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Abstract: The distribution of single Stop Signal Reaction Times (SSRT) in the stop signal task (SST)
has been modelled with two general methods: a nonparametric method by Hans Colonius (1990)
and a Bayesian parametric method by Dora Matzke, Gordon Logan and colleagues (2013). These
methods assume an equal impact of the preceding trial type (go/stop) in the SST trials on the
SSRT distributional estimation without addressing the relaxed assumption. This study presents the
required model by considering a two-state mixture model for the SSRT distribution. It then compares
the Bayesian parametric single SSRT and mixture SSRT distributions in the usual stochastic order
at the individual and the population level under ex-Gaussian (ExG) distributional format. It shows
that compared to a single SSRT distribution, the mixture SSRT distribution is more varied, more
positively skewed, more leptokurtic and larger in stochastic order. The size of the results’ disparities
also depends on the choice of weights in the mixture SSRT distribution. This study confirms that
mixture SSRT indices as a constant or distribution are significantly larger than their single SSRT
counterparts in the related order. This result offers a vital improvement in the SSRT estimations.

Keywords: reactive inhibition; stop signal reaction times; aftereffects of inhibition; mixture
distribution; bayesian parametric approach

1. Introduction
1.1. Reactive Inhibition

Inhibition refers to the ability to suppress actively, interrupt or delay an action [1].
Inhibition itself is a crucial dimension of executive control, which on its own is required
for an organism to adjust behaviour according to changing conditions; this could be
assessing inappropriateness of the current course of thought and action, changing goals
or changing world [2–4]. Response inhibition is the ability to stop responses that are
no longer appropriate [3]. Examples of response inhibition in daily life include braking
quickly when driving into an intersection while another vehicle is running through a red
light [4]. Two paradigms have been suggested to study response inhibition empirically in a
laboratory setting: The Go/No-go task and the stop-signal task (SST). The later is widely
used [1,5]. The stop-signal paradigm includes two response tasks: the go task and the stop
task (e.g., stop 25% of the time). In go trials, the go reaction time (GORT) is the response
to the stimulus such as “X” and “O” presented on the computer screen. In stop trials, the
stop signal reaction time (SSRT) is the unobserved latency of the stopping response in the
brain upon observing the stop signal (e.g., an auditory tone such as “beep”). The stop
signal is presented to the participant after the passage of some time called the stop signal
delay [6,7]. Often, the adjustment of stop signal delays (SSD or Td) is made by the more
reliable tracking method in which, depending on the previous trial’s success or failure, the
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Td is increased or decreased by 50 ms to achieve 50% overall successful inhibition at the
end of the paradigm. In the go trials and stop signal response trials, the observed reaction
times and the unobserved latency of the stopping response (i.e., GORT, SRRT and SSRT,
respectively) are measured in milliseconds. In young adults trying to stop continuous
actions, such as typing, the SSRT is close to 200 ms [8].

Several models have been proposed to evaluate and describe response inhibition in
the stop-signal paradigm including the deadline model, the independent horse race model,
the interactive horse race model and the Hanes–Carpenter model [9–12]. In this study,
the independent horse race model is considered. It provides a theoretical framework in
which researchers can measure the Stop Signal Reaction Times (SSRT) and its associated
factors [13]. There are two types of the horse race model: the independent model with
constant SSRT index and the complete independent model with non-constant SSRT distri-
bution. In this study, we focus on the second model (see Figure 1). As the quantification
index of the reactive inhibition, SSRT measurement has been a critical tool used by psy-
chopathologists to make inferences about a patient’s ability to inhibit thought and action
(i) on the spectrum of clinical groups (e.g., ADHD, OCD, autism and schizophrenia) and
(ii) across various tasks and experimental conditions [13]. SSRT measurement’s precise
estimation affects such inferences profoundly.

Figure 1. Graphical representation of the complete horse race model: GORT: go reaction times, SRRT:
Signal respond reaction times, SSRT: Stop Signal reaction times, Td: stop signal delay (SSD).

1.2. Estimation Methods: Context and Components

There are several estimation methods of SSRT depending on two contexts in the SST
literature: (i) as a constant index, or (ii) as a distribution of non-constant random variable.
Within each context, these methods mentioned below refined the earlier proposed methods
given their associated contexts (see Figure 2).
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Figure 2. SSRT estimation in terms of context (constant/distribution) and components (sin-
gle/mixture): current literature (path 1-1,1-2,2-1); this study (path 2-2).

Referring to Figure 2 (path 1-1,1-2), there are four estimation methods of SSRT as a
constant index: the mean crude method, the Logan 1994 integration method [3], the time
series based state-space method [14] (path 1-1), and the weighted method and its mixture
equivalent [15] (path 1-2) . Given a subject with go reaction time (GORT) random variable
in the go trials with quantile function QGORT , n stop signal delays Td, and the probability of
successful inhibition(SI) denoted by P(SI|Td). Then, the first couple of the point indices of
constant SSRT in the entire SST cluster are defined as in Equations (1) and (2) (The bar sign
denotes average values.). Next, given higher reliability and less bias in the second index
versus the first index, the second index has been recommended as the plausible index of
constant SSRT [16]. Furthermore, one may transform raw trivariate SST time series data to
trivariate state-space time series data using the missing data EM algorithm. Given the EM
algorithm log-normally distributed outputs GORTss.ln and Tss.ln

d , the third point index of
constant SSRT is defined as in Equation (3). The fourth index is essentially improvement
of the second index under its associated contexts. For the last point index of constant
SSRT, partitioning the entire SST cluster into two clusters of type-A SST cluster (trials
following a go trial) and type-B SST cluster (trials following a stop trial) and calculating
trial-type related Logan 1994 SSRT as SSRTA and SSRTB with corresponding weights
WA = #Type A Stop/#Total Stop, WB = 1−WA, the last point index of constant SSRT is
defined as in Equation (4):

SSRTc
Crude = GORT − Td, (1)

SSRTc
Logan1994 = QGORT(1− P(SI|Td))− Td, (2)

SSRTc
SS.Logan1994 = QGORTss.ln(1− P(SI|Tss.ln

d ))− Tss.ln
d , (3)

SSRTc
Weighted = WA.SSRTA + WB.SSRTB. (4)

Several researchers have shown that merely focusing on measures of central tendency
in reaction times RT, including SSRT, gives insufficient information regarding the data’s
nature. For instance, different clinical groups may have the same mean reaction times.
However, the shape of their distributions differs in several aspects. The differences are
in their tails, as seen in an ADHD group compared to the controls [17], or their domain
of variance in a schizophrenia group versus controls [18]. These observations lead the
researchers to study the entire SSRT distribution (Figure 2 (path 2-1,2-2)).

