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Abstract

differences (P > 0.05).

Background: Because of expanding presence of nanomaterials, there has been an increase in the exposure of
humans to nanoparticles that is why nanotoxicology studies are important. A number of studies on the effects of
nanomatrials in in vitro and in vivo systems have been published. Currently cytotoxicity of different nanoparticles is
assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on different cell lines to
determine cell viability, a tedious and expensive method. The aim of this study was to evaluate the Artemia salina
test in comparison with the MTT assay in the assessment of cytotoxicity of nanostructures because the former
method is more rapid and convenient and less expensive.

Methods: At the first stage, toxicity of different nanoparticles with different concentrations (1.56-400 pg/mL) was
measured by means of the brine shrimp lethality test. At the second stage, the effect of nanoparticles on the viability of
the 1929 cell line was assessed using the MTT assay. Experiments were conducted with each concentration in triplicate.

Results: The results obtained from both tests (A. salina test and MTT assay) did not have statistically significant

Conclusions: These findings suggest that the A. salina test may expedite toxicity experiments and decrease costs, and
therefore, may be considered an alternative to the in vitro cell culture assay.
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Background

Nanoscience is a novel science that is being developed
to probe and manipulate matter on the scale of single
atoms and molecules. Physicist Richard P. Feynman was
the first to mention molecular machines built with
atomic precision at a meeting of the American Physical
Society in 1959 [1], and Noro Taniguchi, a professor at
the University of Tokyo, coined the term nanotechnology
in 1979 [2]. Nanotechnology is the use of nanoscience to
design NMs (nanomaterials) and NPs (nanoparticles), with
structural components between 1 and 100 nanometers; it
is thought to be one of the key technologies of the 21st
century [3,4]. In the above range, physicochemical charac-
teristics of NPs in biological systems can vary. Some
potential hazards have been identified in the life cycle

* Correspondence: ramazania@zums.ac.ir

'Cell and Molecular Biology Departments, Pharmaceutical Sciences Branch,
Islamic Azad University, Tehran, Iran

“Biotechnology Departments, School of Pharmacy, Zanjan University of
Medical Sciences, Zanjan, Iran

Full list of author information is available at the end of the article

( BiolMed Central

of NMs and NPs [5,6]. Growing research and develop-
ment in nanotechnology have resulted in the identifi-
cation of many unique properties of nanomaterials
such as enhanced magnetic, catalytic, optical, elec-
trical, and mechanical properties when compared to
conventional formulations of the same materials [7].
While nanoparticles have a wide variety of functions,
there has been increasing issues and debate amongst
the regulatory and scientific community regarding the
fate of nanoparticles in biological systems and associ-
ated side effects these agents might have on living
organisms [8-12]. These materials are increasingly used
for commercial purposes and leading to direct and in-
direct exposure of humans [13]. Any in vivo use of
nanoparticles requires thorough understanding of the
kinetics and toxicology of the particles, establishment of
principles and test procedures to ensure safe manufac-
ture and usage of nanomaterials, and comprehensive
training of personnel in safety and potential hazards of
nanotechnology [13]. Nanotoxicology research is applied
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to various fields including biology and pathology, but
typically to pharmacology and to the use of NMs and
nanodevices for diagnostic and therapeutic purposes.
Therefore, a key goal for toxicologists is to identify
in vitro and in vivo assays accurately reflecting the ability
of NPs to induce toxic effects in the humans and in the
environment. In addition, standardized tests for both
in vitro and in vivo studies are needed to develop better
and more rapid screening techniques and to predict
toxicity [14,15]. The cytotoxicity effects of NPs were in-
vestigated in a multitude of animal models by means of
in vivo tests employing the typical NP exposure routes,
i.e., pulmonary, oral, dermal, and injection based [16].
The cost and labor intensiveness of the in vivo studies
have led researchers to the use of in vitro methods for
assessment of NPs cytotoxicity. In addition, animal
rights advocates have criticized the use of animals in
nanotechnology experiments. All in vivo studies must
be conducted with the approval of regulatory bodies
such as IACUC (an Institutional Animal Care and Use
Committee) to ensure ethical treatment of animals [16].
For the above reasons, in vitro techniques are increas-
ingly used for the analysis of cytotoxicity of NPs including
cell culture, the WST-1 assay [17,18], XTT assay, MTT
assay [19,20], LDH assay, BrdU assay, and fluorescence
microscopy [21,22]. Currently, cytotoxicity testing of
various NPs in cell culture involves the MTT assay,
which determines cell viability based on mitochondrial
function by measuring the activity of mitochondrial
enzymes [23-27]. In this test, tetrazolium is reduced by
mitochondrial succinate dehydrogenase of live cells to
water-insoluble purple formazan crystals, which are
subsequently solubilized using an organic solvent (e.g.,
dimethyl sulfoxide; DMSO) [28]. The cell viability is
quantified based on absorbance of the solution at 570 nm.
Therefore, the MTT assay requires solubilization steps
with tetrazolium, which is toxic to cells and can interfere
with some chemical reactions [28]. The cytotoxicity assays
are often tedious and expensive, and there is a lack of a
simple and rapid screening procedure. Nowadays, brine
shrimp lethality assays are extensively used in research
and applied toxicology [29]. There is a tendency to use an
Artemia salina assay in toxicological tests that screen a
large number of extracts for drug discovery in medicinal
plants [30-33]. This is because in this case, aseptic tech-
niques are not required, and thus A. salina assays could
replace the more ethically challenging MTT assay that
requires animal serum [34]. This assay was proposed by
Michael and coworkers in 1959 and was later adopted by
many laboratories as a method for preliminary estimation
of toxicity [35]. Artemia is one of the most valuable test
organisms available for ecotoxicity testing, and the avail-
able research suggests that several applications of Artemia
to toxicology and ecotoxicology will continue to be used

