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Immune checkpoint inhibitors (ICIs) have revolutionized the treatment paradigm for lung
cancer in recent years. These strategies consist of neutralizing antibodies against negative
regulators of immune function, most notably cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), programmed cell death protein 1 (PD-1), and PD-1 ligand 1 (PD-L1), thereby
impeding the ability of tumor cells to escape immune surveillance. Though ICIs have
proven a significant advance in lung cancer therapy, overall survival rates remain low, and
lung cancer continues to be the leading cause of cancer-related death in the United
States. It is therefore imperative to better understand the barriers to the efficacy of ICIs,
particularly additional mechanisms of immunosuppression within the lung cancer
microenvironment. Recent evidence suggests that regulatory T-lymphocytes (Tregs)
serve as a central mediator of immune function in lung cancer, suppressing sterilizing
immunity and contributing to the clinical failure of ICIs. Here, we provide a comprehensive
summary of the roles of Tregs in lung cancer pathobiology and therapy, as well as the
potential means through which these immunosuppressive mechanisms can be overcome.
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INTRODUCTION

Non-small cell lung cancer (NSCLC) is the most common form of lung cancer, representing roughly
85% of all new lung cancer diagnoses (1). Most patients are diagnosed with advanced disease,
stemming from inadequate screening and the late onset of symptoms (1). The treatment for NSCLC
is highly varied and can include a combination of surgery, chemotherapy, radiation, targeted
therapy, and most recently, immunotherapy (2). Lung cancer immunotherapy is backboned by
immune checkpoint inhibitors (ICIs), which have demonstrated significant antitumor activity in
most solid tumors (3–9). ICI-based immunotherapy consists of neutralizing antibodies against
negative regulators of immune function, such as cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), programmed cell death protein 1 (PD-1), and PD-1 ligand 1 (PD-L1), thereby limiting
the ability of tumor cells to escape the cytotoxic immune program (10). However, despite the advent
of immunotherapy, NSCLC carries a combined 5-year survival rate of only 25% (11). Similarly, ICI-
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based immunotherapy is approved as a first-line treatment for
small cell lung cancer (SCLC) (12). However, patients with SCLC
display even poorer outcomes, with an overall 5-year survival
rate of 7% (11). Hence, there are still several remaining obstacles
limiting the therapeutic efficacy of ICIs in lung cancer that must
be overcome in order to further enhance drug responses and
improve patient outcomes.

Recent evidence suggests that several resident immune cell
subsets within the NSCLC tumor microenvironment (TME) may
contribute to immune evasion, thereby blunting the effects of
ICI-based immunotherapy. This includes regulatory T-
lymphocytes (Tregs), a specialized T-cell subpopulation that
acts to suppress sterilizing immune responses, thus promoting
self-tolerance (13). While Tregs have central roles in maintaining
normal airway tolerance (14), Tregs are abundant in NSCLC and
predict for an increased risk of disease recurrence in early-stage
disease (15). Similarly, increased tumor-infiltrating Tregs are
associated with poor overall survival in SCLC (16). Here, we
discuss the mechanistic contributions of Tregs to lung cancer
pathobiology, as well the means through which Tregs limit
therapeutic responses to ICI-based immunotherapy regimens
and the means through which this can be overcome.
TREG DIFFERENTIATION AND NORMAL
AIRWAY TOLERANCE

Tregs are a subset of CD4+ T-cells, typically defined by the
expression of the transcription factor Forkhead box protein P3
(FoxP3) (17). In contrast to other CD4+ T-cells that enhance
local immune function, Tregs maintain immune homeostasis
and self-tolerance by suppressing the activity of other immune
cell subsets, thereby restraining autoimmune responses in the
periphery (18–21). Treg-mediated immune suppression occurs
through a variety of mechanisms. Under physiologic conditions,
an activated antigen-presenting cell (APC) will display a
processed antigen peptide on its surface via an MHC molecule.
This antigen/MHC complex will then associate with the T-cell
receptor (TCR) of a nearby T-cell. This interaction, when
combined with an additional co-stimulatory signal mediated in
part by association of the APC’s B7 and T-cell’s CD28, lead to the
activation of the T-cell, which then can clonally expand and/or
exert its enhanced effector function (Figure 1A) (22).