Referring to Figure 2 (path 2-1), there are two main methods to estimate SSRT as a sin-
gle random variable: Colonius’s nonparametric method [19] and the Bayesian parametric
method [20,21]. The first method retrieves the cumulative distribution function of SSRT
given several components as follows: (i) go reaction times GORT in go trials with density
fGORT , (ii) signal respond reaction times SRRT in the failed stop trials with density fSRRT ,
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(iii) n stop signal delays Td, and (iv) probability of successful inhibition (SI). The cumulative
distribution function is calculated as in Equation (5) [19]. Although the first method theo-
retically gives the entire nonparametric distribution of SSRT, it cannot be implemented for
empirical data in practice. It requires an unrealistically high number of trials for accurate
estimations [20,21]. In the case of such estimations for simulated data, it has underesti-
mated the mean of SSRT and overestimated the variance of SSRT [4,22]. These observations
led researchers to propose the second method of estimation of SSRT in the Bayesian context
under given parametric distributional assumptions for the involved GORT, SRRT and SSRT
in the SST data [20]. The Bayesian Parametric Approach (BPA) presents a novel parametric
approach to estimate the entire distribution of SSRT, which applies to real data with a low
trial number [21]. Depending on the individual or hierarchical data, the BPA estimates
parameters of the SSRT distribution distinctively. The estimation is done separately for
each participant (called individual BPA or IBPA) or is done successively for each partic-
ipant, and then the entire population (called hierarchical BPA or HBPA) [23,24]. Several
studies have used the BPA approach in estimating SSRT distribution parameters for the
case of Ex-Gaussian (ExG) distribution assumption with θ = (µ, σ, τ). For example, it has
been shown that more practice in stop trials corresponds to lower estimated µ and higher
estimated τ, for the SSRT ExG distribution [25]. Next, the BPA approach has shown that
tyrosine consumption corresponds with lower estimated µ for the SSRT distribution [26].
Finally, the mixture BPA approach has been used to show the existence of trigger failures
(Trigger Failure (TF) refers to the situation in which the participant fails to correctly diag-
nose and interpret the stop signal leading to his inability to attempt to inhibit the ongoing
go process [27]). on stop signal performance in healthy control participants in two studies
of inhibition deficiency in schizophrenia [28]. Assuming that the distribution of GORT and
SSRT follows a parametric form, such as Ex-Gaussian (ExG) with parameter θ = (µ, σ, τ),
the BPA estimates the posterior distributions π(µstop|data), π(σstop|data), and π(τstop|data).
Then, the cumulative distribution function is calculated as in Equations (6) and (7) [21]:

FSSRT(t) = 1− (1− P(SI|Td))× (
fSRRT(t + Td|Td)

fGORT(t + Td)
), 0 < t, Td < ∞, (5)

FSSRT(t) = FExG(t|θstop = (µstop, σstop, τstop)), 0 < t < ∞, (6)

µstop = E(π(µstop|data)),

σstop = E(π(σstop|data)),

τstop = E(π(τstop|data)). (7)

1.3. SSRT Estimation and Aftereffects of Inhibition: Constant vs. Distribution
1.3.1. The Assumption

However, as mentioned by Logan [4], there is little known about the inhibition’s
aftereffects and the type of questions of interest. One related unanswered question is
whether there exist any aftereffects of the non-inhibited (e.g., go) trials and inhibited (e.g.,
stop) trials on inhibition and, in case of affirmative answer, how to measure SSRT as a
constant or as a random variable. Here, in both the nonparametric and Bayesian parametric
methods mentioned above, there is an implicit assumption. The assumption is about the
aftereffects of go trials and stop trials in SST data; that is, the impact of the preceding trial
type, either go or stop, on the current stop trial SSRT is assumed to be the same. Most of the
SST literature has taken this assumption for granted. To the best of the authors’ knowledge,
few studies have dealt with this question and estimated the SSRT distribution when this
assumption is relaxed. Some studies have shown that after a go trial, the participants
have a lower go reaction time GORT versus after the stop trial [29]. This phenomenon
implies that the GORT distribution after each type of trial (go/stop) will differ, impacting
the participant’s ability to stop after each trial type [30].
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1.3.2. Constant Index

There are only two studies in the SST literature that partially answered this question
when SSRT is considered as constant index [14,15]. Here, it was shown when considering
SST data in a longitudinal context SSRTc

Weighted > SSRTc
Logan1994; and when considering

SST data in a missing time series context SSRTc
(SS.Logan1994) > SSRTc

Logan1994. Both studies’
results were valid for the empirical SST data and the simulated SST data.

1.3.3. Motivation

Given that constant SSRT index can be considered as a degenerate random variable,
the above results partially shed light on the proposed question for the case of a non-
degenerate SSRT random variable. However, it is still unknown whether the constant
index related results hold for general SSRT random variable, in which order context
these comparisons over random variables can be conducted and in which mechanism the
pairwise comparisons of the involved paired sets of random variables is conducted.

1.4. Study Outline

This study offers an estimation of the SSRT distribution given the relaxed assump-
tion of equal impact of the preceding trial type (go/stop) on the current stop trial SSRT
distribution. It uses the notion of two-state mixtures [31] and proposes parametric mixture
Bayesian modelling on the entire SST data set (Figure 2 (path 2-2)). The study’s outline is
as follows: First, as in [15] for each participant, the overall empirical SST data is partitioned
into type-A cluster SST data and type-B cluster SST data. Using the IBPA method, the fitted
SSRT ex-Gaussian parameters are calculated for the cluster type SSRT distributions and the
single SSRT distribution. The study’s empirical data provide an example of the violated
assumption. Second, a mixture SSRT random variable is introduced as a natural gener-
alisation of two cases: (i) its constant index SSRTc

Weighted counterpart in Equation (3) and
(ii) its Bayesian parametric form under the ex-Gaussian distributional assumption. Then,
considering the mean of posterior parameters as their point estimations, the key descriptive
and shape statistics of the mixture SSRT (SSRTMixture) are compared with those of type-A
SSRT (SSRTA), type-B SSRT (SSRTB) and the single SSRT (SSRTSingle). Third, we compare
the involved pairs of distributions in usual stochastic order (<st) at the individual and
population level. The population-level comparisons use our proposed Two-Stage Bayesian
Parametric Approach (TSBPA) and our proposed Paired Samples Parametric Distribution
Test (PSPDT). Finally, the earlier comparisons are repeated and discussed in terms of the
involved weights in the definition of proposed mixture SSRT (SSRTMixture).

2. Materials and Methods
2.1. The Data and Study Design

This study’s data and design are previously described in [32]. The study included
16,099 participants aged 6 to 19 years old and was conducted at the Ontario Science Centre
in Toronto, Canada, between June 2009 and September 2010. Each participant sat in front of
a computer screen with a game pad device equipped with two buttons (X/O) in their hands.
The trials were either go or stop. Every go trial began with a 500 ms fixation point followed
by a stimulus: An O or X presented for 1000 ms in the centre of a computer screen. The
participants were instructed to press the correct button as fast as possible and the computer
program would record their reaction times. Every stop trial began as the go trial with one
extra feature: With an initial stop signal delay Td of 250 ms after the go stimulus, each stop
trial included an audio stop signal cue (i.e., saying “Stop !”) presented through headphones
to the participant in the context of the tracking method. The participants were supposed
not to press the button (X/O) on the game pad. In the case of failed inhibition, the computer
program would record the participants’ signal respond reaction times (SRRT). The entire
SST dataset of the trials (go/stop) was recorded in a longitudinal form (see Appendix A).
In this study, each participant completed four blocks of 24 trials with a random 25% stop
signal trials in each block. There were 96 trials in total (24 stop signals and 72 go trials).
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2.2. The Sample and Variables
2.2.1. Cluster Type SST Data

In this study, four types of SST data clusters were identified as shown in Table 1 [15]:

1. Type-A SST data cluster: all trial preceded by go trials (See Appendix A)
2. Type-B SST data cluster: all trials preceded by stop trials (See Appendix A)
3. Type-S Single SST data cluster: all trials when considered for one single SSRT

distribution
4. Type-M Mixture SST data cluster: all trials when considered for the mixture SSRT

distribution.

A random sample of 44 participants was selected for further analysis. The entire stop
signal task data for each participant was partitioned to type-A and type-B cluster types (see
Appendix A). These participants each had a minimum of 10 type-B stop trials. For each
participant, the above four types of SST data clusters were considered. Using IBPA, the
corresponding ex-Gaussian SSRTs’ parameters θ = (µ, σ, τ) for type-A, type-B and type-S
clusters were calculated as the means of posterior distribution estimation of the parameter
in Equation (7) (see Appendix B).

Table 1. Partition of stop task (SST) data to Type A SST data and Type B SST data given previous trial
type (go/stop) [15].

