
High Mortality of Red Sea Zooplankton under Ambient
Solar Radiation
Ali M. Al-Aidaroos1*, Mohsen M. O. El-Sherbiny1,2, Sathianeson Satheesh1, Gopikrishna Mantha1,

Susana Agustı̄3,4, Beatriz Carreja4, Carlos M. Duarte1,3,4

1 Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia, 2 Marine Science Department, Faculty of Science, Suez Canal

University, Ismailia, Egypt, 3 The UWA Oceans Institute and School of Plant Biology, University of Western Australia, Crawley, WA, Australia, 4 Department of Global

Change Research and LINC Global, IMEDEA (CSIC-UIB) Instituto Mediterráneo de Estudios Avanzados, Miquel Marqués, Esporles, Spain

Abstract

High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially
harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental
assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the
oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses
curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz
bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%,
21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged
(6standard error of the mean, SEM) 18.465.8% h21, five-fold greater than the average mortality in the dark for the eight
taxa tested. The UV-B radiation required for mortality rates to reach Kof maximum values averaged (6SEM) 1265.6 h21%
of incident UVB radiation, equivalent to the UV-B dose at 19.262.7 m depth in open coastal Red Sea waters. These results
confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of
high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results
provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in
tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can
be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water
column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.
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Introduction

Zooplankton are essential components of the marine food web,

relaying primary production from microbial algae to fish and

seabirds [1]. Pressures disrupting zooplankton communities can,

therefore, generate considerable impacts on the marine food web

and, particularly, reduce the flow of primary production upwards

in the food web. Hence, there have been significant efforts at

examining the impacts of global stressors, such as ocean warming

[2], ocean acidification [3] and pollutants [4] on marine

zooplankton.

UV-B radiation is emerging as a largely overlooked but

prevalent stressor in the marine environment [5,6], with increasing

UV-B causing an increase in mortality across the taxa inhabiting

the mixed layer of the ocean [6]. Concerns on increasing exposure

of marine organisms to UV-B radiation derive from consideration

of the combined effects of a global increase of the UV-B radiation

incident in the ocean and increased penetration into ocean waters.

The UV-B incident on the Earth surface has increased with the

depletion of the stratospheric ozone layer four decades ago, with

this increase being particularly strong over Antarctica but of global

reach [7,8]. Ozone values decreased, on average, 10.9762% in

the Southern Hemisphere compared to 2.7260.45% in the

Northern Hemisphere between 1970 and 2012 [8]. Evidence for

increased UV-B penetration derives from indications, still awaiting

confirmation, that the oligotrophic gyres, with the most transpar-

ent waters to UV-B, may be expanding in size [9] and that

chlorophyll a concentration has declined globally at rates of about

1% per year, related to increasing sea surface temperature and

vertical stratification [10]. Indeed, impacts of UV-B radiation are

greatest in oligotrophic, transparent seas. For instance UV-B levels

sufficient to cause significant mortality of photosynthetic plankton

have been reported to penetrate down to 60 m in the oligotrophic

waters of the subtropical Atlantic Ocean [11] and to 26 m in the

Mediterranean Sea [12]. Yet, there is still limited understanding of

the vulnerability of zooplankton to solar and UV-B radiation, as

most studies have been conducted in alpine lakes and north-

temperate coastal waters.

A recent meta-analysis demonstrated that crustaceans, a

dominant component of zooplankton communities, are highly
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vulnerable to UV-B radiation [6]. Previous studies on planktonic

(often neustonic) crustacean zooplankton showed that exposure to

UV-B lead to behavioral [13] and physiological responses [14–16]

ultimately affecting a range of fitness components [17] conducive

to increased mortality [18–20]. Impacts of UV-B radiation is

expected to be highest in tropical oligotrophic marine regions [11],

where high incident UV-B radiation combines with deep

penetration to yield high UV-B doses to organisms inhabiting

the mixed layer. Yet, the functional responses of zooplankton

mortality to ambient solar radiation doses have been assessed only

in productive, turbid coastal waters [14–20]. Here we show, based

on experimental assessments of solar radiation dose-mortality

curves on eight common taxa, the mortality of zooplankton in the

oligotrophic waters of the Red Sea to increase steeply with

ambient levels of solar radiation.