This provides several avenues through which Tregs can
suppress the activation of a neighboring T-cell. For instance,
Tregs constitutively express cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) on their surface, which binds to the B7 on
the APC surface, outcompeting CD28 expressed on a nearby T-
cell. In the absence of a B7/CD28 interaction, the effector T-cell
will remain refractory from full activation (Figure 1B) (23). This
serves as the rationale for using anti-CTLA-4 antibodies such as
ipilimumab and tremelimumab that block this interaction as a
means of cancer immunotherapy, aiming to enhance anti-tumor
immune responses (Figure 1B) (24). Similarly, both APCs and
T-cells can express programmed cell death protein 1 (PD-1) on
Frontiers in Oncology | www.frontiersin.org 2
their surface. Treg expressed PD-1 ligand 1 (PD-L1) can
associate with PD-1, leading to reduced co-stimulation by the
APC or direct inactivation of an effector T-cell (Figure 1C) (23).
This, in part, is the rationale for using blocking anti-PD-1
antibodies (e.g., pembrolizumab and nivolumab) or anti-PD-L1
antibodies (e.g., atezolizumab, avelumab, and durvalumab) as
cancer therapy (Figure 1C) (25).

Finally, Tregs traffic to tissues predominantly by following
gradients of CCR4 ligands such as CCL17 and CCL22 (26). At
the tumor site, Tregs produce a variety of suppressive cytokines
such as 10 (IL-10) and transforming growth factor b (TGFb),
which can bind receptors on other T-cells or other nearby
immune cells and prevent their full activation (Figure 1D).
This also provides several potential opportunities for
therapeutic intervention discussed in detail in a subsequent
section of this article. In brief, these include the use of anti-
CCR4 antibodies such as mogamulizumab (KW-0761) to block
Treg trafficking (26), anti-CD25 antibodies (27) or
chemotherapy to deplete Tregs (28, 29), anti-TGFb agents
such as galunisertib (30), or other targeted therapies to block
the immune suppressive actions of Treg-derived cytokines
(Figure 1D).

Tregs can be induced early in thymocyte development during
T-cell selection in the thymus (31) or generated in the periphery
through the conversion of naïve CD4+ T-cells to Tregs (32). In
the thymus, the primary factor guiding Treg differentiation
appears to be the specificity of the T cell receptor (TCR). In
brief, there is a range of TCR self-reactivity that is permissive for
Treg differentiation, provided the appropriate co-stimulatory
and cytokine signals are present in subsequent stages of
development to induce FoxP3 expression (31, 33). These
thymus-derived Tregs serve important roles in maintaining
central tolerance, and deficiency of FoxP3 is associated with
severe autoimmune disease, colitis, and allergies in mice and
humans alike (34–37).

Contrastingly, the extrathymic genesis of peripheral Tregs
involves the conversion of naïve Tregs in the periphery, and is
primarily dictated by the local cytokine milieu, though still
dependent on FoxP3 expression following antigen exposure
(32). Though peripheral Tregs represent a small percentage of
total Tregs under physiologic conditions, peripheral Tregs are
strongly represented in the gastrointestinal tract and placenta,
and maintain immune tolerance toward commensal bacteria,
ingested antigens, allergens, and the fetus during pregnancy (37).
Peripheral Tregs have been suggested to be the main Treg subset
represented in most cancers, and are thought to be converted
within the tumor microenvironment (38), though this warrants
continued exploration. To date, most studies have focused on the
contributions of transforming growth factor b (TGFb) signaling
in peripheral Treg conversion. TGFb has been shown to induce
FoxP3 expression in both human and murine T-cells, and TGFb-
induced Tregs are central to preventing house dust mite-induced
allergic lung pathogenesis in a murine model of asthma (39–41).
Similarly, blockade of TGFb signaling has been shown to reduce
FoxP3 expression in ex vivo T-cell cultures (42), as well as disrupt
Treg-mediated tolerance to inhaled antigen in vivo (43).
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These and other studies suggest that Tregs play essential roles
in maintaining normal airway tolerance. For instance, a seminal
study demonstrated that animals with a selective deficit in
extrathymically generated Tregs spontaneously develop
pronounced T-helper 2 (Th2)-associated pathologies at
mucosal sites in the lungs, specifically in the form of allergic
inflammation and asthma (44). These and several other studies
have substantiated Tregs as a central mediator of immune
responses to inhaled antigens, limiting the activation of
pathogenic immune cells and preventing tissue-damaging
inflammatory responses (14, 45). Importantly, these studies
also suggest that Treg-dependent maintenance of airway
tolerance requires continuous exposure to airborne antigens, as
Frontiers in Oncology | www.frontiersin.org 3
antigen withdrawal results in a decreased number of Tregs,
enhancing susceptibility to pathologic Th2-dependent response
against respiratory antigens (46, 47).
TREGS AS A PROGNOSTIC BIOMARKER
IN LUNG CANCER

