that CX3CL1

production by malignant epithelial cells precedes tumorigenesis.

CX3CL1 is correlated with Ki-67 and GILZ in EOC
CX3CL1 immunostaining was heterogeneous in EOC speci-

mens, spanning from the absence of detectable staining (score 0,

9/54) to strong immunoreactivity (scores 5-7, 18/54). We

therefore investigated whether differences in CX3CL1 expression

levels were associated with the expression of two markers of

proliferation: Ki-67, which is routinely used for diagnosis [26] and

GILZ, which we recently identified as a factor controlling the

proliferation of malignant EOC cells [25]. Immunoreactivity for

CX3CL1, GILZ and Ki-67 was scored on a seven-point scale on

the basis of staining intensity and the degree of staining of serial

sections of fragments of EOC from 54 patients. There was a highly

significant positive correlation between the scores for Ki-67 and

those for GILZ, as expected (Table 1). Interestingly, significant

positive correlations were found between CX3CL1 and Ki-67 and

between CX3CL1 and GILZ, for the entire cohort of 54 patients

(Figure 3, A and B). The immunostaining scores for these proteins

were also correlated in serous carcinoma and non serous

carcinoma (Table 1).

CXCL12, a chemokine produced by ovarian cancer cells [6],

has been implicated in the control of proliferation in these cells

[27]. As we have previously shown in a cohort of 183 patients

[28], CXCL12 immunoreactivity in cancer cells was heteroge-

neous, with scores of 0 (undetectable production) obtained in 16

patients and of 5 to 7 (strong immunoreactivity) obtained in eight

patients in our cohort of 54 patients. There was no significant

correlation between final scores for CXCL12 and CX3CL1, or

between final scores for CXCL12, GILZ and Ki-67. An analysis

of seven datasets, including age at diagnosis, FIGO stage,

CX3CL1 in Epithelial Ovarian Cancer
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grading, GILZ, Ki-67, CX3CL1 and CXCL12 immunoreactiv-

ities, based on an agglomerative hierarchical clustering approach

revealed two major clusters, as shown by the dendrogram

generated from the statistical analysis (Figure 3C). The main

characteristics distinguishing the two major clusters, correspond-

ing to low and high levels of proliferation, are presented in

Table 2. As expected, CXCL12 production did not differ

significantly between the two groups. By contrast, CX3CL1 and

GILZ immunoreactivities in tumor cells were higher for the

group with the higher level of proliferation. Despite the relatively

small number of patients, the number of cancers at FIGO stages

III and IV was significantly higher in the high proliferation

group. By contrast, age at diagnosis and grade did not differ

between the two groups. Thus, higher rates of proliferation were

associated with the upregulation of GILZ and CX3CL1

expression.

GILZ upregulates CX3CL1 expression
Immunohistochemical data clearly indicated that GILZ levels in

malignant cells were positively correlated with CX3CL1 levels,

suggesting a possible role for GILZ in regulating CX3CL1

production. We tested this hypothesis by determining the amounts

of CX3CL1 mRNA and protein in pGILZ (overexpressing GILZ)

and CTRL (producing low amount of GILZ) BG1 cells. As

expected, GILZ content (mRNA and protein) was significantly

higher in pGILZ than in CTRL clones. Parallel increases in

CX3CL1 mRNA and protein were depicted on RT-PCR, IHC

and western blots (Figure 4, A, B and C). In addition, the pGILZ

cells released larger amounts of sCX3CL1 than the control cells

(Figure 4D). Using an Ab targeting the extracellular domain of

CX3CL1, western blots of lysates of BG1 cells treated with

phorbol-12-myristate-13-acetate (PMA), a protein kinase C (PKC)

activator, showed an absence of the 90-kDa band corresponding to

Figure 1. CX3CL1 immunoreactivity in healthy and malignant ovaries. (A) healthy ovary, CX3CL1 immunoreactivity in the OSE (i) and
Fallopian tube (ii). (B) Serous (i) and mucinous (ii) benign ovarian epithelial tumors. (C) Serous (i) and mucinous (ii) borderline ovarian epithelial
tumors. (D) Malignant epithelial ovarian tumors: mucinous (i), endometrioid (ii), clear-cell (iii) and serous (iv), CX3CL1 immunoreactivity in epithelial
cells is confined to the cytoplasm, no staining in the nuclei of tumor cells. (E) Cytocentrifuged CD3262 non epithelial (i) and CD326+ epithelial (ii) cells
isolated from malignant ascites collected from a patient diagnosed with invasive EOC. CX3CL1 is detected in CD326+ cells and also in some CD3262

cells. (F) Non-epithelial ovarian granulosa cell tumor, absence of CX3CL1 immunostaining. (A–F) Magnification x 40.
doi:10.1371/journal.pone.0021546.g001
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the full-length of CX3CL1. Conversely, this treatment increased

the release of sCX3CL1 into the supernatant. (Figure 4, C and D).