Data Previous Trial

Go Stop

Current Trial Go GoA GoB
Stop StopA StopB

2.2.2. Ex-Gaussian Random Variable

Heathcote (1996) [33] formulated the ex-Gaussian (ExG) distribution with parameters
(µ, σ, τ) with density given by

fExG(t|µ, σ, τ) =
1
τ

exp(
µ− t

τ
+

σ2

2τ2 )×Φ(
µ− t

σ
− σ

τ
) : σ, τ > 0,−∞ < t < ∞ (8)

where Φ is the standard normal cumulative distribution function. The first four non-central
moments are given by

E(ExG) = µ + τ,

E(ExG2) = µ2 + 2µτ + σ2 + 2τ2,

E(ExG3) = µ3 + 3µσ2 + 6µτ2 + 3µ2τ + 3σ2τ + 6τ3,

E(ExG4) = µ4 + 4µ3τ + 6µ2σ2 + 12µ2τ2 + 24µτ3 + 12µσ2τ + 3σ4 + 12σ2τ2 + 24τ4. (9)

Finally, this random variable is right-skewed and leptokurtic with the following
variance, skewness and kurtosis shape statistics:

Var(ExG) = σ2 + τ2

γExG = 2(1 + σ2τ−2)
−3
2

κExG = 3
(

1 + 2σ−2τ2 + 3σ−4τ4

(1 + σ−2τ2)2

)
. (10)

2.2.3. Mixture SSRT Random Variable

Given single SSRT by SSRTS, type-A SSRT by SSRTA, type-B SSRT by SSRTB and
WA ∼ Bernoulli(Wc

A)where the type A trial type weight Wc
A is given by Wc

A = #Type A Stop/
#Total Stop, Wc

B = 1−Wc
A, the Single SSRT and Mixture SSRT random variables were de-
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fined as follows (Note that with notation SSRT for random variable SSRT and SSRTc for
constant SSRT estimated with frequentist methods, we have E(SSRT) = SSRTc. Conse-
quently, definitions in Equation (11) are natural generalisations of constant SSRT estimations
with frequentist methods [15] to general non-constant random variables. Here onward, WA
given the context is either a Bernoulli random variable or a constant number Wc

A defined
as above.):

SSRTSingle =d SSRTS,

SSRTMixture =d WA × SSRTA + WB × SSRTB. (11)

In the Bayesian context and using IBPA and under Ex-Gaussian parametric assump-
tion, we have SSRTS ∼ ExG(θS = (µS, σS, τS)), SSRTA ∼ ExG(θA = (µA, σA, τA)) and
SSRTB ∼ ExG(θB = (µB, σB, τB)), where the parameter point estimations are the means of
the associated posterior distributions in IBPA. The Bayesian Mixture Ex-Gaussian SSRT
model can be formulated as follows. The priors in the IBPA have uninformative uniform
distribution and their own chosen parameters (α, β) are based on the positive ranges of
parameters (µ, σ, τ) of the associated ExG distribution. Figure 3 presents the model using
plate notation. Here, we have the following:
K = 2: Number of cluster types,
N = 96: Number of trials in SST data,
θi = (µi, σi, τi): Parameters of Ex-Gaussian SSRT distribution of the ith cluster (i = 1 : A;
i = 2 : B),
µi ∼ U[α1, β1], (i = 1 : A; i = 2 : B) : Here: α1 = 10, β1 = 2000,
σi ∼ U[α2, β2], (i = 1 : A; i = 2 : B) : Here: α2 = 10, β2 = 2000,
τi ∼ U[α3, β3], (i = 1 : A; i = 2 : B) : Here: α3 = 10, β3 = 2000,
φ = (φ1, φ2) : Prior Probability of clusters (φ1 = WA, φ2 = WB),
zi ∼ Bernoulli(W) : W = WA,
xi: ith SST trial,
xi|stop ∼ ExG(µzi , σzi , τzi ).

The first four moments of the Mixture SSRT are as follows:

E(SSRTk
Mixture) = WAE(SSRTk

A) + WBE(SSRTk
B) : 1 ≤ k ≤ 4. (12)

Consequently, the variance, the skewness and the kurtosis of the Mixture SSRT are
computed by

Var(SSRTMixture) =WAE(SSRT2
A) + (1−WA)E(SSRT2

B)

− (WAE(SSRTA) + (1−WA)E(SSRTB))
2,

γSSRTMixture =
1

Var
3
2 (SSRTMixture)

(
E(SSRT3

Mixture)

− 3E(SSRTMixture)E(SSRT2
Mixture) + 2E3(SSRTMixture)

)
,

κSSRTMixture =
1

Var2(SSRTMixture)

(
E(SSRT4

Mixture)− 4E(SSRTMixture)E(SSRT3
Mixture)

+ 6E2(SSRTMixture)E(SSRT2
Mixture)− 3E4(SSRTMixture)

)
. (13)
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Figure 3. Bayesian Mixture Ex-Gaussian SSRT model using plate notation. Filled in shapes indicate
known values.

Remark 1. Using new Equation (11) for SSRT, Colonious’s proposed nonparametric method for
retrieving the entire SSRT CDF for given type-A weight WA, type A delay TdA, type-A signal
respond density fSRRTA, type-A GORT density fGORTA, type-A probability of successful inhibition
P(SI|TdA) and the corresponding type B information yields the following mixture form:

FSSRT(t) = 1−WA

(
(1− P(SI|TdA))× (

fSRRT(t + TdA|TdA)

fGORT(t + TdA)
)

)
−WB

(
(1− P(SI|TdB))× (

fSRRT(t + TdB|TdB)

fGORT(t + TdB)
)

)
,

0 < t, TdA, TdB < ∞. (14)

Remark 2. The mixture modelling for SSRT proposed here can be applied with other non-Ex-
Gaussian parametric RT distributions such as Ex-Wald, Wald, [34] Gamma, Weibull and Lognor-
mal [35,36] with the required modifications in estimations.

2.3. Statistical Analysis

For each participant IBPA under Ex-Gaussian parametric distribution was run three
times: one for its associated cluster type-A, cluster type-B and single type-S SST data (a
total of 132 times). We then calculated the mean posterior estimates of θS = (µS, σS, τS),
θA = (µA, σA, τA), and θB = (µB, σB, τB). Then, the parameters, the descriptive statistics
and the shape statistics for type-A SSRT (SSRTA), type-B SSRT (SSRTB), type-S single
SSRT (SSRTSingle) and type-M Mixture SSRT (SSRTMixture) were calculated. The next steps
of the analysis depended to the context and procedure described in the following.

2.3.1. Comparisons Context: Real Numbers and Random Variables

Two sets of comparisons were conducted: (i) within a real numbers contexts and (ii)
within a real-valued random variables context. For the first set of comparisons, paired t-test
(PROC TTEST, ‘SAS/STAT’ software version 9.4 [37]) were conducted. These comparisons
were made for the Ex-Gaussian distribution’s fitted parameters, the descriptive summary
statistics and the shape statistics in the usual real numbers order (<) across cluster types.
For the second set of comparisons, the two samples Kolmogorov–Smirnov (KS) tests (ks.test
package stats, ‘R’ software version R.3.4.3 [38]) were conducted. These tests were conducted
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under the assumption of 96 points for the involved random variables CDFs to compare the
SSRT random variables in usual stochastic order (<st) across cluster types. Such test at the
individual is

H0 : SSRTSingle(
−→
θS ) =st SSRTMixture(

−→
θM),

H1 : SSRTSingle(
−→
θS ) 6=st SSRTMixture.(

−→
θM) (15)

2.3.2. Comparisons Procedure: Random Variables

Given two sets of stop signal reaction times distributions {SSRTSingle(θSk )}
44
k=1 and

{SSRTMixture(θMk )}
44
k=1, our problem of interest was an overall comparison between these

two groups of distributions in usual stochastic order <st [39]. Our proposed problem was
dealt with in two steps as follows:

Step (1): Two-Stage Bayesian Parametric Approach (TSBPA)

This proposed analysis is neither completely hierarchical Bayesian analysis nor com-
pletely conventional meta-analysis. It has components of both methods. On the one hand,
it has two separates one-stage Bayesian analyses. On the other hand, it calculates overall
population-level estimates in the second analysis with consideration of non-zero correla-
tions. Referring to Equation (11), we define overall SSRT distributions per single S cluster
type and mixture M cluster type as the following:

SSRTO.Single(
−→
θS ) = SSRTSingle(θS),

SSRTO.Mixture(
−→
θM) = SSRTMixture(θM). (16)

where
−→
θS = θS = θT = (µT , σT , τT) and

−→
θM = θM = (WA, θA, θB) with WA = ∑44

k=1 WAk /44
and θA = (µA, σA, τA), θB = (µB, σB, τB) being computed by a Two-Stage Bayesian Para-
metric Approach (TSBPA) method described as follows.