The Red Sea is particularly prone to high solar and UV-B

radiation in the mixed layer because (1) this region receives very

high solar and UV radiation, with UV indices in excess of 12, in

spring [21,22]; (2) it is one of the most oligotrophic seas in the

world, leading to high UV-B penetration reported to damage

phytoplankton communities in the Gulf of Aqaba, Northern Red

Sea [23]; and (3) the mixed layer is much shallower, at around 30

to 45 m depth [24,25], than typically observed in the open

oligotrophic ocean, implying exposure to very high solar and UV-

B doses for organisms inhabiting the mixed layer.

Materials and Methods

The sensitivity of the main zooplankton taxa in the Red Sea

coastal ecosystem to solar radiation was assessed through

experiments examining the dose-response curves relating mortality

rates of zooplankton taxa to solar radiation. In short, the

experiments involved exposing quartz bottles containing a number

of individuals to five levels of solar radiation allowing100%,

21.6%, 7.2%, 3.2% and 0%, and assessing the mortality in the

quartz bottles at regular time intervals until 90% of mortality was

obtained. The mortality rates and cumulative doses received at the

various treatments allowed calculation of dose-response curves,

characterized by the asymptotic maximum mortality with

increasing UV-B radiation and the UV-B radiation sufficient to

achieve half of maximum mortality.

The experiments were conducted at the Obhur marine research

station of King Abdulaziz University (Jeddah, Saudi Arabia,

21.71uN, 39.09uE) between June 1 and 7, 2013, the time of

maximum solar and UV-B radiation in the region [21,22].

Underwater UV-B penetration down to 3 m depth was measured

using an underwater Solar Light UV-B sensor (model PMA 2104)

at 0.5 m depth intervals at the center of the Obuhr Creek, the site

of zooplankton sampling, at the mouth of the Creek and 1 Km

offshore into the Red Sea. Incident underwater UV-B radiation,

the most damaging component of the solar radiation spectra [6],

just below the water surface was measured during the experiments

at 5 min intervals using a logging underwater Solar Light UV-B

sensor (model PMA 2104) placed at the aquaculture pond where

the experiments were conducted.

Organisms were collected at dusk or dawn from coastal waters

of the Red Sea off the KAU marine station at the Obhur Creek,

about 12 Km long and 300 m wide, inlet, using shallow (top 10 m)

vertical plankton tows with a WP2 net fitted with a 150 or 500 mm

mesh, depending on taxa. The net was fitted with a large, 20 L,

plastic bag to collect the animals, thereby avoiding pressure stress

to the organisms. Immediately upon collection, bags with the

organisms were placed in a cooling box with seawater, to maintain

in situ temperature and transported in the dark to environmental

chambers. In these experimental chambers, set at the in situ

seawater temperature, which varied between 31uC and 34uC
during the experimental period, the organisms were transferred to

buckets and maintained in aerated filtered seawater in dim light.

Between 50 and 100 individuals, depending on the taxa, were

isolated using sterilized Pasteur pipettes with extreme care to avoid

damages so that live intact animals (male and female) were

sampled. A total of 100 healthy individuals, as assessed by their

motion patterns, were isolated using sterilized Pasteur pipettes with

extreme care to avoid damages so that live intact animals (male

and female) were sampled. The number of Labidocera sp.

individuals was only 50 because this taxa was never present in

sufficient abundance to isolated a larger number of individuals

(Table 1).