Taken together, our results indicate that CX3CL1 production by

ovarian epithelial malignant cells is upregulated by GILZ.

CX3CL1 increases malignant cell proliferation
We showed that sCX3CL1 is released by ovarian cancer cells

from the shedding of the membrane-bound chemokine suggesting

that sCX3CL1 may be an active component of the tumoral

microenvironment. Here, we asked whether this chemokine has an

impact on tumor cell proliferation, as suggested by the correlation

of CX3CL1 and Ki-67 immunostainings in EOC specimens. This

proliferative action may result from an autocrine effect of

CX3CL1, which depends on the expression of its unique receptor,

CX3CR1 [8]. We detected CX3CR1 mRNA by conventional RT-

PCR at the expected size (340 bp) in all the EOC specimens tested

(N = 14) and in the three EOC cell lines, BG1, SKOV3 and

OVCAR3. Flow-cytometric analyses further revealed membrane

CX3CR1 expression in both CD45+ and CD452 cells from

malignant tumor specimens. In the CD452 fraction, which is

highly enriched in malignant epithelial ovarian cells, the

percentage of CX3CR1+ cells ranged from 20% to 95%

(Figure 5A). In BG1 cells, the steady-state level of membrane

CX3CR1 expression was weak (,10% of total cells) under basal

conditions (Figure 5B). Interestingly, the fraction of CX3CR1+

cells was markedly increased by acidic treatment, a process known

to dissociate the ligand from its receptor. On another side,

decreasing the concentration of FBS from 10% to 1% in culture

medium led to increased membrane expression of CX3CR1 in

BG1 cells (Figure 5C). In contrast, the level of surface CX3CR1

was lower in pGILZ cells, which produce higher amounts of

sCX3CL1 than CTRL cells. Based on these findings, we used

CTRL BG1 cells cultured in medium supplemented with 1% FBS

to measure the proliferative effect of recombinant human

(rh)CX3CL1 by [3H]-thymidine incorporation. Results from nine

independent experiments showed that rhCX3CL1 roughly dou-

bled the rate of cell proliferation after 24 h treatment (Figure 6A).

This response was abrogated by the addition of a CX3CL1 analog

with a modified N-terminus that binds to CX3CR1 and acts as an

antagonist (Figure 6B) [29]. These results show a proliferative

action of exogenous CX3CL1 through its binding to CX3CR1. We

next investigated whether endogenous CX3CL1 stimulates tumor

cell proliferation. For this purpose, pGILZ BG1 cells, which

generate high amounts of endogenous CX3CL1, were treated with

the CX3CL1 analog renewed every 24 h for 72 h. Under these

conditions, the rate of cell proliferation was markedly decreased,

underlying a role for endogenous CX3CL1 in regulating tumor

cell proliferation (Figure 6C).

Figure 2. Steady-state levels of CX3CL1 products in healthy and malignant ovaries. (A) CX3CL1 mRNA was detected by conventional PCR at
the expected size (387 bp) in representative specimens from 2 healthy ovaries, 5 cystadenomas (benign tumors), 2 borderline tumors, 5
adenocarcinomas (malignant tumors) and in the EOC-derived cell lines, SKOV3, OVCAR3 and BG1. The white vertical line separates lanes not run on
the same gel. (B) CX3CL1 mRNA levels were quantified by real-time PCR and are expressed as CX3CL1 content normalized to that of ß-actin. The
diagram shows the distribution of immunostaining scores versus the amount of CX3CL1 mRNAs normalized to those of ß-actin for 5 EOC samples.
Each symbol represents an individual sample run in triplicate (mean value); Spearman’s test, P,0.05, r = 0.88. (C) CX3CL1 immunoblots of total protein
lysates from EOC specimens, from CD326+ epithelial cell-enriched malignant ascites samples, and from SKOV3, BG1 and OVCAR3 cell lines. The
CX3CL1 protein is indicated as a ,90 kDa band. ß-actin levels are shown for normalization. (D) Detection by ELISA of sCX3CL1 in the 24 h culture
medium of BG1, OVCAR3 and SKOV3 cells (data are means 6 SEM of three separate experiments); undetectable sCX3CL1 in the culture medium of
HEK-293T cells (HEK), used as a negative control.
doi:10.1371/journal.pone.0021546.g002
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AKT hyperactivation is frequently observed in ovarian cancers

and is related to the control of cell proliferation in EOC [30,31]