In the TSBPA (See Figure 4), the data, the priors and the posterior estimations are
considered as below [40–42]. We conduct the first stage with 3 chains, 5000 burn in out
of 20,000 simulations in BEESTS 2.0 software. Then, we consider the mean of poste-
rior estimates µstop, σstop, τstop as their point estimates E(µstop|x) → µstop, E(σstop|x) →
σstop, E(τstop|x) → τstop in the second stage of meta-analysis. We conduct this stage with
3 chains with 5000 burn in out of 100,000 simulations in WINBUGS1.4 software [43]. Fi-
nally, we consider the mean of posterior estimates µµstop , µσstop , µτstop in the second stage as

estimates of
−→
θS = θS = θT = (µT , σT , τT), respectively, for the case of overall data S. We

repeat this process for the case of type A SST data and type B SST data for estimation of
θA = (µA, σA, τA), θB = (µB, σB, τB), respectively.

Stage (1)

Data Individual Priors

GORT ∼ ExG(µgo, σgo, τgo)
SRRT ∼ ExG(µgo, σgo, τgo, µstop, σstop, τstop, SSD)I+

[1,1000] µgo, σgo, τgo ∼ U[10, 2000]
SSRT ∼ ExG(µgo, σgo, τgo, µstop, σstop, τstop, SSD)I+

[1,1000] µstop, σstop, τstop ∼ U[10, 2000]
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Stage (2)

Data Priors

(µstop, σstop, τstop)′ ∼ MVN(M3×1, ∑3×3) ρµ,σ, ρµ,τ , ρσ,τ ∼ U[−0.99,+0.99]
µstop ∼ N(µµstop , σ2

µstop) µµstop , β20, β30 ∼ N(0, 1000)
σstop|µstop ∼ N(µσstop , σ2

σstop) σµstop , σσstop , στstop ∼ N(0, 10)I+
[0,1000]

τstop|(µstop, σstop) ∼ N(µτstop , σ2
τstop)

µσstopi = β20 + β21.µstopi
µτstopi = β30 + β31.µstopi + β32.σstopi

Figure 4. Two -Stage Bayesian Parametric Approach (TSBPA) with ex-Gaussian distributional
assumption framework. Filled in shapes indicate known values.
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Step (2): Paired Samples Parametric Distribution Test (PSPDT)

This proposed test can be considered as a distributional counterpart of the paired
z-test in the real numbers. Using overall estimates in Step (1), we then conduct the
following paired samples parametric distribution test hypothesis testing for K = 44 at the
5% significance level:

H0 : SSRTO.Single(
−→
θS ) =st SSRTO.Mixture(

−→
θM),

H1 : SSRTO.Single(
−→
θS ) <st SSRTO.Mixture(

−→
θM). (17)

where the Two-Sample Kolmogorov–Smirnov Statistics D(n,mk)
for the kth (1 ≤ k ≤ K)

comparisons of the simulated distributions in (17), the following average two-samples KS
statistics were considered as the test statistics for the comparison of distributions in the test
of (17):

Dn,m =
1
K

K

∑
k=1

Dn,mk (18)

We reject the null hypothesis H0 in favour of alternative hypothesis H1 at given α-level
(e.g., 0.05) whenever

Dn,m > c(α)

√
1
m

+
1
n

: c(α) =

√
−1
2

ln(
1
2
), α = 0.05, n = m = 96. (19)

The Two-Sample K–S test analysis was conducted with R3.4.3 software as before. The
hypothesis testing in (17) were repeated for other comparisons between cluster type SSRT
indices including SSRTA vs. SSRTSingle, SSRTB vs. SSRTSingle and SSRTB vs. SSRTA.

Remark 3. The test (17) with <st replaced by 6=st for the degenerate case of K = 1 reduces to the
usual two samples K-S test at the individual level (15).

3. Results

The results are divided into three subsections. In Section 3.1, we calculated the
posterior mean ex-Gaussian parameter estimations of cluster type-A, cluster type-B, single
and mixture SSRT distribution. Then, using them we compared the descriptive and shape
statistics, including skewness and kurtosis across cluster type indices. Next, in Section 3.2,
we compared single SSRT and mixture SSRT distributions in stochastic order at two levels:
(i) the individual level and (ii) the population level. For the individual level, we applied
IBPA, and for the population level, we used TSBPA. Finally, in Section 3.3, we compare the
comparison results for the descriptive statistics and the entire SSRT distribution in terms of
the cluster weights (WA).

3.1. Descriptive and Shape Statistics

This section includes two sets of descriptive results: First, the results for cluster-
type related mean and standard deviation of the Ex-Gaussian SSRT. Second, the results
for cluster-type-related shape statistics skewness and kurtosis of the involved random
variables. Throughout these results, as it is shown in Figure 4, the parameters (µ, σ, τ) refer
to the mean posterior estimates of the random variables (µ, σ, τ) in the first stage of TSBPA,
respectively (see Appendix B). The descriptive and shape statistics were calculated using
these quantities and Equations (9) and (10).

Table 2 presents the descriptive results for the type-A, type-B, single and mixture
fitted SSRT Ex-Gaussian random variable using IBPA (See Appendix B for three pramaeter
estimates across three clusters). As it is shown, there is no significant difference between
mean and standard deviation between cluster type SSRTs(type-B vs. type-A). However, the
mentioned list of both cluster types of SSRTs is significantly larger than the single SSRT.
Therefore, we conclude at this stage that the mean of mixture SSRT is significantly larger
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than the one of single SSRT. This result is consistent with the frequentist approach [15].
However, it is observed that the variance has significantly increased, and consequently, the
precision has significantly decreased. We remind the reader that there are two evidences
for violation of the assumption of equal impact of the preceding trial type (go/stop) on the
current stop trial SSRT: First, despite the non-significant results presented in Table 2 (Panel
(b): Type B vs. Type A) the mean type-B SSRT has a non-identity linear relationship with
mean type-A SSRT (mean.SSRTBi = β0 + β1.mean.SSRTAi + εi : εi ∼ N(0, σ2

e ), β0 = 96.2,
(95%CI = (4.0, 188.4)); β1 = 0.53 (95%CI = (0.06, 1.0))). Otherwise, such a relationship
must be identity linear (i.e., β0 = 0, β1 = 1). Second, the mean and standard deviation
of type-A SSRT and type-B SSRT are significantly different from those of single SSRT.
Otherwise, all these descriptive statistics would have been equal across type-A, type-B and
type-S single SST clusters.

Table 2. Descriptive results for mean and standard deviation of fitted IBPA ex-Gaussian distribution
to SSRT given cluster type (n = 44).