The experiments were conducted with eight common zoo-

plankton taxa, including six copepod taxa (Acartia sp., Copilia sp.,

Centropages sp., Oncaea sp., Macrosetella sp. and Labidocerasp.)

and two decapods, Lucifer sp. and the nauplii of the Indian Ocean

white prawn, Fenneropenaeusindicus, which was hatched at the

aquaculture facility at the Obhur research station. For the first

taxa tested, Labidocera sp., we used two duplicated quartz bottles

containing 10 individuals each per treatment. However, we

assessed that the experimental results were more robust if all 20

individuals were incubated in the same flask, so that all other taxa

were tested by incubating 20 individuals contained in single quartz

bottles for each treatment. Quartz flasks allowed the full spectrum

of ambient solar radiation to penetrate into the bottles, across a

range of solar radiation ranging from the full solar radiation

incident below the water surface to darkness. The experiment

involved, therefore, five light intensities: 100%, 21.6%, 7.2%,

3.2% and 0% of solar radiation. To produce these light levels

quartz bottles were covered with multiple layers (0 through 3) of

neutral screen to reduce the solar radiation incident on the bottles.

The dark treatment, 0% of solar radiation, was achieved by

enclosing the glass bottles in thick, dark plastic bags. All bottles

were incubated, just under the water surface, submersed about

10 cm in an aquaculture pond at the research station, thereby

maintaining the seawater temperature, which was recorded

continuously using a calibrated HoBo light/temperature data

logger, and fully exposed to the incoming solar radiation at 10 cm

below the surface, thereby achieving the natural solar spectrum

and photoperiod.

The experiments were initiated in the morning, typically around

8 am, and lasted, in general, less than 48 h, which sufficed to cause

widespread mortality in the organisms receiving solar radiation.

The number of dead organisms in each replicated bottle was

counted at 4 to 6 h intervals during the daytime until mortality

reached 90%. To do so, the experimental bottles were transported,

inside a cooling box, into temperature-controlled chambers and

the dead organisms counted, under dim light, as those that sank to

the bottom and showed no motion. Upon counting, the bottles

were returned to the experimental pond. Mortality rates (m, units

h21), were then calculated as the slope of regression equation

describing the decline in the natural log of the number of surviving

organisms over time. Mortality rates (m, units h21) represent per

capita rates and, therefore, represent the probability that anyone

organism will die within one hour. If multiplied by 100, these

represent mortality as % of individuals per hour. Accumulated

UV-B doses were calculated by integrating the instantaneous

values measured at 15 min intervals along the duration of the

experiments. Where depletion of surviving organisms was steep,

the mortality rates derived from the depletion curves contained

uncertainty, as the logarithmic rates cannot be considered the

sampling event when all organisms were dead and the 4 to 6 h
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interval introduced a limitation in the precision of the mortality

rate estimated. However, this estimate could not be shortened

without introducing artifacts derived from excess handling and

disturbance of the organisms. Catastrophic mortality at 100% UV-

B radiation incident below the surface for Labidocera precluded

resolving mmax.

Dose-response curves were then constructed for each taxa tested

as the relationship between the mortality rate (h21) and the UV-B

radiation, as percent of the incident radiation or the accumulated

dose (KJ m22), along the experiments was described using

Michaelis-Menten equations of the form,

m~
mmaxUV{B

UV{B1
2mmax

zUV{B
ð1Þ

Where mmax represents the asymptotic maximum mortality with

increasing UV-B radiation and UV-B1/2mmax represents the UV-B

radiation sufficient to achieve half of maximum mortality (mmax).