[32–33]. Levels of pAKT, which is the active AKT form, were

higher in rhCX3CL1-treated BG1 cells (Figure 6D). These results

strongly suggest that the proliferative effect of the CX3CL1/

CX3CR1 couple is associated with AKT activation. GILZ has

been previously identified as a proliferative factor activating AKT

in EOC [25]. To confirm that CX3CL1 action involves AKT

activation in situ, we measured Ki-67 and pAKT scores on EOC

specimens scored 0 for GILZ and either producing or not

CX3CL1. As shown in Table 3, proliferation and AKT

phosphorylation were higher in specimens producing CX3CL1.

Altogether, these findings suggest that the proliferative effect of

CX3CL1 on ovarian epithelial malignant cells is consecutive to

CX3CR1 binding that activates AKT.

In vivo impact of GILZ overexpression
Finally, we investigated the impact of GILZ and CX3CL1 on

tumor growth in vivo by using a mouse subcutaneous xenograft model.

BG1 cells either overexpressing GILZ (pGILZ) or not (CTRL) were

injected subcutaneously into athymic nude mice and tumor growth

was followed for 35 days. The mean tumor volumes are represented

graphically in Figure 7A. The tumors developing from pGILZ cells

had significantly larger volumes than those developing from CTRL,

at any given time point. Western blots of xenograft extracts and

immunostaining showed parallel increases in GILZ and CX3CL1

protein levels (Figure 7, B and C). Thus, GILZ overexpression is

clearly associated with higher levels of CX3CL1 production in

tumors, resulting in higher rates of proliferation and tumor growth.

Figure 3. Correlation of CX3CL1 and Ki-67 and GILZ in EOC. (A and B) CX3CL1 and Ki-67 final scores (A, Spearman test, P,0.01, r = 0.38) and
CX3CL1 and GILZ final scores (B, Spearman test, P,0.0001, r = 0.59) were positively correlated in 54 EOC specimens including serous (black squares)
and non serous (white squares) samples. (C) Dendrogram generated by hierarchical agglomerative cluster analysis for the 54 EOC specimens studied,
against age at diagnosis, FIGO stage, grade, Ki-67, GILZ, CX3CL1 and CXCL12 immunoreactivity levels. Two clusters are identified, with low (top) and
high (bottom) levels of proliferation. Relevant specimens are labeled with numbers.
doi:10.1371/journal.pone.0021546.g003

Table 1. Correlations of CX3CL1, Ki-67 and GILZ
immunoreactivity in EOC specimens.

CX3CL1 / Ki-67 CX3CL1 / GILZ GILZ / Ki-67

All EOC specimens ar = 0.38 ar = 0.59 ar = 0.57

N = 54 aP,0.005 aP,0.00001 aP,0.00001

Serous specimens ar = 0.42 ar = 0.64 ar = 0.57

N = 30 aP,0.05 aP,0.0001 aP,0.001

Non serous
specimens

ar = 0.45 ar = 0.57 ar = 0.57

N = 24 aP,0.05 aP,0.005 aP,0.005

aSpearman’s test.
doi:10.1371/journal.pone.0021546.t001
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Discussion

In this study, we unveiled that CX3CL1 was constitutively

produced in EOC and investigated the role of this chemokine in

tumor growth. The production of this chemokine preceded

malignancy in the OSE, and was also found in the Fallopian

tubes of healthy women and in benign tumors. Immunohistolog-

ical analysis revealed that CX3CL1 production in EOC samples

was correlated with levels of Ki-67 and GILZ, two markers of

proliferation in malignant ovarian epithelial cells. Hierarchical

clustering analysis identified two major clusters, with high and low

levels of proliferation, differing in GILZ and CX3CL1 levels. In

vitro, GILZ overproduction leads to an increase in CX3CL1

production in BG1 cells. CX3CL1 increases BG1 cell proliferation

via its receptor, CX3CR1, and a parallel increase is observed in

pAKT levels. In xenografted mice, the overexpression of both

GILZ and CX3CL1 is associated with faster tumor growth. These

results highlight a relationship between GILZ and CX3CL1 as a

key regulator of malignant cell proliferation and tumor growth.