In addition to maintaining airway tolerance, Tregs are also an
established component of the lung cancer microenvironment,
functioning to inhibit autologous T-cell proliferation and impede
local immune responses (48). This has led to the long-standing
hypothesis that Tregs have driving roles in lung cancer
A B

DC

FIGURE 1 | Mechanisms of Treg-mediated immune evasion within the lung cancer immune microenvironment and strategies for therapeutic intervention. (A) Under
physiologic conditions, an activated antigen-presenting cell (APC) will associate with an effector T-cell, presenting antigen peptide on an MHC molecule. This will
associate with the T-cell receptor, which combined with additional stimuli such as co-stimulation mediated in part by association of the APC’s B7 and T-cell’s CD28,
lead to T-cell activation and enhanced effector function. Regulatory T-cells (Tregs) suppress effector T-cell activation through a variety of mechanisms. (B) One such
mechanism is the association of Treg’s cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) with the APC’s B7, outcompeting the effector T-cell for the co-
stimulation signal thereby leading to anergy. This serves as the rationale for the use of anti-CTLA-4 antibodies such as ipilimumab and tremelimumab, which function
to block this interaction, thereby enhancing anti-tumor immune responses. (C) Both APCs and effector T-cells can express programmed cell death protein 1 (PD-1)
on their surface. Treg expressed PD-1 ligand 1 (PD-L1) can associate with PD-1, leading to reduced co-stimulation by the APC or functional inactivation of the
effector T-cell. This association is interrupted by antibodies against PD-1 (pembrolizumab and nivolumab) or PD-L1 (e.g., atezolizumab, avelumab, and durvalumab),
and this strategy is now considered the cornerstone of lung cancer therapy. (D) Tregs traffic into tumor tissues largely by following gradients of CCR4 ligands such
as CCL17 and CCL22. There, they produce a variety of suppressive cytokines, namely interleukin 10 (IL-10) and transforming growth factor b (TGFb). These both
can limit effector T-cell responses, and facilitate tumor escape from immune surveillance. This also provides several potential opportunities for therapeutic intervention
including: anti-CCR4 antibodies such as mogamulizumab (KW-0761) to block Treg trafficking, anti-CD25 antibodies or chemotherapy agents, cyclophosphamide
and docetaxel, to deplete Tregs, or anti-TGFb agents such as galunisertib or other targeted therapies to block the immune suppressive actions of Treg-derived
cytokines within the lung tumor microenvironment.
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pathogenesis, by inhibiting the action of auto-reactive T-cells
and allowing for the continued escape from immune
surveillance. As the relative abundance of Tregs has been
shown to predict for poor clinical outcomes in most cancer
types (49), several studies have explored Tregs as a potential
prognostic biomarker in lung cancer (Table 1). A recent pan-
cancer meta-analysis determined that lung cancer patients with
higher tumor densities of FoxP3+ Tregs had significantly poorer
disease-free survival rates (49). A lung cancer-specific meta-
analysis similarly found that, in a combined cohort of 1,303
NSCLC patients across 11 studies, an increase in tumor-
Frontiers in Oncology | www.frontiersin.org 4
infiltrating FoxP3+ Tregs was associated with poor overall
survival. Interestingly, the authors also found that the Treg
infiltrate was strongly associated with smoking status, though
they did not find a relationship between Tregs and other
clinicopathological features (50). Similarly, a large study
conducting gene expression analysis of 196 NSCLC and 137
normal samples found that immune-infiltrating Treg-related
genes were strongly associated with poor overall survival (55).

Interestingly, peripheral blood Tregs increase in a stage-
dependent manner in NSCLC, and have also been suggested to
have potential utility as a prognostic biomarker (59). One of the
TABLE 1 | Studies exploring regulatory T cells as a prognostic biomarker in lung cancer.