Results

The UV-B index at the surface during the experimental period

averaged 11.9 (range 11.54 to 12.34) and the average (6SE)

maximum daily values of the incident UV-B radiation just below

the surface was 0.08460.014 mW cm22. The PAR levels incident

on the experimental bottles was also high, reaching, on average,

maximum values of about 1,340 mmol quanta m22 s21 and

integrated daily values of about 8.8 quanta m22. The water

transparency increased rapidly offshore of the Creek, with the

extinction coefficient for UV-B radiation at Obhur Creek, the site

of zooplankton sampling, was 0.3160.01 m21, 0.2860.01 m21 at

the mouth of the Creek, and 0.1460.04 m21 at 1 Km offshore,

corresponding to depths of 10% of incident UV-B radiation of

7.4 m, 8.22 m, and 16.4 m, respectively. Accordingly, the

radiation incident on the experimental quartz bottles receiving

3.2% of the incident radiation treatment tested (see Methods) was

equivalent to that received in situ at 18.5 m, 20.5 m and 41 m

depth at each of the three coastal locations, respectively.

The species tested ranged 40-fold in body length and differed in

pigmentation, from rather transparent organisms, such as Lucifer
sp. and Copilia sp., to dark, red-pigmented organisms, such as

Macrosetella sp. (Table 1). The mortality under ambient temper-

ature in the dark also ranged broadly, from negligible in

Centropages sp. to as high as 0.11 h21 in Copiliasp., with an

average of 3.561.1% h21 across taxa (median 2.4% h21,

Table 1). The number of surviving organisms declined over time,

with the slowest decline in the dark and the steepest decline with

increasing UV-B radiation received (Fig. 1). As a consequence,

there were strong relationships between the mortality rate of the

various species considered and the percent solar radiation, or the

accumulated UV-B radiation, received over the experiment

(Fig. 2). The shapes of the relationship between mortality rate

and the percent UV-B irradiance or the accumulated UV-B

radiation received different, however, among species (Fig. 2), with

most species showing an asymptotic relationship between mortality

rates and the percent solar radiation or the accumulated UV-B

radiation along the experiment, which was best described by the

Michaelis-Menten equation (Table 1), and the mortality rate of

Centropages sp. showing a linear increase with UV-B over the

range of UV-B radiation tested (Fig. 2).

The fitted Michaelis-Mensen equations allowed calculation of

two key descriptors, the maximum mortality, mmax (h21), under the
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solar radiation incident underwater during the experiment, and

the UV-B radiation at which mortality rates reached half of mmax,

UV-B1/2mmax (Table 1, Figs. 2 and 3). The mmax averaged

18.465.8% h21 across taxa (median 13.5% h21), five-fold greater

than the average mortality in the dark for the species assessed, and

ranged almost 20-fold among taxa (Table 1), independently of

their mortality rate in the dark (p.0.05). The nauplii of the prawn,

Fenneropenaeusindicus exhibited the highest mmax when exposed

to ambient levels of solar radiation, while Acartia sp. and

Macrosetella sp. exhibited the lowest mmax (Table 1). The effect

of solar radiation on mortality was represented by the excess mmax

relative to the mortality in the dark. Excess mmax averaged

14.966.0% h21 (median 6.25% h21), only slightly below the mean

mmax, indicating that most of the mortality experienced was

attributable to solar radiation (Table 1).

UV-B1/2mmax ranged from 1.5% to.50% of the UV-B radiation

incident below the surface, averaging 1265.6% of incident solar

radiation across taxa (median 6.7%), corresponding to 1265.6 KJ

m22 (median 0.74 KJ m22, Table 1). This indicates, when

combined with the measured light extinction coefficients for

UV-B, that the solar radiation sufficient to raise mortality to half of

mmax radiation reaches down to depths ranging from 4.9 m to

29.9 m across taxa (mean 19.262.7 m) in clear coastal waters and

2.2 to 13.5 m (mean 8.661.2 m) in the more turbid waters of

Obhur Creek (Fig. 3).