According to recent hypotheses concerning the origin and

histogenesis of EOC, type I tumors, which are believed to include

all major histotypes, originate from the OSE, which was traditionally

considered to be the source of the neoplastic transformation. By

contrast, type II tumors, which are thought to comprise almost

exclusively high-grade serous carcinomas, are believed to arise from

the distal region of the Fallopian tubes [34–36]. Both the OSE and

the Fallopian tubes are currently thought to be possible sources of

neoplastic EOC and both are derived from the embryonic Müllerian

duct [37]. CX3CL1 has been detected in the human endometrium

[38] and Fallopian tubes [39]. We also detected CX3CL1 in the

OSE, further indicating that the production of CX3CL1 by epithelial

ovarian cells precedes tumorigenesis. CX3CL1 was also detected in

Table 2. Identification of high- and low-proliferation clusters.

Fisher’s test

statistical

Patient distribution significance

Cluster 1 Cluster 2

Low proliferating High proliferating

All carcinomas 33 21

Age at diagnosis

,60 year 21 10

.60 year 12 11 NS

Histological types

Serous 17 13

Non serous 16 8 NS

Clear cells 6 0 P,0.05

Mucinous 5 3 NS

Endometrioid 4 3 NS

Undifferentiated 1 2 NS

Figo stages

IA-IIC 18 1

IIIA-IV 15 20 P,0.0001

Grades

#2 18 12

.2 15 9 NS

Ki-67 Immunostaining

Low scores (0–3) 29 7

High scores (4–7) 4 14 P,0.0001

GILZ immunostaining

Low scores (0–3) 27 6

High scores (4–7) 6 15 P,0.0001

CX3CL1 immunostaining

Low scores (0–4) 27 10

High scores (5–7) 6 11 P,0.01

CXCL12 immunostaining

Low scores (0–2) 16 12

High scores (3–7) 17 9 NS

doi:10.1371/journal.pone.0021546.t002
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benign and borderline tumor cells, suggesting that its production is

not associated with malignancy.

Ovarian epithelial tumors are morphologically heterogeneous

and are classified by pathologists into serous, clear cell,

endometrioid and mucinous subtypes on the basis of histopath-

ological examination. Each subtype is characterized by a specific

mRNA profile, genetic risk factors and molecular features [34]

[40–41], suggesting that ovarian carcinoma is a heterogeneous

disease [42]. Despite this heterogeneity, we found no significant

association between CX3CL1 levels and histological type in our

series, which included representative specimens of all four

principal histological types of EOC. Like GILZ and CXCL12,

CX3CL1 is widely expressed in EOCs and its presence does not

reflect the morphological heterogeneity of EOC [25] [28].

The chemokines, including CXCL12, are produced locally in

ovarian tumors and contribute to tumor microenvironment [5–6].

Here, we identify CX3CL1 as another component of the EOC

microenvironment. Epithelial cells from malignant ascites, tumor

specimens and from three ovarian cancer cell lines, namely BG1,

OVCAR3 and SKOV3, displayed staining for CX3CL1. CX3CL1

was confined to the cytoplasm and was absent from nuclei. The cells

contained CX3CL1 with a molecular weight of 90 kDa corre-

sponding to the membrane form of CX3CL1, from which the

soluble form is derived by shedding [8]. The production of

sCX3CL1 in culture supernatants paralleled that of the mem-

brane-bound form, suggesting that the production of sCX3CL1 in

EOC microenvironment was enhanced in tumors with strong

CX3CL1 immunoreactivity. Interestingly, the local releasing of

CX3CL1 may also depend on CXCL12, produced by epithelial

ovarian malignant cells in EOC and known to regulate the cleavage

of CX3CL1 from neurons [43]. We cannot exclude the possibility

that CXCL12 stimulates the metalloproteinases involved in

CX3CL1 cleavage in EOCs, as it does in neuronal cultures. Indeed,

further investigation of this aspect is required to conclude.

The intensity of CX3CL1 staining and the fraction of tumor cells

stained for CX3CL1 were variable in our cohort of 54 patients with

advanced primary EOC. This heterogeneity in the production of

CX3CL1 was positively correlated with GILZ levels. It does not

exclude that certain EOC specimens produce CX3CL1 in the

absence of GILZ, as shown in Table 3. That is also the case for cells

from OSE and benign tumors, which never produce GILZ [25]. We

then found that GILZ increased the production of CX3CL1

transcripts and proteins, consistent with a transcriptional regulation

of CX3CL1 by GILZ in malignant tumor cells. GILZ interferes with

various transcription factors [44–45] or may directly control the

transcriptional activity of proteins [46]. Further investigation is thus

required to determine whether GILZ promotes CX3CL1 transcrip-

tion, as do several oncogenes including Ras, Myc and oncosup-

pressor genes, such as mutant p53, for chemokines and their

receptors (reported in [47]).