Cancer
Type(s)

Number of
Patients

Treg
Location

Treg Definition(s) Method(s) Outcome Reference

Pan-
cancer
Meta
Analysis

15,512
(251 NSLC)

Tumor
tissue

FoxP3+ cells IHC Tumors with high tumor densities of FoxP3+ Tregs are associated with
poorer disease-free survival

(49)

NSCLC
Meta
Analysis

1,303 Tumor
tissue

FoxP3+ cells IHC Increased FoxP3+ Tregs associated with poor overall survival and smoking
status

(50)

NSCLC 100 (Complete
resection)

Tumor
tissue

FoxP3+ cells IHC Increased tumor-infiltrating Tregs predicted for earlier recurrence in node-
negative NSCLC

(51)

NSCLC 87 Tumor
tissue

FoxP3+ IHC Increased tumor-infiltrating Tregs was associated with poor overall and
relapse-free survival

(52)

NSCLC 196 Tumor
tissue

FoxP3+ IHC Increased intratumoral Tregs predicted for poor overall survival (53)

NSCLC 110 Tumor
tissue

FoxP3+ IHC Increased Tregs were associated with male sex, regional lymph node
involvement, advanced clinical stage, and poor overall survival. Patients with
the highest expression of B7-H3+FoxP3+ Tregs had the poorest survival of
all groups

(54)

NSCLC 333
(196 NSCLC,
137 Normal)

Tumor
tissue

N/A Gene
Expression
Analysis

Tumors with increased expression of Treg-related genes were associated
with poor overall survival

(55)

NSCLC
(Stage I)

64 Peripheral
blood

FoxP3+ cells IHC An increased proportion of Tregs relative to total tumor-infiltrating
lymphocytes was associated with a higher risk of recurrence and worse
clinical outcomes

(15)

NSLC
(Stage
III/IV)

156
(Chemo-naïve)

Peripheral
blood

CD4+CD25high cells
were sub-classified
as either:
Naïve (CD127−/
lowCD152-
FoxP3lowCD45RO−)
Effector
(CD127lowCD152+
FoxP3+CD45RO+)
or Terminal Effector
(CD127−CD152+
FoxP3+CD45RO+)

FC Increased terminal effector Tregs was associated for improved overall and
progression-free survival, and increased naïve or effector Tregs with worse
survival

(56)

NSCLC 70
(Receiving RT)

Peripheral
blood

CD4+CD25+
CD127low

FC Increased peripheral blood Tregs was associated with poor progression-free
survival

(57)

NSCLC 64 (45 chemo
naïve, 19

chemotherapy
treated)

Peripheral
blood and
tumor
tissue

Thymus-derived:
CD4+CD25+Helios-
Peripherally
generated: CD4+
CD25+Helios-

FC Patients with reduced Helios expression in tumor-infiltrating Tregs had
significantly poorer survival

(58)

SCLC 65 Tumor
tissue

FoxP3+ IHC Increased tumor-infiltrating Tregs was associated with poor overall survival (16)
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earliest studies evaluating Tregs and lung cancer prognosis
included 64 stage I NSCLC patients. Using excisional biopsies,
the authors found that 81% of samples had detectable tumor-
infiltrating lymphocytes, with 51% positive for FoxP3+ Tregs.
They then determined that patients with a higher proportion of
tumor Tregs relative to total tumor-infiltrating lymphocytes had
a significantly higher risk of recurrence and worse clinical
outcomes (15). Similarly, a recent study evaluated peripheral
blood samples from 156 chemotherapy-naive patients with stage
III or IV NSCLC. Similar to studies exploring tumor-infiltrating
Tregs, the authors observed a significant relationship between
peripheral Tregs and clinical outcomes. This study also stratified
Tregs into three additional subsets based on surface marker
expression: naïve, effector, and terminal effector. Naive Tregs
were defined as being CD4+CD25highCD127−/lowCD152-

FoxP3lowCD45RO−, and represent an early stage of Treg
differentiation with reduced sensitivity to apoptotic stimuli
(60). Effector Tregs were those that were CD4+CD25high

CD127lowCD152+FoxP3+CD45RO+, and represent a transient
stage of Treg differentiation that rapidly divide prior to their
disappearance (61). Terminal effector Tregs were defined as
CD4+CD25highCD127−CD152+FoxP3+CD45RO+, and are
considered the most immune-suppressive Treg subtype (62, 63).

Using this approach, they determined that the increased
presence of terminal effector Tregs predicts for improved
overall and progression-free survival, whereas an increase in
either naïve or effector Tregs was associated with worse survival
(56). Similarly, the increased presence of peripheral blood Tregs
has also been suggested to predict for clinical responses to
radiotherapy. In a group of 70 NSCLC patients undergoing
radiation, increased Tregs independently predicted for poor
progression-free survival (57). This may be particularly
noteworthy given the frequent cooperation between radiation
and immunotherapy in several cancers (64), and warrants
continued exploration.