Discussion

These results confirm that Red Sea zooplankton are highly

vulnerable to ambient solar radiation, with preliminary experi-

ments, removing UV-B radiation, demonstrating that mortality is

induced by the UV-B component. Mortality rates increased

steeply with moderate increases in UV-B radiation to reach

maximum mortality levels at about 20% of the incident UV-B

radiation below the surface. As a consequence, removing solar

radiation reduced mortality rates down to, on average, 20.8% of

mortality rates under maximum ambient solar radiation, much

higher than the reduction in mortality rates to 60% under

experimentally reduced UV-B radiation previously reported for

crustaceans [6]. The much stronger mortality increase of the Red

Sea zooplankton in responses to exposure to ambient solar

radiation can be explained by the high UV-B doses underwater

resulting from the combined high incident radiation and high

water transparency allowing deep penetration of damaging UV-B

radiation.

The experiments involved a limited number of individuals

(N = 20) per treatment and, except for Labidocera sp. where

duplicates were used (with N = 10), no replication within

treatments, which represent a source of uncertainty and likely

account for much of the variability in the derived dose-response

parameters (Table 1). Whereas a larger number of organisms and

replication would have possibly led to more robust results, this

would have been possible only for the most abundant taxa. Use of

different designs for different taxa would have added uncertainty

in the comparisons among taxa, as the results for different species

would have differed in power. On the other hand, use of a greater

number of individuals per experiment, if possible across taxa,

would have led to a longer time elapsed between collection and the

onset of the experiment, as more time would have been required to

sort the individuals, introducing additional artifacts, such as

interference with the photoperiod and/or starvation and a general

decline in condition of the organisms at the onset of the

experiment.

Vulnerability to solar radiation varied widely across species,

with Centropages sp. being the most resistant species to solar

radiation and Acartia and Macrosetella being the most vulnerable

ones, independently of size or pigmentation. Whereas relatively

resistant species, such as Centropages sp., Labidocera sp., and

Oncaeasp. tend to be dark colored, and transparent or white

colored species, such as F. indicus, Lucifer sp. and Copilia sp.,

tend to be vulnerable, some colored species, such as Acartia sp.

and Macrosetella sp. remained vulnerable. Strategies to increase

zooplankton resistance to solar radiation include the accumulation

of photoprotective pigments from ingested food [26] and the

photoenzymatic repair of UV damages [27,28]. However,

accumulation of photoprotective pigments, often carotenoids, red

colored, or mycosporin-like aminoacids, increase the detectability

of the zooplankton to visual predators and may, therefore, carry

negative impacts [29]. This may be particularly significant for

relatively large taxa, such as Lucifer sp., which body remains,

therefore, near transparent. Yet, the results presented here indicate

that pigmentation and existing capabilities for photoenzymatic

repair are insufficient to protect Red Sea zooplankton from

damages due to ambient solar radiation levels, as mortality rates

reached half of maximum levels at a median UV-B level of only

6.7% of that incident below the surface.

That even highly pigmented zooplankton taxa in the Red Sea

community studied remain vulnerable to ambient levels of solar

radiation suggests that zooplankton must remain at depth to avoid

damaging UV-B doses, likely constraining their day-night migra-

tion behavior, as observed in alpine lakes [13,30]. Specifically, our

results suggest that zooplankton must remain below a median

depth of 19 m in open coastal Red Sea waters to avoid UV-B

exposure sufficient to raise mortality to 1/2 of mmax (Fig. 3). This

implies that only the most resistant among them can use the top

half of the mixed layer during daylight, where most primary

production occurs. The restriction on the food niche available to

Red Sea zooplankton during daytime imposed by UV-B radiation

may have important consequences in limiting the transference of

production up the food web. In addition, changes in UV radiation,

such as that found between more turbid coastal waters and more

Figure 1. Sample depletion curves, for Oncaea sp., showing the
decline in surviving individuals over time when experimentally
exposed to different levels of UV-B radiation.
doi:10.1371/journal.pone.0108778.g001
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transparent open Red Sea waters, may lead to shifts in

zooplankton communities by favoring more resistant taxa offshore.