Figure 4. GILZ upregulation increases CX3CL1 levels in ovarian epithelial malignant cells. (A) CX3CL1 PCR signal intensity in CTRL and
pGILZ BG-1 cells was quantified by densitometry with normalization against the signal for ß-actin; results are expressed as CX3CL1/ß-actin ratios. One
experiment representative out of three. (B) Immunostaining for CX3CL1 on CTRL and pGILZ BG1 cytocentrifuged cells. Magnification x 40. (C) Total
cellular protein extracts of CTRL and pGILZ BG1 cells cultured with or without 100 ng/ml PMA for 24 h were analyzed by western blotting with a
specific Ab recognizing the extracellular domain of CX3CL1. CX3CL1 levels were quantified by densitometry, with normalization against the signal for
ß-actin; results are expressed as CX3CL1/ß-actin ratios. One experiment representative of three. (D) Histograms show the release of sCX3CL1 into the
supernatant of cells treated or not with PMA, as measured by ELISA. Results are the means 6 SEM of three independent experiments. *P,0.05,
absence versus presence of PMA and #P,0.05, CTRL versus pGILZ BG1 cells (unpaired t test).
doi:10.1371/journal.pone.0021546.g004

CX3CL1 in Epithelial Ovarian Cancer

PLoS ONE | www.plosone.org 7 July 2011 | Volume 6 | Issue 7 | e21546



GILZ is itself a proliferative factor in EOC [25], consistent with

the correlation between CX3CL1 and Ki-67 levels in EOC

specimens being a consequence of the upregulation of CX3CL1

production by GILZ. However, proliferative effects of CX3CL1

have been reported in smooth muscle cells [48–49] and we could

not exclude the possibility that CX3CL1 may affect the rate of

proliferation through autocrine action. In line with this hypothesis,

we showed that the constitutive production of CX3CL1 by

malignant epithelial ovarian cells led to the release of the soluble

form of this chemokine, which binds to CX3CR1 present on

tumor cells. Further in vitro experiments showed that CX3CL1

promoted BG1 cell proliferation through its binding to CX3CR1

as well as AKT activation, as previously reported for human

prostate cancer cells [17]. The PI3K/AKT pathway transmits

mitogenic signals and controls cell cycle progression in ovarian

cancer [31] [33]. We previously reported that GILZ activates

AKT in EOC [25]. Here AKT activation was clearly associated

with the action of CX3CL1. Finally, our data are consistent with a

model in which GILZ activates CX3CL1 and the chemokine acts

alone to support ovarian tumor cell proliferation via CX3CR1.

Thus, the activation by GILZ of CX3CL1 production may

contribute to the proliferative effect of GILZ. It does not exclude

that GILZ in itself has a proliferative action in EOC and activates

AKT. To conclude, further studies are still needed to precise the

molecular and cellular mechanisms underlying the respective

contribution of GILZ and CX3CL1 to the proliferation of

malignant cells in EOC. Cancer cells frequently grow more

rapidly and have higher proliferation rates than normal cells.

CX3CL1 may participate to this action in EOC through autocrine

effects that should contribute to its pro-tumor potential. However,

we can no longer exclude that CX3CL1 also contributes to other

aspects of tumor biology, including immune cell recruitment and

the anti-tumor response. That probably should make the

prognostic value of this chemokine difficult to evaluate.

Figure 5. Expression of CX3CR1 in ovarian epithelial malignant cells. (A) Levels of CX3CR1 and of the pan-hematopoietic marker CD45 were
determined by flow cytometry in 2 freshly dissociated samples of EOC specimens. Numbers indicate frequencies of CX3CR1+ CD452 cells. (B)
Representative FACS profiles for CX3CR1 levels in BG1 cells. Left, surface expression of CX3CR1 under basal conditions; middle, surface expression of
CX3CR1 in cells after acidic treatment; right, expression of CX3CR1 in permeabilized cells. Numbers indicate percentage of CX3CR1+ cells (mean 6
SEM) for 3 independent experiments. (C) Histograms show the fluorescence intensity of CX3CR1 staining at the surface of CTRL BG1 cells cultured in
the presence of 1% or 10% FBS, and of CTRL and pGILZ BG1 cells cultured in the presence of 1% FBS. Numbers indicate the percentage of CX3CR1+

cells for one representative experiment out of three.
doi:10.1371/journal.pone.0021546.g005
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We show here that CX3CL1 is a component of the EOC

microenvironment. Together with GILZ, this chemokine emerges as

a regulator of cell proliferation in EOC. These results provide an

encouraging starting point for elucidation of the functional impor-

tance of CX3CL1 in the progression of ovarian cancer and of the link

between CX3CL1, GILZ and EOC proliferation demonstrated for

the first time in this report. Few prognostic factors capable of

accounting for tumor biology and disease course have been identified

in ovarian cancer. The identification of molecular targets closely

associated with cell proliferation might facilitate the development of

personalized treatment and are of potential clinical relevance for the

selection of the most appropriate treatment for certain cancer patients.