Tregs have also been shown to have potential utility in
predicting for poor survival in NSCLC patients undergoing
definitive surgery. In a retrospective analysis of 100 patients
who had undergone a complete resection for NSCLC, the authors
evaluated the prognostic utility of the combination of epithelial
Cyclooxygenase-2 (COX-2) expression and tumor-infiltrating
Tregs. In this group, patients with high COX-2 expression had
significantly worse recurrence-free survival, accompanied by a
relative increase in Treg infiltration. They found that only lymph
node involvement was an independent predictor of recurrence-
free survival in a multivariate analysis. However, in node-
negative NSCLC, they determined that FoxP3+ tumor-
infiltrating Tregs was an independent predictor of shorter
recurrence-free survival (51).

A similar study of 196 NSCLC patients found improved
overall survival for patients with increased tumor-infiltrating
CD8+ T-cells, but poorer overall survival for patients with
increased tumor-infiltrating FoxP3+ Tregs (53). While these
studies have relied on FoxP3+ Tregs, others have included
additional parameters, including FoxP3 expression in tumor
cells. For example, a study of 87 excisional biopsies from
Frontiers in Oncology | www.frontiersin.org 5
operable NSCLC patients found that FoxP3+ tumor cells were
found in 31% of lung cancer specimens, with no significant
relationship to tumor-infiltrating Tregs. Further, increased
tumor-infiltrating Tregs were associated with poor overall and
relapse-free survival, and though tumor expression of FoxP3 was
not an independent predictor of outcomes, when FoxP3+cancer
cells were present, the relationship between tumor Treg
infiltration and worse prognosis was attenuated. Conversely,
patients without FoxP3- tumor cells and high Tregs had worse
outcomes than all other groups (52).

In addition to tumor cell expression of FoxP3, there are other
markers that may also influence the prognostic utility of Tregs.
One such example is the transcription factor Helios, which has
been suggested as a means of differentiating between thymus-
derived and peripherally induced Tregs (65). Helios-expressing
Tregs are generated during thymic selection, whereas Helios-
non-expressing Tregs represent those induced in the periphery.
These two Treg subsets are functionally distinct, and have largely
non-overlapping TCR reservoirs (66). In a cohort of 64 NSCLC
patients, 45 of whom had undergone surgery and 19 that had
received only chemotherapy, Helios was expressed in 47.5 ±
13.3% in peripheral blood and 18.1 ± 13.4% of tumor-infiltrating
Tregs. Patients with reduced Helios expression in tumor-
infiltrating Tregs had significantly poorer survival, suggesting
that peripherally induced Tregs are a more significant driver of
immune evasion in the lung TME (58). As no other study to date
has attempted to differentiate between thymus-derived and
peripherally induced Tregs in lung cancer, this warrants
continued exploration.

Additionally, the co-inhibitory signal B7-H3 may also
influence the relationship between Tregs and prognosis. In a
group of 110 NSCLC specimens, FoxP3 expression in tumor-
infiltrating T-cells was associated with male gender, regional
lymph node involvement, advanced clinical stage, and poor
overall survival. B7-H3 expression was strongly associated with
tumor-infiltrating FoxP3+ Tregs, and patients with the highest
expression of B7-H3+FoxP3+ Tregs had the poorest survival of
all groups (54).

Though several studies have affirmed the utility of Tregs as a
predictor of clinical outcomes in NSCLC, Tregs are less
established as a prognostic marker in small cell lung cancers
(SCLC). There is emerging evidence supporting a similar role for
Tregs in SCLC, namely that several SCLC tumor cell lines can
induce de novo differentiation of Tregs from naïve peripheral
blood lymphocytes in an IL-15 dependent mechanism. The same
study also evaluated SCLC tumor biopsies, and found that an
increase in tumor-infiltrating Tregs was associated with poor
overall survival, similar to previous studies in NSCLC (16).
TREGS AS A PREDICTOR OF
THERAPEUTIC RESPONSES TO ICIs