(a) Descriptive Results

Statistics (Mean (95%CI))

Cluster Type Mean St.d

Type S 196.8 157.8
(173.5, 220.1) (139.4, 176.2)

Type A 265.0 217.7
(235.8, 294.2) (199.1, 236.2)

Type B 253.6 213.2
(222.9, 284.2) (195.7, 231.0)

(b) Two Sample t test

Statistics (Mean (95% CI))

Comparison Mean St.d

Type B vs. Type A −11.4 −4.4
(−53.5, 30.7) (−33.5, 24.7)

Type B vs. Type S 56.8 *** 55.5 ***
(32.2, 81.4) (35.4, 75.7)

Type A vs. Type S 68.2 *** 59.9 ***
(48.3, 88.1) (44.4, 75.4)

Type M vs. Type S 63.7 *** 71.4 ***
(57.2, 70.1) (62.5, 80.3)

Notes: WA = 0.59, *** p-value < 0.0005.

Figure 5 shows the difference between skewness and kurtosis of fitted IBPA Ex-
Gaussian SSRT random variables by cluster type. As shown in Figure 5a, while each of
Mixture SSRT components has smaller or equal skewness versus the Single SSRT, upon
combination into Mixture SSRT, the resultant Mixture SSRT has significantly larger skew-
ness compared to the Single SSRT. Similar results hold for the case of kurtosis as shown in
Figure 5b.
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Figure 5. Plot of statistics difference of fitted IBPA ex-Gaussian SSRT random variable by cluster type
(n = 44): (a) skewness and (b) kurtosis.

Given summary statistics and shape statistics comparison results between single SSRT
and mixture SSRT, one naturally considers comparing their associated distributions. In the
next section, we deal with this topic.

3.2. Bayesian Mixture SSRT Estimation and Comparisons

This section deals with individual and overall level estimations of Single SSRT and
Mixture SSRT and their usual stochastic order comparisons.

Table 3 presents the results of the two-sample KS hypothesis test at the individual
level given by (15) by direction and p-values for the sample of 44 subjects based on IBPA.
Similar hypothesis testing is conducted replacing 6= with < and > in an alternative test.
With two participants exception (case 34 case 37), the result shows that controlling for
Family-Wise Error Rate(FWER) with Bonferroni’s correction (p-value = 0.05/3 = 0.0166) the
single SSRT is smaller than the mixture SSRT in stochastic order. This result is consistent
with the direction of constant index SSRT results [15].
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Table 3. Two-sample Kolmogorov–Smirnov test results for the Single SSRT distribution versus
Mixture posterior SSRT distribution (n = 44).

Alternative Hypothesis

Unequal Greater Less

# Statistics p-Value Statistics p-Value Statistics p-Value

1 0.2708 0.0017 0.0417 0.8465 0.2708 0.0009
2 0.2604 0.0029 0.0208 0.9592 0.2604 0.0015
3 0.3333 0.0001 0.0729 0.6002 0.3333 0.0001
4 0.3438 0.0001 0.0417 0.8465 0.3438 0.0001
5 0.2396 0.0079 0.0312 0.9105 0.2396 0.0040
6 0.2812 0.0009 0.0417 0.8465 0.2812 0.0005
7 0.3021 0.0003 0.0729 0.6002 0.3021 0.0002
8 0.2188 0.0200 0.0312 0.9105 0.2188 0.0101
9 0.3646 0.0001 0.0521 0.7707 0.3646 0.0001
10 0.2396 0.0079 0.0312 0.9105 0.2396 0.0040
11 0.3229 0.0001 0.0417 0.8465 0.3229 0.0001
12 0.3229 0.0001 0.0000 1.0000 0.3229 0.0001
13 0.3021 0.0003 0.0208 0.9592 0.3021 0.0002
14 0.2396 0.0079 0.0104 0.9896 0.2396 0.0040
15 0.3229 0.0001 0.0625 0.6873 0.3229 0.0001
16 0.2500 0.0048 0.0312 0.9105 0.2500 0.0025
17 0.3229 0.0001 0.0417 0.8465 0.3229 0.0001
18 0.3542 0.0001 0.0000 1.0000 0.3542 0.0001
19 0.2604 0.0029 0.0417 0.8465 0.2604 0.0015
20 0.2604 0.0029 0.0312 0.9105 0.2604 0.0015
21 0.3854 0.0001 0.1042 0.3529 0.3854 0.0001
22 0.3438 0.0001 0.0417 0.8465 0.3438 0.0001
23 0.3646 0.0001 0.1146 0.2835 0.3646 0.0001
24 0.3021 0.0003 0.0104 0.9896 0.3021 0.0002
25 0.4896 0.0001 0.0833 0.5134 0.4896 0.0001
26 0.2604 0.0029 0.0104 0.9896 0.2604 0.0015
27 0.3958 0.0001 0.0729 0.6002 0.3958 0.0001
28 0.2708 0.0017 0.0208 0.9592 0.2708 0.0009
29 0.2396 0.0079 0.0104 0.9896 0.2396 0.0040
30 0.3750 0.0001 0.0729 0.6002 0.3750 0.0001
31 0.4062 0.0001 0.0312 0.9105 0.4062 0.0001
32 0.2500 0.0048 0.0208 0.9592 0.2500 0.0025
33 0.2500 0.0048 0.0208 0.9592 0.2500 0.0025
34 0.1562 0.1923 0.0000 1.0000 0.1562 0.0960 *
35 0.2500 0.0048 0.0104 0.9896 0.2500 0.0025
36 0.3021 0.0003 0.0312 0.9105 0.3021 0.0002
37 0.1979 0.0463 0.0104 0.9896 0.1979 0.0233 *
38 0.3125 0.0002 0.0312 0.9105 0.3125 0.0001
39 0.2917 0.0005 0.0625 0.6873 0.2917 0.0003
40 0.3750 0.0001 0.0521 0.7707 0.3750 0.0001
41 0.2188 0.0200 0.0417 0.8465 0.2188 0.0101
42 0.3021 0.0003 0.0208 0.9592 0.3021 0.0002
43 0.2188 0.0200 0.0104 0.9896 0.2188 0.0101
44 0.4062 0.0001 0.0312 0.9105 0.4062 0.0001

Notes: IBPA: #Chains = 3; Simulations = 20,000; Burn-in = 5000 (for both single and mixture parameters); The
sample size for K-S test for each distribution was n = m = 96; *: Exceptional case.
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We test the hypothesis (17) from TSBPA given uninformative priors for an overall
conclusion using a paired samples parametric distribution test. The choice of TSBPA rather
than HBPA was out of consideration for pairwise non-zero correlations in the second stage
of the analysis. One key missing characteristic in the HBPA is the relaxing assumption of
zero correlation of mean posterior parameters at the individual level. This assumption
is violated given cluster-S SSRT mean posterior parameters Pearson correlations ρµσ =
0.20, ρµτ = 0.64, ρστ = 0.66; cluster-A SSRT mean posterior parameters Pearson correlations
ρµσ = 0.52, ρµτ = 0.81, ρστ = 0.74; and, cluster-B SSRT mean posterior parameters Pearson
correlations ρµσ = 0.69, ρµτ = 0.95, ρστ = 0.80. Table 4 presents the results of the paired
samples parametric distribution test using TSBPA:

Table 4. Two-sample Kolmogorov–Smirnov test results for the cluster type SSRT distributions in the
hypothesis test (17) (n = 44).

Comparison Statistics p-Value

SSRTSingle vs. SSRTMixture 0.2095 <0.0312
SSRTSingle vs. SSRTB 0.1984 <0.0562
SSRTSingle vs. SSRTA 0.2256 <0.0152
SSRTB vs. SSRTA 0.0653 >0.9999

Note: The sample sizes for K-S test for both distributions were n = m = 96.
−→
θS = (µT , σT , τT) = (78.4, 93.9, 73.1),

−→
θA = (µA, σA, τA) = (94.0, 134.5, 104.8),

−→
θB = (µB, σB, τB) = (90.9, 142.3, 99.0) and

−→
θM = (WA,

−→
θA,
−→
θB ), with

WA = 0.59.