These results are significant because they extend evidence of the

significance of ambient UV-B levels as a stressor of zooplankton

communities from high-mountain or high-latitude lakes, where

most of the evidence of significant impacts of UV-B radiation

originated [26,29,31,32], to the oligotrophic ocean. Evidence of

UV-B impacts on marine zooplankton are much fewer, limited to

laboratory studies or studies in relatively turbid waters [15,18].

Studies on the Acartia genus provided evidence of UV-B

avoidance behavior in Acartiahudsonica [14] and Acartiapacifica
[33] and demonstrated fitness costs of Acartiatonsa feed diets low

in photoprotective pigments [17], and evidence that UV radiation

reduces hatching success of the Arctic copepod Calanusfinmarch-
icus [20]. The analysis of dose-response levels of UV-B levels on a

range of copepods in Puget Sound suggested they were resistant to

ambient levels of UV-B radiation in those relatively turbid waters

[18], similar to results from San Francisco Bay, where only 1% of

UV-B radiation reaches to 0.5 m depth [15].

Hence, previous analyses of UV-B impacts on marine

zooplankton communities suggested that these are relatively small

or even negligible. However, these studies were conducted in

relatively turbid waters, whereas the most vulnerable communities

are expected to be those in tropical, oligotrophic waters where

high incident solar radiation levels combine with extreme

underwater penetration of UV-B radiation [11,12,34] to yield

high UV-B doses. The steep increase in zooplankton mortality

with ambient levels of solar radiation demonstrated here confirms

the expectation that solar radiation is a significant stressor to

zooplankton communities in oligotrophic waters. Because the

oligotrophic ocean extends across 70% of the ocean surface, solar

radiation can be a globally-significant stressor for the ocean

ecosystem, by constraining zooplankton use of the upper levels of

the water column and, therefore, the efficiency of food transfer up

the food web in the oligotrophic ocean.

The results obtained here suggests that future efforts should

focus on an improved understanding of the nature of the

relationship between mortality rate and exposure to solar

radiation, including examining the action spectra, i.e. the response

to specific wavelengths of solar radiation [35], of mortality rates,

and testing for the role of exposure time on mortality rates. The

simple exponential model used here, the most parsimonious model

provided the limited replication and the fact that survival was

assessed at 4 h to 6 h intervals, assumes mortality rates to be

constant, whereas other survival distributions, such as Weibull or

Log linear, involve shifting mortality rates over time [36].

Figure 2. Dose-response curves describing the relationship between the mortality of zooplankton taxa and ambient UV-B levels (as
% of UV-B incident below the surface or accumulated UV-B radiation along the experiments). The solid lines show the fitted linear
regression of Michaelis-Menten equation (see Table 1 for parameters of the later). Catastrophic mortality at 100% UV-B radiation incident below the
surface for Labidocera precluded resolving mmax.
doi:10.1371/journal.pone.0108778.g002

Figure 3. The depth at which sufficient UV-B radiation penetrates in the open coastal Red Sea waters (1 Km offshore from the
Obhur Creek, magenta columns) and the Obhur Creek (blue columns) to raise mortality rates of different zooplankton taxa to 1/2
of mmax (cf. Table 1).
doi:10.1371/journal.pone.0108778.g003
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Conclusions

The results presented here demonstrate that ambient solar

radiation levels suffice to cause significant mortality on Red Sea

zooplankton down to significant depths, in excess of 19 m, in the

water column. Vulnerability to solar radiation varied widely across

taxa, probably due to different repair mechanisms together with

different pigmentation. The vulnerability of the Red Sea

zooplankton community examined to solar radiation should lead

to a severe restriction on the food niche available during daytime

imposed by UV-B radiation, with important consequences in

limiting the transference of production up the food web. As

incident UV-B radiation has increased [7,8] and the oligotrophic

regions of the ocean maybe expanding [9–10], the results

presented here suggest that UV-B radiation must be considered

as a significant stressor on a key node of the ocean food web, likely

affecting the transference of production up the food web in the

oligotrophic ocean.
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