Given the advent of ICIs in lung cancer treatment, there is
considerable interest in identifying clinically useful biomarkers to
June 2021 | Volume 11 | Article 684098
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predict for therapeutic responses. While PD-L1 expression is
perhaps the most widely used predictive biomarker, emerging
data suggests that several other factors may be as or possibly
more informative than established biomarkers, e.g., PD-L1 status.
For instance, several studies have now indicated that the presence of
Tregs may also have utility as a predictor of responses to ICI-based
immunotherapy (Table 2). For example, a recent study evaluated
patients with NSCLC, gastric cancer, and malignant melanoma that
were treated with the anti-PD-1 antibodies nivolumab or
pembrolizumab, or the anti-PD-L1 antibody atezolizumab. The
authors found that non-responsive patients typically displayed
increased PD-1 on Tregs. The ratio of tumor-infiltrating PD-1
+CD8+ T-cells relative to Tregs was a superior predictor of
therapeutic responses than all other predictors, including PD-L1
expression and tumor mutational burden. The authors therefore
concluded that PD-1+ Tregs might have utility as a predictive
biomarker, and warrant consideration as a therapeutic target to
augment the clinical efficacy of ICIs in lung cancer (67).

A similar study evaluated peripheral blood samples and tumor
specimens from 73 NSCLC patients, 31 of whom had received
either pembrolizumab or nivolumab. Using this approach, the
authors identified a population of high-PD-L1+, CD25+ Tregs
(PD-L1hi Tregs) that was preferentially expressed within tumor
tissues and correlated with PD-1 expression in tumor-infiltrating
CD8+ T-cells. Patients with an increased frequency of tumor-
infiltrating PD-L1hi Tregs showed high PD-1/PD-L1 pathway
dependence, and improved CD8+ T-cell responses following PD-
1 inhibition. This corresponded to improved clinical outcomes
compared to patients with a low frequency of PD-L1hi Tregs (68).

A recent study has also explored peripheral Tregs as a
potential biomarker for responses to ICIs. One such study
evaluated peripheral blood samples from 83 NSCLC patients
before and after ICI-based immunotherapy. In this group,
patients with a high frequency of Tregs one week after anti-
PD-1 administration had significantly improved response rates,
as well as longer progression-free and overall survival, though the
Frontiers in Oncology | www.frontiersin.org 6
number of peripheral Tregs prior to therapy had no predictive
value. Similar results were observed regarding serum levels of
TGFb, which was also associated with improved clinical
outcomes. These results were affirmed in a second cohort of 45
patients, suggesting that increased peripheral Tregs or elevated
levels of TGFb can also predict for clinical outcomes (69).
TREGS AS A THERAPEUTIC TARGET

As discussed, given the many roles of Tregs in blunting the effector
function of CD8+ T-cells, Tregs have long been suggested as a
barrier to the efficacy of ICIs and a potential target for therapy (70).
This approach has shown encouraging preclinical efficacy,
particularly combined with other treatment modalities such as
radiation (71–73). Several strategies to deplete or modulate the
activity of Tregs have been introduced (Figure 1). Though it has
been suggested that the efficacy seen with CTLA-4 inhibitors may be
mediated in part through the depletion of Tregs, recent evidence
suggests that CTLA-4 inhibitors do not significantly change or
deplete Tregs within the tumor microenvironment (74). However,
the effects of select chemotherapy agents on Tregs are well
documented, particularly regarding cyclophosphamide (75).

The tumoricidal effects of cyclophosphamide appear primarily
dependent on the immune system, as a single injection of
high-dose cyclophosphamide increased the survival of
immunocompetent mice, though this was not observed in
immune-deficient mice (76). Accordingly, Tregs are highly
sensitive to cyclophosphamide, particularly when compared to
CTLs and helper T cells, which was presumed to be due to a DNA
repair defect (77). This has been shown to be a central mediator of
cyclophosphamide-induced type-1 diabetes in mice, which was
prevented by the allogenic transfer of Tregs (78). Likewise, in vitro
studies demonstrate that low-dose cyclophosphamide has been
reported to induce Treg apoptosis, restrain Treg proliferation, and
limit their immunosuppressive functions (79).
TABLE 2 | Studies exploring regulatory T cells as a predictor of responses to immune checkpoint inhibition.