As we observe from Table 4, the results are conclusive. The single SSRT is (provision-
ally) smaller than cluster type-A SSRT, cluster type-B SSRT (p-value < 0.0562) and Mixture
SSRT. Furthermore, given consideration of mean of SSRT distribution as its point index
estimation, the result regarding the comparison of single SSRT versus Mixture SSRT is
consistent with the direction of the frequentist results as

SSRTc
Single = E(SSRTSingle) = 151.5 < 195.2 = E(SSRTMixture) = SSRTc

Weighted.

Figure 6 shows the plot of the overall density and cumulative distribution function
of cluster type SSRTs with overall TSBPA parameter estimates given in Table 4. As it is
observed in Figure 6b, while there is no such distinction between cumulative distributions
of cluster type-A SSRT, cluster type-B SSRT, and Single SSRT, the cumulative distribution
of single SSRT is clearly on the left side of that of Mixture SSRT.

In this and the previous section, we considered the cluster type weight (WA) in its
fixed individual values. In the next section, we study its role in the comparison results as a
critical variable on its own.

3.3. The Role of Cluster Type Weights in the Comparisons

This section compares the descriptive statistics of mean, variance and the entire
distribution of SSRT indices in terms of individual optimal weights. By definition, the
optimal weight WA is the most natural weight given the independence of assignment of
stop or go process to the given trial [14]. The following proposition determines the values
of the optimal weight [14]:

Proposition 1. The weight WA = 0.75(WB = 0.25) is the optimal weight given independence of
assignment of stop or go process to the given trial in the tracking SST data with proportion of 25%
of stop trials.
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Figure 6. The density and cumulative distribution function (CDF) of overall sample cluster type
SSRT, single SSRT and mixture SSRT with Ex-Gaussian parametric distribution: (a) density and (b)
cumulative distribution function.

Note that the fitted ExG parameters θ = (µ, σ, τ) in each cluster type SST data are
independent of the weights WA. This result is because the fitted ExG parameters for the
SSRT are independent of the stop trials’ proportion. Thus, from the weight WA (as the result
of the equality in Proposition 1). Given this result, we discuss the impact of cluster type
weights on average disparities of mean SSRT estimates and the variance SSRT estimates
as follows.

First, to study the impact of individual weights on the disparities of the mean estima-
tions across indices, we consider average differences of the new index SSRTMixture mean
versus the established index SSRTSingle mean in terms of the individual weights (WA). The
averages of the ExG parameters are taken over entire n = 44 participants. Considering WA
as the main variable, it follows that

∆E(SSRT)(WA) = E(SSRTMixture)− E(SSRTSingle)

= E(WA · SSRTA + (1−WA) · SSRTB)− E(SSRTSingle)

= WA · E(SSRTA) + (1−WA) · E(SSRTB)− E(SSRTSingle)

= (E(SSRTA)− E(SSRTB)) ·WA + (E(SSRTB)− E(SSRTSingle)

= ((µA + τA)− (µB + τB)) ·WA + ((µB + τB)− (µS + τS))

= 11.4 WA + 56.8, (0 ≤WA ≤ 1). (20)
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Figure 7a presents the average disparities of mean mixture SSRT and mean single
SSRT versus individual weights WA for the extrapolated range of [0, 1]. As shown, the
average difference between two index means is linear in terms of the individual weight WA
with the minimum value of 56.8 ms (for minimum sample weight of 0.00) and maximum
value of 68.2 ms (for maximum sample weight of 1.00). Furthermore, their corresponding
averaged disparities equals 63.5 ms (at the overall sample weight of 0.59). Finally, the two
index means’ disparities are maximised to 65.3 ms using the optimal weight of 0.75.

Second, to examine the impact of individual weights on the disparities of the variance
estimations across indices, similar to the case in Section 3.2, we consider average differences
of the new index SSRTMixture variance versus the established index SSRTSingle variance
in terms of the individual weights (WA). The averages of the quadratic ExG parameters
are taken over entire n = 44 participants. Considering WA as the primary variable, it
follows that

∆Var(SSRT)(WA) = Var(SSRTMixture)−Var(SSRTSingle)

= Var(WA · SSRTA + (1−WA) · SSRTB)−Var(SSRTSingle)

= −(E(SSRTA)− E(SSRTB))2 ·W2
A

+

(
(E(SSRTA)− E(SSRTB))2

+(Var(SSRTA)−Var(SSRTB))

)
·WA

+Var(SSRTB)−Var(SSRTSingle) (21)

= −(µA + τA − µB − τB)2 ·W2
A

+((µA + τA − µB − τB)2 + (σ2
A + τ2

A − σ2
B − τ2

B)) ·WA

σ2
B + τ2

B − σ2
S − τ2

S

= −18885.9 W2
A + 21106.8 WA + 20330.3, (0 ≤WA ≤ 1).

In particular, the average variance differences attains its maximum value at

WA =
(µA + τA − µB − τB)2 + (σ2

A + τ2
A − σ2

B − τ2
B)

2(µA + τA − µB − τB)2
≈ 0.56.

Figure 7b presents the average disparities of mixture SSRT variance and single SSRT
variance versus individual weights WA for the extrapolated range of [0, 1]. As shown, the
average difference between two indices variances follows a quadratic increasing–decreasing
pattern in terms of the weights WA with maximum values attained closed to WA ≈ 0.56.
Next, the disparities for the optimal weight WA = 0.75 is smaller than that of population
weight WA = 0.59. However, across all weights spectrum, the average SSRT variance
differences are positive, showing that the new mixture SSRT index has higher variance
than the current single SSRT index. Consequently, its precision is smaller.
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Figure 7. Plot of difference of SSRT index statistics (SSRTMixture vs. SSRTSingle) by weight
WA(n = 44): (a) means and (b) variances.

Finally, to explore the impact of cluster type weights (WA) on the overall SSRT dis-
tributions comparison results for the hypothesis testing (17), we considered the averaged
two-sample KS test statistics S as a function S of weights S = S(WA) and calculated the
corresponding p-values. Figure 8 presents the results in terms of the weights. As shown in
Figure 8b, for almost all ranges of the weights WA, the single SSRT is significantly smaller
than the mixture SSRT in stochastic order. Next, the disparity is the weakest when WA = 0
with the corresponding p-value = 0.0562, and it is the strongest when WA = 1 with the
corresponding p-value = 0.0152. Finally, the disparity at the optimal weight WA = 0.75
is more potent than that of population weight WA = 0.59 with corresponding p-values of
0.0262 and 0.0312, respectively.
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Figure 8. Plot of overall test results of single SSRT versus mixture SSRT: (a) Two-sample KS test
statistics and (b) cut-off point of the test p-value.

4. Discussion
4.1. Present Work

This study presented a mixture Bayesian parametric approach for a more illuminating
SSRT distribution estimation by considering two subtype SST cluster information sug-
gesting a new estimation of the SSRT distribution. Furthermore, it introduced two novel
statistical methodologies accompanied by their empirical applications: TSBPA and PSPDT.
It was hypothesised that considering cluster type information in the new mixture SSRT
distribution calculations would impact the estimation of SSRT distribution. This yields to a
distributional counterpart to the case of constant index SSRT [14,15].

The results confirmed the hypothesis through three observations:

1. The descriptive and shape statistics
2. The distributional comparisons at the individual level and the population level
3. With the validity of the results in the first two observations across the entire spectrum

of the weights

Similar to the constant index SSRT [15], in most cases, the mixture SSRT is different
from the single SSRT in shape statistics and the stochastic order. However, in two special
distinct cases, they are the same: (i) type A cluster SST is empty (WA = 0) and (ii) type B
cluster SST is empty (WA = 1).