Materials and Methods

Ethics Statement
Formalin-fixed and paraffin-embedded tumors from primary

surgery were recovered from healthy ovaries (most often the

contralateral healthy ovary to the malignant one), benign tumors

(serous and mucinous), borderline tumors (serous and mucinous),

and granulosa tumors were provided by archival materials from

patients treated at Antoine-Béclère Hospital (Service d’Anatomie

et de Cytologie Pathologiques, Clamart, France) between 1998

and 2007. Approval was obtained from the ethics committee,

Comité de Protection des Personnes, Ile de France, President, Pr

Figure 6. CX3CL1 promotes the proliferation of BG1 cells. (A–C) Proliferation was measured by [3H]-thymidine incorporation (A) in CTRL cells
incubated with or without 10 ng/ml rhCX3CL1 for 24 h, 9 independent experiments. Histograms represent means 6 SEM, paired t test, **P,0.001; (B)
in CTRL cells incubated with or without 10 ng/ml rhCX3CL1 for 24 h, in the presence or absence of 10 mg/ml CX3CR1 antagonist; each symbol
represents an individual sample run in triplicate, lines represent mean values, * P,0.05, t test, one representative experiment out of 3; (C) in pGILZ
cells with and without treatment with 10 mg/ml CX3CR1 antagonist replaced every 24 h for 72 h, each symbol represents an individual sample run in
triplicates, lines represent mean values, * P,0.05, t test, one representative experiment out of 3. (D) Total cellular protein extracts of CTRL cells
cultured in the presence and absence of 10 ng/ml rhCX3CL1 analyzed by western blotting with specific Abs. pAKT levels were quantified by
densitometry, with normalization against the signal for total AKT. Results are expressed as pAKT/AKT ratios. One blot, representative of three carried
out, is shown.
doi:10.1371/journal.pone.0021546.g006

Table 3. Impact of CX3CL1 on cell proliferation and pAKT content in GILZ-negative EOC specimens (scored 0).

CX3CL1 (scored 0) CX3CL1 (scored 2–6) Student t test

N = 6 N = 15

Ki-67 scores (mean 6 SEM) 0. 560.5 260.4 P,0.05

% pAKT high 20% 64.2%

doi:10.1371/journal.pone.0021546.t003

CX3CL1 in Epithelial Ovarian Cancer

PLoS ONE | www.plosone.org 9 July 2011 | Volume 6 | Issue 7 | e21546



Philippe Casassus, for all analyses of tumor material from clinical

samples and archived material from patients diagnosed with an

ovarian tumor (benign, borderline or malignant invasive). The

study was carried out in accordance with good clinical practice

guidelines, national laws, and the Declaration of Helsinki. All

patients provided written informed consent.

Xenograft studies were carried out in strict accordance with the

recommendations in the Guide for the Care and the Use of

Laboratory Animal of the National Institutes of Health. The

protocol obtained approval of ethics committee 26 for animal

experimentation, Institut Gustave-Roussy at Villejuif, France.

Agreement no. C92-023-0 for animal care, handling and exper-

imentation is in accordance with European Union and French

guidelines for the use of laboratory animals.

Tissue samples
Immunohistochemical staining was carried out for CX3CL1,

CXCL12, GILZ and Ki-67 in tissue specimens from primary

invasive ovarian carcinomas taken for routine diagnosis and

treatment purposes, from 54 patients treated surgically for ovarian

cancer diagnosed at Antoine-Béclère Hospital between 1998 and

2007. The clinical and pathological characteristics of the patients

are described (Table S1). None of the patients had received neo-

adjuvant chemotherapy before surgery. Clinical stage was

determined according to the International Federation of Gyne-

cology and Obstetrics staging system (FIGO). Histological

subtypes and grades were determined according to the criteria

of the World Health Organization (WHO) classification [50].