Page 2 of 6

widely [36]. Because of the rapidity, convenience, and low
cost of Artemia-based assays, we decided to evaluate the
A. salina test in comparison with the MTT assay in the
assessment of cytotoxicity of different classes of NPs.

Materials and methods

Materials

Fetal bovine serum (FBS), phosphate-buffered saline (PBS),
trypsin, penicillin, streptomycin, DMSO, 3-[4,5-dimethyl-
thiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT),
Triton X-100, and the RPMI-1640 medium supple-
mented with 10% heat inactivated FBS were purchased
from Sigma-Aldrich. The mouse fibroblast cell line
(L929) was provided by Pasteur Institute of Iran.

Synthesis of NPs

Sixteen NPs from different classes (Table 1) were pre-
pared by the Nanotechnology Laboratory of School of
Pharmacy of Zanjan University of Medical Sciences. The
zeta potential and particle size distribution of the prepared
nanoparticles were determined by photon correlation
spectroscopy (PCS) using a Nano/zetasizer (Malvern
Instruments, Nano ZS, Worcestershire, UK) working
on the dynamic light scattering (DLS) platform.

Cell culture and determination of cytotoxicity by MTT
assay

The effect of NPs on the viability of L929 cells was
assessed by means of the MTT assay. After thawing, the
cells were cultured in the RPMI 1640 medium contain-
ing 10% FBS, penicillin (100 units/mL), and strepto-
mycin (100 mg/mL) at 37°C in a humidified 5% CO,
incubator. The cells were seeded in a 96-well plate at a
density of 5,000 cells per well (the cells were stained
with trypan blue and counted with haemocytometer).
These cells were incubated overnight at 37°C before the
cell viability test. A stock suspension of each NP at
50 mg/mL in distilled water was prepared. After that,
fresh suspensions of different concentrations of NPs
(two fold serial dilutions from 1.56-400 pg/mL) were
made using serial dilution of the stock suspensions of
NPs in the RPMI 1640 medium, immediately before use.
We added 200 pL of a suspension (different concentra-
tions of NPs) to each well of the microtiter plates. The
cells were incubated for 24 h under the same conditions.
Wells without any NPs served as a negative control. The
experiments were performed in triplicate for each con-
centration. To assess cell survival, 100 pL of an MTT
solution (2 mg/mL in PBS) was added to each well and
incubated for 3 h at 37°C to produce insoluble formazan.
Then, 100 uL of DMSO was added to dissolve formazan
crystals, and the absorbance was measured on an Infinite
M200 microplate reader (Tecan) at 570 nm, with 630 nm
as a reference wavelength. The percentage of cell viability
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Table 1 Names and characteristics of NPs used in this study
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NPs class NPs name Size NPs (nm) Zeta potential (mV)
Inorganic nanoparticles Magnetic 55 -31
Nanosfer 97 +89
Lipid-base nanoparticles Liposome 139.3 -28
Coated SLNs 464.6 +20
Uncoated SLNs 176.3 - 45
Nanogele + SLN 3766 +4
Polymeric nanoparticles Nanogele 270 +22
Micellar 979 -1.10
PAMAM (G5) 6 +36.8
PAMAM-FA 55 +364
PAMAM-PEG-FA 70 9.12
Drug nanoparticles Nanosuspansion Atorvastatin 269.8 ND
Nanosuspansion Ibuprofen 160.9 ND
Nanosuspansion Repaglinide 260.6 ND
Nanosuspansion Cyclosporin 2205 ND
Nanosuspansion Azitromycin 270 ND

ND; not determined.

was calculated using the formula (Agest/Acontrol) X 100,
where A is the mean absorbance of treated cells and
Acontrol IS the mean absorbance of a negative control.

Toxicity testing by A. salina

A. salina eggs were purchased from the Aquatic Animal
Research Center, Urmia University, Urmia, Iran. Dried
cysts were placed in a bottle containing artificial sea
water which was prepared by dissolving 35 g of sodium
chloride in 1 L of distilled water. After 36-48 h incuba-
tion at room temperature (28—30°C) under conditions of
strong aeration and continuous illuminations [33], the
larvae (nauplii) hatched within 48 h.