This study confirmed that SSRT depends on non-horse race-related factors in each
round of SST experimental trial, such as memory aftereffects and proportion of cluster
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type stop trials. It has shed light on the preparation aspect of choice stop signal reaction
times by treating the previous trial type’s aftereffects as memory in the two-state mixture
model [31]. Besides, given that skewness of the RT distributions increases with memory
involvement (versus a perceptual decision) [44], the increase in reported skewness in the
mixture SSRT versus single SSRT confirms that the proposed mixture model successfully
captures the memory involvement in the decision process [44]. Furthermore, as in the
context of the horse race independent model, an increase in kurtosis of SSRT is proportional
to more extreme values of the right tail of SSRT distribution. Therefore, this causes a higher
probability of failed inhibition in the stop trials(and vice versa). Next, the increase in
reported kurtosis in the mixture SSRT versus single SSRT gives evidence that the proposed
mixture model optimally uses the information given by pre-pushed failed inhibitions in
the stop trials in the estimation of SSRT distribution.

This study’s findings for the SSRT distribution were consistent with the constant
index SSRT when considering the impact of sub-cluster types in the estimations [14,15]. In
detail, there were consistent results between the usual comparison of the single SSRT and
weighted SSRT (as constant indices) and the stochastic comparison of the single SSRT and
mixture SSRT (as non-constant random variables). Indeed, we found that

SSRTc
Single < SSRTc

Weighted, (22)

SSRTSingle <st SSRTMixture. (23)

On the one hand, if we look at the two sides of the Equation (22) as degenerate random
variables, we are led to Equation (23). On the other hand, if we take expectations from both
sides of Equation (23), we are led to Equation (22).

This study’s novel statistical methodological contributions involved the Two-Stage
Bayesian Parametric Approach (TSBPA) and the Paired Samples Parametric Distribution
Test (PSPDT). TSBPA’s advantage was that it considers the underlying non-zero correlation
between estimated mean posterior parameters at the first stage in the second stage’s final
calculations. This feature is neglected in HBPA. PSPDT offered a novel method to compare
paired sets of parametric random variables using the two-samples KS test. An application
of both proposed methods was provided in this study.

There are limitations in the current study. First, the sample size was relatively small
(n = 44). To show more precise comparisons, larger sample size is needed. Second, the
TSBPA assumes a multivariate normal distribution form for the mean posterior parameters
at the second stage, which may not hold. Third, in TSBPA, when comparing overall Mixture
SSRT and overall Single SSRT, there is no specific restriction on the simulation sample sizes
in Equation (18). Here, while we set the sample sizes to n = m = 96 (the SST data trials
size), there could be other choices. Fourth, the two-sample Kolmogorov–Smirnov test has
low sensitivity in the tail of the distributions when comparing them. One may consider
other metrics for comparison purposes [45]. Finally, given the structure of the equations for
the shape statistics (skewness and kurtosis) in terms of the cluster weights (WA), unlike
the descriptive statistics in Section 3.3, there was no simple closed form for the averaged
differences of the new index SSRTMixture skewness (or kurtosis) versus the established
index SSRTSingle skewness (or kurtosis) in terms of the individual weights (WA). Similar
to the descriptive statistics, the existence of such a simple closed formula would shed
more light on the average disparities of skewness and kurtosis of the two indices across a
spectrum of the individual weights.
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4.2. Future Work

The proposed approach in modelling the SSRT distribution in this study should be
replicated in future research in several different directions. This further work may shed
light on further unknown corners. New work includes (i) considering the larger number of
SST trials, (ii) examining the order of trials, (iii) expanding these methods to other clinical
populations, (iv) considering trigger failures in the modelling, (v) interpreting the shape
statistics and (vi) estimating signal respond reaction times (SRRT).

First, research has recommended that reliable estimates of SSRT for adults requires 200
SST trials with 50 stops [16]. Therefore, the current work’s approach needs to be replicated
for SST data with 400 trials, including sub-cluster types of 200 trials with 50 stops for
confirmation and generalisation purposes.

Second, additional research to this study must address the presumption of equal
impact in the order of trials for the same cluster type weights WA. For example, for the
case of WA = 1, one may consider two schemes within the study of 96 SST trials: In the
first scheme, trials numbered 2k(1 ≤ k ≤ 25) are stop trials. In the second scheme, trials
numbered 98− 2k (1 ≤ k ≤ 25) are the stop trials. There is no known study investigating
if, in the same participant, these schemes lead to the same SSRTMixture or not.

Third, after this study, the work should apply the proposed SSRTMixture to study
the inhibitory deficiency in different clinical groups such as ADHD, OCD, autism and
schizophrenia. The application is in terms of descriptive statistics, shape statistics and the
differential disparities across these clinical groups.

Fourth, there are trigger failures that impact the estimations [27]. Given the probability
of trigger failures (TF) of PT(TF), PA(TF) and PB(TF) for the overall SST data, cluster-A
SST data and cluster-B SST data, respectively, there remains an open question on their
relationships and the impact of the cluster type trigger failures in the estimations of the
SSRTMixture and on the above results. The results of such consideration generalise this
study’s findings in terms of trigger failures and control them in order to eliminate a
potential confounding variable, trigger failure status.

Fifth, this study merely reported and compared the shape statistics for skewness and
kurtosis across the cluster type SSRTs, single SSRT and the mixture SSRT distributions.
There is a need to investigate these shape statistics’ psychiatric and psychopathological
interpretations given the ex-Gaussian parametric distribution assumption.

Finally, this study and the earlier study in [15] addressed the estimation of stop signal
reaction times (SSRT) in the case of the violated assumption of similar aftereffects of the
prior trial type. It is plausible to conduct a counterpart investigation on to the estimation
of the signal respond reaction times (SRRT) constant index and distribution.

4.3. Conclusions

There has been a great deal of interest in the aftereffects of inhibition on the estimation
of SSRT in the SST literature from the early 1990s. This study addressed the problem
in part and presented a two-state mixture model of SSRT distribution by considering
the prior trial type with results consistent with the constant SSRT index results in the
literature [15]. The results were consistent across constant index and non-constant random
variable contexts in terms of the algebraic directions of the comparisons. Moreover, more
information was used from the same SST data in the newly proposed mixture estimation
method versus the current single estimation method. The vital assumption introduced
in this work was relaxed in the newly proposed mixture estimation method. Given these
advantages, we recommended considering mixture SSRT distribution (SSRTMixture) as the
most informative estimation of the latency of stopping.
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Abbreviations
The following abbreviations are used in this manuscript:

ADHD Attention Deficit Hyperactivity Disorder
BEESTS Bayesian Ex-Gaussian Estimation of Stop Signal RT distributions
BPA Bayesian Parametric Approach
ExG Ex-Gaussian distribution
FWER Family-Wise Error Rate
GORT Reaction Time in a go trial
GORTA Reaction Time in a type A go trial
GORTB Reaction Time in a type B go trial
HBPA Hierarchical Bayesian Parametric Approach
IBPA Individual Bayesian Parametric Approach
MCMC Marco Chain Monte Carlo
OCD Obsessive Compulsive Disorder
PSPDT Paired Samples Parametric Distribution Test
SSD Stop Signal Delay
SRRT Reaction Time in a failed stop trial
SRRTA Reaction Time in a failed type A stop trial
SRRTB Reaction Time in a failed type B stop trial
SSRT Stop Signal Reaction Times in a stop trial
SSRTA Stop Signal Reaction Times in a type A stop trial
SSRTB Stop Signal Reaction Times in a type B stop trial
SST Stop Signal Task
TF Trigger Failure
TSBPA Two-Stage Bayesian Parametric Approach