Immunostaining grading and score
Immunohistochemical staining for CX3CL1, GILZ, CXCL12

and Ki-67 was performed on 5 mm sections from paraffin-

embedded tissues from healthy ovaries, benign, borderline and

malignant epithelial ovarian tumors, granulosa tumors and

xenograft samples. The paraffin was removed by incubation in

xylene and the sections were rehydrated in a graded series of

ethanol solutions and washed in 1X phosphate-buffered saline

(PBS). Antigens were unmasked by incubation in 10 mmol/l

sodium citrate buffer (Dako, Trappes, France) and heating to

90uC in a microwave oven. Sections were then incubated for 2 h at

room temperature with the appropriate primary antibody (Ab),

under the conditions detailed in Table S2. The sections were

Figure 7. Impact of GILZ overexpression in xenografted tumors. (A) pGILZ or CTRL BG1 cells (406106 cells/ml) were injected subcutaneously
into the right flanks of nude mice. Tumor size was measured every 5 days, for 35 days (N = 3 mice per group). Tumor volume [mm3] was calculated as
follows: (length [mm]) 6 (width [mm])260.5.** P,0.001 (unpaired t test). (B) Total cellular protein extracts of xenografted tumors were analyzed by
western blotting with specific Abs. CX3CL1 and GILZ levels were quantified by densitometry, with normalization against the signal for ß-actin; results
are expressed as CX3CL1 or GILZ/ß-actin ratios. One blot representative of three carried out is shown. (C) Serial sections of pGILZ and CTRL
xenografted tumors were stained for CX3CL1, GILZ and Ki-67. Negative control: no labeling was detected when each primary Ab was omitted.
Magnification x 40.
doi:10.1371/journal.pone.0021546.g007
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washed and incubated with a biotinylated secondary Ab for 1 h at

room temperature, and then with streptavidin-horseradish perox-

idase (-HRP) complex (LSAB kit, Dako). Sections were then

counterstained with hematoxylin. Negative controls were carried

out by applying the same procedure with omission of the primary

Ab. Images were obtained on a Leica DMLB microscope equipped

with standard optic objectives, at the indicated magnification, and

were digitized directly with a Sony 3CCD color video camera.

Immunochemical staining was interpreted simultaneously by

two independent investigators (FG and SP) blinded to the

characteristics of the patients and clinical and pathological

outcome. Immunostaining for CX3CL1, CXCL12, GILZ and

Ki-67 was scored on the following scale (with a maximum score of

seven): negative (0), 1 (weak intensity), 2 (moderate intensity) or 3

(strong intensity) combined with the percentage of positive cells

scored as 0 (0%), 1 (1–10%), 2 (10–50%), 3 (50–80%), 4 (.80%),

as recently reported [25] [28].

Tumor cell enrichment from ascites
Tumor cell enrichment from ascites was based on the expression

of CD326, a human epithelial antigen also known as EpCAM, one

of the most frequently identified and highly expressed biomarkers

in EOC [51]. CD326+ cells were positively selected on autoMACs

columns (Miltenyi Biotec, Paris, France) from ascites samples

collected with institutional review board (Antoine-Béclère Hospi-

tal) approval from a patient diagnosed with invasive EOC with

peritoneal extension, as previously described [25]. The percentage

of CD326+ cells in the positive fraction exceeded 80%, as shown

by flow cytometry (FACSCalibur, BD Biosciences, France) with a

PE-conjugated anti-human CD326 monoclonal Ab (mAb) (clone

HEA 125, IgG1, Miltenyi Biotec).

Cell lines
The human epithelial ovarian carcinoma cell line BG1, which

was derived from a stage III solid tumor tissue from a patient

(kindly provided by Dr G. Lazennec, INSERM U844, Montpel-

lier, France), was maintained in Dulbecco’s modified Eagle

medium (DMEM) supplemented with 10% fetal bovine serum

(FBS), 2 mmol/l L-glutamine and 0.1 mg/ml streptomycin. BG-1

clones stably overexpressing GILZ (pGILZ) or transfected with

empty vector (CTRL) were generated as previously described [25].

The SKOV3 and OVCAR3 cell lines were purchased from the

American Type Culture Collection (ATCC, Manassas, VA) and

maintained in RPMI-1640 medium supplemented with 0.1 mg/

ml streptomycin, 100 U/ml penicillin, 2 mmol/l L-glutamine and

10% FBS. The HEK 293T (ATCC) cell line was maintained in

DMEM medium supplemented with 0.1 mg/ml streptomycin,

100 U/ml penicillin, 4 mmol/l L-glutamine and 10% FBS (Fisher

Bioblock, Illkirch, France). All cell lines were maintained at 37uC,

under an atmosphere containing 5% CO2.