ICI Cancer Type(s) Number of
Patients

Treg
Location

Treg Definition(s) by FC Outcome Reference

Nivolumab,
pembrolizumab,
or atezolizumab

NSCLC, gastric
cancer, and
malignant
melanoma

39 (15
NSCLC)
Discovery
Cohort

Tumor tissue Naive Tregs:
CD4+CD25lowFoxP3lowCD45RA+

Effector Tregs (eTregs):
CD4+CD25highFoxP3highCD45RA-

Poor responses to ICIs was associated with
increased Treg expression of PD-1, particularly
for eTregs

(67)

48 (12
NSCLC)
Validation
Cohort

Tumor tissue See Above See Above

Nivolumab or
pembrolizumab

NSCLC 73 (31
treated with

ICIs)

Peripheral
blood and
tumor tissue

Increased frequency of tumor-infiltrating, PD-
L1high Tregs was associated with improved
responses to PD-1 inhibition

(68)

Nivolumab or
pembrolizumab

NSCLC 83
Discovery
Cohort

Peripheral
blood

Effector Tregs (eTregs):
CD4+CD25+FoxP3+CD45RA-

Increased peripheral eTregs following anti-PD-1
administration predicts for improved
therapeutic responses

(69)

45
Validation
Cohort

Peripheral
blood

See Above See Above
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Thus, cyclophosphamide has been suggested as a potential
means of targeting Tregs in cancer, particularly in light of
observations that cyclophosphamide-mediated depletion of Tregs
allows immunotherapy to be curative in a rat model of implanted
PROb colon cancer cells (80). Similar results have been observed in
a variety of mouse models. Cyclophosphamide reduced regulatory
T-cells, enhancing the efficacy of non-myeloablative allogeneic stem
cell transplantation through increased activation of autoreactive T-
cells and IFN-g production (81). In a mouse model of cutaneous
melanoma, cyclophosphamide has also been demonstrated to
increase the frequency of tumor-infiltrating, IFN-g producing T-
cells, as well as decrease the relative abundance of Tregs (82). In
colon cancer patients, low-dose cyclophosphamide depleted tumor-
associated Tregs, enhanced anti-tumor immune responses, and
extended overall survival (29). Though encouraging, the clinical
utility for cyclophosphamide as an adjuvant to immunotherapy is
still emerging in lung cancer.

Other chemotherapy agents have also been suggested to
selectively target Tregs. For example, docetaxel has been shown
to selectively reduce Tregs in vitro, and patients who received
four cycles of docetaxel-based chemotherapy showed fewer
peripheral Tregs than at baseline (28). The multidrug regimens
FOLFOX (5-FU, leucovorin, and oxaliplatin) and FOLFIRI (5-
FU, leucovorin, and irinotecan) also significantly reduced
peripheral blood Tregs in patients with metastatic colorectal
cancer (83). Hence, the mechanistic intersection between
chemotherapy-mediated Treg depletion and lung cancer
immunotherapy warrants continued exploration (29).

Other therapeutic strategies more directly targeting Tregs are
also emerging. For example, the high-affinity IL-2 receptor CD25
(also known as IL-2 receptor alpha) is strongly expressed on
Tregs, and neutralizing antibodies against CD25 have been
suggested as a means of Treg depletion. This approach has
been highly effective in reducing Tregs in preclinical models,
enhancing CD8-mediated anti-tumor immune function (27, 84).
Though anti-CD25 has shown limited efficacy against established
tumors, select studies have evaluated the combination of anti-
CD25-mediated Treg depletion and ICI-based immunotherapy.
One such study assessed the combination of anti-CD25 and anti-
PD-1 in mouse models of tumorigenesis and found that this
approach promoted complete tumor rejection, substantiating
CD25 as a therapeutic target for combination approaches in
immuno-oncology (85). Anti-CD25 has also been used in
combination with near-infrared photoimmunotherapy (NIR-
PIT), a method of treating cancer using the activation of an
antibody-photoabsorber conjugate activated by NIR light (86,
87). Anti-CD25 guided NIR-PIT led to the selective depletion of
Tregs, as well as robust CD8+ T-cell and natural killer cell
activation in models where anti-CD25 alone was ineffective at
depleting Tregs (87).

While these and other related findings support anti-CD25 as
a potentially useful means to deplete Tregs in cancer therapy
(88–90), other approaches are also showing early promise. The
chemokine receptor CCR4 is expressed on 90% of Tregs and has
been linked to ICI-resistance. ICIs have been suggested to
upregulate CCR4 ligands, e.g., CCL17 and CCL22, thereby
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increasing Treg trafficking into tumors. This was ameliorated
through the addition of a pharmacological inhibitor of CCR4,
substantiating CCR4 as a potential means of targeting Tregs for
cancer therapy (91). CCR4-inhibition has also been suggested as
a means of depleting Tregs for cancer immunotherapy,
augmenting cytotoxic T-cell responses (92). This approach has
been explored in clinical trials, where the anti-CCR4 antibody
mogamulizumab has been shown to deplete Tregs and
potentially enhance cytotoxicity in adult T-cell leukemia/
lymphoma (26). However, though mogamulizumab
successfully depleted Tregs in lung cancer patients (93), a
recent multi-cancer trial determined that the combination of
mogamulizumab and durvalumab or tremelimumab does not
result in improved efficacy for patients with advanced solid
tumors (94). Hence, the potential for mogamulizumab as an
adjuvant to ICIs in lung cancer is unclear at this time and
requires further investigation.