Appendix A. Sample SST Data and Its Clusters

This section presents a sample SST dataset of 48 trials with 36 go trials and 12 stop trials
with initial SSD = 200 ms. The GORT and SRRT have ex-Gaussian distributions (values:
−999: missing value; NA: not applicable; 0: failed inhibition; 1: successful inhibition).
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Block Trial GORT (ms) SRRT (ms) SSD (ms) Trial Inhibition Cluster

1 1 356.4 −999 −999 Go NA A
1 2 426.5 −999 −999 Go NA A
1 3 −999 380 350 Stop 0 A
1 4 397.2 −999 −999 Go NA B
1 5 −999 −999 200 Stop 1 A
1 6 −999 −999 100 Stop 1 B
1 7 283.6 −999 −999 Go NA B
1 8 457.3 −999 −999 Go NA A
1 9 361.9 −999 −999 Go NA A
1 10 375.7 −999 −999 Go NA A
1 11 478.5 −999 −999 Go NA A
1 12 355.9 −999 −999 Go NA A
1 13 −999 −999 150 Stop 1 A
1 14 300.5 −999 −999 Go NA B
1 15 347 −999 −999 Go NA A
1 16 390.3 −999 −999 Go NA A
1 17 327.2 −999 −999 Go NA A
1 18 300.4 −999 −999 Go NA A
1 19 382.2 −999 −999 Go NA A
1 20 326.9 −999 −999 Go NA A
1 21 −999 389.8 200 Stop 0 A
1 22 −999 445.4 200 Stop 0 B
1 23 352.4 −999 −999 Go NA B
1 24 403.1 −999 −999 Go NA A
2 1 256.4 −999 −999 Go NA A
2 2 426.5 −999 −999 Go NA A
2 3 −999 360 350 Stop 0 A
2 4 353.2 −999 −999 Go NA B
2 5 −999 −999 200 Stop 1 A
2 6 −999 −999 100 Stop 1 B
2 7 253.6 −999 −999 Go NA B
2 8 427.3 −999 −999 Go NA A
2 9 351.9 −999 −999 Go NA A
2 10 355.7 −999 −999 Go NA A
2 11 455.5 −999 −999 Go NA A
2 12 335.9 −999 −999 Go NA A
2 13 −999 −999 150 Stop 1 A
2 14 321.5 −999 −999 Go NA B
2 15 322 −999 −999 Go NA A
2 16 340.5 −999 −999 Go NA A
2 17 317.2 −999 −999 Go NA A
2 18 303.1 −999 −999 Go NA A
2 19 322.9 −999 −999 Go NA A
2 20 316.5 −999 −999 Go NA A
2 21 −999 368.7 200 Stop 0 A
2 22 −999 435.2 200 Stop 0 B
2 23 342.3 −999 −999 Go NA B
2 24 413.5 −999 −999 Go NA A

Appendix B. SSRT ExG Cluster Type Parameter Estimations

This section presents the data of mean posterior ex-Gaussian parameters estima-
tions across trial types by IBPA given by Equation (7) and denoted by E(µstop|x) →
µstop, E(σstop|x)→ σstop, E(τstop|x)→ τstop in Figure 4, (n = 44).



Brain Sci. 2021, 11, 1102 24 of 26

µ− Parameter σ− Parameter τ− Parameter

# µS µA µB σS σA σB τS τA τB

1 67.899 110.575 74.101 92.015 174.890 128.896 118.238 180.543 96.303
2 80.776 134.302 74.966 115.760 161.009 114.076 98.747 164.481 72.904
3 101.214 73.414 240.510 69.946 86.953 246.686 62.308 58.302 224.543
4 76.125 101.214 81.148 70.314 97.988 161.328 60.001 103.904 87.476
5 107.774 115.981 144.308 133.990 216.231 136.901 137.250 175.537 120.983
6 82.189 72.291 116.641 80.937 104.697 152.139 66.669 82.550 129.349
7 91.065 102.595 98.262 98.313 187.322 160.173 61.743 107.831 96.720
8 104.330 104.326 161.787 132.146 119.162 217.623 109.687 102.335 167.392
9 65.595 79.870 102.948 90.731 166.297 139.209 54.418 92.445 102.436

10 51.841 57.038 118.292 138.916 90.925 244.038 87.252 57.347 163.274
11 68.697 101.933 87.970 96.996 180.128 120.074 69.633 123.469 89.641
12 46.706 104.368 58.037 163.780 185.456 139.646 59.603 140.534 62.199
13 68.347 132.873 74.025 153.626 245.102 144.620 78.252 175.639 80.781
14 97.394 96.609 227.966 173.632 130.787 247.703 130.172 98.451 205.539
15 82.559 72.106 129.965 77.780 126.941 142.630 67.081 82.437 139.205
16 117.957 171.526 95.175 95.554 171.345 104.171 128.851 214.714 98.275
17 64.794 94.754 76.374 114.202 123.549 203.176 58.881 107.584 89.813
18 87.286 193.774 120.393 155.274 209.582 184.605 96.340 200.869 122.920
19 94.714 125.221 81.660 111.226 168.084 136.605 99.098 159.208 100.093
20 75.245 81.478 141.656 97.756 118.291 181.230 104.026 110.761 160.693
21 71.062 95.747 64.564 58.011 118.150 173.817 52.313 105.009 85.212
22 81.872 127.913 60.126 78.948 113.331 121.584 66.274 135.348 72.943
23 107.987 96.020 111.418 50.664 115.317 166.393 51.215 103.610 124.598
24 101.584 209.627 87.178 171.609 218.032 183.082 131.537 222.475 103.681
25 52.794 77.214 101.703 67.324 186.747 175.459 46.073 100.695 123.011
26 95.816 85.851 194.075 189.521 246.825 184.251 123.096 127.805 176.595
27 117.658 153.634 93.757 62.032 131.224 163.681 62.041 145.738 105.041
28 74.982 101.042 118.134 162.917 169.631 223.536 100.496 128.872 147.351
29 88.309 95.600 161.360 149.086 179.344 203.212 147.284 164.919 178.930
30 110.214 112.539 114.247 62.896 123.664 159.486 59.637 119.830 122.869
31 69.559 113.793 84.797 105.813 162.989 163.887 66.243 144.137 98.274
32 86.656 106.062 121.578 141.479 182.938 190.266 137.950 147.733 174.887
33 91.486 98.925 138.757 153.716 194.385 186.988 136.731 153.773 160.485
34 117.334 332.094 82.688 173.864 291.666 98.011 266.191 267.137 79.306
35 211.322 298.325 263.992 174.198 177.075 239.405 249.031 201.246 236.296
36 169.964 205.776 200.058 118.306 193.870 168.009 151.777 198.589 177.212
37 107.486 113.820 264.434 173.840 134.020 256.407 221.662 114.100 258.968
38 82.222 96.709 101.946 94.497 150.815 139.692 88.207 126.417 121.590
39 71.434 100.440 95.851 84.124 181.053 121.111 113.964 168.324 102.433
40 121.865 147.288 131.370 58.999 108.255 161.302 76.354 130.551 135.443
41 173.617 177.401 234.773 154.409 229.659 178.450 210.027 234.848 194.605
42 92.570 127.033 128.485 120.396 180.311 143.743 113.738 158.973 126.733
43 75.441 110.671 65.551 144.454 217.324 111.055 80.645 138.963 71.760
44 92.572 148.911 124.385 98.960 160.314 171.516 59.378 123.322 116.718

Notes: µS, σS, τS: ExG SSRT parameters for single cluster SST data; µA, σA, τA: ExG SSRT parameters for type-A cluster SST data; µB, σB, τB: ExG
SSRT parameters for type-B cluster SST data; IBPA: #Chains = 3; Simulations = 20,000; Burn-in = 5000 (for both single and mixture parameters).
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