RT-PCR analyses
Total RNA was extracted from cultured cells, freshly frozen

ovarian tissue samples and tumor samples harvested from mice,

with the RNeasy Mini kit (Qiagen, Courtaboeuf, France),

according to the manufacturer’s instructions. The RNA was

reverse transcribed to generate cDNA with random hexamers

(Roche Diagnostics, Meylan, France) and Moloney murine

leukemia virus reverse transcriptase (Fisher Bioblock). We

amplified the resulting cDNA (1 mg) by conventional or real-time

PCR on a Light Cycler instrument (Roche Diagnostics), with the

FastStart DNA Master SYBER Green kit (Roche Diagnostics),

and carried out quantification by the standard curve method. The

primer sequences, predicted amplicon size and annealing

temperature are shown in Table S3.

[3H] thymidine uptake
Cells were used to seed 96-well plates, in triplicate, at a density

of 16104 cells/well. They were grown to 60% confluence in

DMEM medium supplemented with 10% FBS, for 24 h. The cells

were then washed with PBS and cultured in charcoal-treated

medium supplemented with 0.1% FBS. [3H] thymidine (0.5 mCi/

well) (MP Biomedicals Europe, Illkirch, France) was added and the

cells were incubated overnight. The amount of incorporated

radioactivity was determined as previously described [52] and the

results are expressed as counts per minute (cpm). The binding of

CX3CL1 to CX3CR1 was antagonized using a modified CX3CL1

analog prepared from E. Coli inclusion bodies using standard

procedures as recently described [29].

Western blotting
Cells (26106) were lysed as previously described [52].

Equivalent amounts of protein were separated by SDS-polyacryl-

amide gel electrophoresis (SDS-PAGE) and transferred to nitrocel-

lulose membranes (Hybond-ECL, GE Healthcare, Orsay, France).

Nonspecific binding was prevented by incubating the membranes

with blocking buffer (50 mM Tris-HCl, 150 mM NaCl, 0.1%

TWEEN-20 and 5% skim milk powder) for 1 h at room

temperature. The membranes were then incubated overnight at

4uC with specific primary Abs (Table S2). These Abs were then

detected by incubating the membrane with an HRP-conjugated

secondary Ab (GE Healthcare) for 1 h at room temperature. The

membrane was placed against film (GE Healthcare) and the bands

were visualized by enhanced chemiluminescence (Perkin Elmer,

Courtaboeuf, France). ScanAnalysis software (Biosoft, Cambridge,

United Kingdom) was used for densitometric analysis. All bands

were normalized with respect to ß-actin.

Flow cytometry analysis
CX3CR1 was detected with or without the addition of acid

buffer (50 mM glycine, 120 mM NaCl, pH = 2.723) and

incubation for 3 minutes at 4uC to remove surface-bound ligands

from the receptor. The cells were washed with cold PBS

supplemented with 2% FBS and incubated for 20 minutes on

ice with 10 mg/ml FITC-conjugated anti-hCX3CR1 mAb (Table

S2). For the detection of the cytoplasmic pool of CX3CR1, cells

were permeabilized with BD Cytofix/CytopermTM reagent (BD

Pharmingen, Le Pont De Claix, France) according to manufac-

turer’s instructions, before labeling. At least 10,000 events were

acquired for each sample. FITC-conjugated IgG2b was used as a

negative isotype control (Clinisciences, Montrouge, France). Data

were acquired with a FACSCalibur flow cytometer and analyzed

using the CellQuest software (BD Biosciences).

ELISA
Soluble CX3CL1 was detected with the human CX3CL1/

Fractalkine Quantikine ELISA kit (R&D Systems, Lille, France),

according to the manufacturer’s instructions. Absorbance was read

at 450 nm and sCX3CL1 concentration was extrapolated from the

standard concentration curve. The minimum detectable concen-

tration was 0.018 ng/ml.

In vivo xenografted tumor model
Male nude athymic mice (Harlan, Gannat, France), purchased

at four weeks of age, were used for xenograft studies. CTRL or

pGILZ BG1 cells (86106 cells in 200 ml PBS) were injected
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subcutaneously into the flanks of separate five-week-old mice.

Tumor size was determined with calipers, every five days. All mice

were killed humanely after 35 days. Tumor volume was calculated

as follows: (L x W2) x 0.5, (L: length; W: width).

Statistical analysis
Statistical analyses were performed with StatEL statistical

software (Adscience, Paris, France). Spearman’s test, univariate

analysis, was used to assess the correlations between CX3CL1,

GILZ and Ki-67 levels. Differences between groups were assessed

with the Welch two-sample unpaired t test, and by two-tailed

paired t tests. Fisher’s exact tests were used to assess the

significance of differences between clusters. Clustering, a widely

used approach for subtype identification, was carried out with the

hierarchical agglomerate clustering approach, in StatEL software,

with Pearson’s correlation function for quantitative data.
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