Additional strategies are targeting Treg-derived cytokines,
namely TGFb. TGFb is a potent and pleiotropic cytokine with
several, often contradictory, roles in tumorigenesis (95). TGFb
has been shown to contribute to immune evasion in cancer (96)
and attenuate therapeutic responses to PD-L1 inhibition by
contributing to T-cell exclusion (97). Accordingly, the
combination of TGFb signal inhibition and ICIs are showing
promise in several solid tumors (30, 98–100). Early results for
bintrafusp alfa (a bifunctional fusion protein of the extracellular
domain of the type 2 TGFb receptor fused to an anti-PD-L1
antibody) showed promising efficacy and manageable toxicity in
NSCLC patients previously treated with platinum-based
immunotherapy (101). This has been supported by additional
studies, with durable immune responses observed in many
NSCLC patients after two-years, particularly those with high
PD-L1 expression (102).
PERSPECTIVE

The immunosuppressive effects of Tregs in lung cancer are well
documented with several recent studies affirming the prognostic
relevance of circulating and tumor-infiltrating Tregs alike.
Emerging evidence also supports the longstanding hypothesis
that Tregs have a driving role in the clinical failure of ICI-based
immunotherapy. Hence, Tregs and their associated cell processes
may represent a promising therapeutic target in lung cancer,
particularly in the setting of ICIs. However, despite the promise
of targeting Tregs in lung cancer, there are several important
distinctions that must be made prior to advancing such strategies
in the clinic. As highlighted in this review, Tregs are a highly
heterogeneous T-cell subset with several subcategories including
thymus-derived, peripherally generated (extrathymic), naïve,
effector, terminal effector, and others. Though many studies
support Tregs as a potential prognostic biomarker and/or
predictor of treatment failure, very few such studies account
for this variance, with most using the generalized term “Tregs”.
Additionally, the criteria used to define these Tregs are highly
varied, both regarding methodology and the surrogate markers
June 2021 | Volume 11 | Article 684098
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used. Hence, the true utility of Tregs as a predictive biomarker
remains unclear, and warrants continued exploration using
standardized methodology, as well as particular attention to
the many unique and functionally distinct Treg subsets.

Finally, it is also important to note that targeting Tregs requires
extreme caution. For instance, in a murine model of pancreatic
cancer, genetic ablation of Tregs led to extensive remodeling of the
tumor microenvironment and rapidly accelerated tumor formation
(103). Hence, the combination of Treg-targeted therapy and ICIs
warrants careful study prior to advancing to clinical practice.
Additionally, Tregs (particularly those developed during thymic
selection) have a central role in suppressing autoreactive T-cells and
restraining tissue inflammation. Therefore, it remains a distinct
possibility that broadly targeting Tregs in tandem with ICI-based
immunotherapy may also lead to severe autoimmune-mediated
adverse effects. Hence, this too warrants additional study, as do
whether unique Treg subsets can be safely targeted for therapy (e.g.,
peripherally-induced Tregs) while still offering a potential clinical
benefit to lung cancer patients, as this may be a useful means of
maximizing efficacy while also limiting toxicity.
SUMMARY

ICIs are the cornerstone of lung cancer therapy. Though a
significant advance, overall survival rates remain poor. Hence,
Frontiers in Oncology | www.frontiersin.org 8
there is a clear need to identify new strategies to further improve
the efficacy of ICI-based immunotherapy. Tregs represent a
highly suppressive T-cell subset that is abundant within the
lung cancer TME. Accordingly, Tregs have many roles in
maintaining peripheral tolerance and impeding anti-tumor
immunity in lung cancer, likely contributing to the clinical
failure of ICIs. While select strategies to deplete Tregs or
neutralize their immunosuppressive effects are showing early
promise, these are most effective when combined with other
treatment modalities. Hence, further study is required to
determine the most appropriate combinations of Treg-targeted
therapies and ICI-based immunotherapy in order to maximize
efficacy and minimize off-target toxicity.
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