The evaluation of cytotoxicity of NPs in A. salina was per-
formed according to the previous methods [30,33,37,38].
The assay was carried out on larvae of brine shrimp
(A. salina Leach.). A stock solution of 50 mg of nano-
particles in 1 mL of distilled water was prepared. Then,
fresh suspensions with different concentrations of NPs
(two fold serial dilutions from 1.56—400 pg/mL) were
made by means of serial dilution of the stock suspen-
sions of NPs in artificial sea water (35 g/L) immediately
before use. We added 200 pL of a suspension (different
concentrations of NPs) to each well of the 96-well mi-
crotiter plates. After that, 10 nauplii per well were
added in the 96-well plates and incubated at room
temperature for 24 h. The numbers of surviving nauplii
in each well were counted under a stereoscopic micro-
scope after 24 h. The experiments were conducted in
triplicate for each concentration. The negative control
wells contained 10 nauplii and artificial sea water only.

The percentages of deaths were calculated by comparing
the number of survivors in the test and control wells. The
lethality was calculated using Abbott’s formula as follows:
% Lethality = [(Test — Control)/Control] x 100.

Statistical analysis

All experiments were done in triplicate and the results
were calculated as a mean + standard deviation (SD). The
experimental data were processed using the paired sample
t-test, Pearson correlation and linear regression analysis of
the SPSS version 16.0 software for Windows. The toxicity
of each nanoparticle was calculated from the 50% lethality
dose (LDsp) by means of Finney’s Probit analysis [39].

Results

Cytotoxicity of nanostructures by the MTT assay

The MTT assay is a viable method for assessing in vitro
cytotoxicity of NPs. In this study, L929 cells were treated
with different concentrations (0.78-200 pg/mL) of the
16 NPs (Table 1). Cell viability was determined 24 hours
after the treatment. The results are presented in Table 2.
Uncoated solid lipid nanoparticles (SLNs), Nanogel + SLN,
Bare Nanogel, polyamidoamine (PAMAM; G5), and
PAMAM-FA demonstrated moderate cytotoxicity. In
contrast, the NPs with IC5o > 200 pg/mL were not toxic
to the L929 cell line. The cytotoxicity was weak when
the ICs values were between 150 and 200 pg/mL.

Cytotoxicity of nanostructures in the brine shrimp assay
The brine shrimp lethality assay was also used to deter-
mine the cytotoxicity of NPs. According to the results
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Table 2 NPs toxicity assay by Artemia salina and MTT assay
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NPs name Artemia salina 95% confidence limits for MTT assay, 95% confidence limits for
assay, LCso (ng/m) concentration 1Cs0 (ng/ml) concentration
Lower bound Upper bound Lower bound Upper bound

Magnetic 698.710 431.764 2669.870 997.402 527931 3340.601
Nanosfer 302.001 215853 497.009 207431 141.862 365.065
Liposome 751.249 432.851 6492.955 1002.666 543.931 4358.603
Coated SLNs 360.594 285519 501.000 605.594 472.900 1248.021
Uncoated SLNs 239.040 192,979 310917 149.018 90.886 328486
Nanogele + SLN 19.656 15.141 24.908 113.903 58.153 380.573
Nanogele 40.440 8.221 95.196 130171 77672 285277
Micellar 560.060 352.592 1801.667 686.002 263396 1329.851
PAMAM (G5) 145.6 60435 671.764 72.254 41.149 139.077
PAMAM-FA 213316 185.467 839316 99.783 61.360 130.925
PAMAM-PEG-FA 401.21 256482 1002310 270.585 129.042 496.556
Nanosuspansion Atorvastatin 417349 272658 1046.615 807.668 301.840 1080.114
Nanosuspansion Ibuprofen 373526 285.877 559357 156.433 117.536 244.043
Nanosuspansion Repaglinide 807.754 488424 4335.993 297.756 221.995 527.574
Nanosuspansion Cyclosporin 531.961 368.036 1095.239 167.965 108493 230459
Nanosuspansion Azitromycin 110316 57.555 231.560 162512 168.114 249652
(Table 2), of the 16 NPs that we screened for lethality in ~ Discussion

A. salina, only two NPs (Nanogel + SLN and Nanogel)
showed strong toxicity (LCsg < 100 pg/mL). In contrast,
NPs of Uncoated SLN, PAMAM (G5), Nanosuspension
Ibuprofen, and Nanosuspension Azithromycin exhibited
moderate cytotoxicity (LCso ranged between 100 and
500 pg/mL), and the other NPs showed weak cytotox-
icity in A. salina (LCso range 500—-1000 pg/mL) [37,40].
Comparison between the results of two methods is indi-
cated in Figure 1. As shown in Figure 1, the trend lines
and the direction of the graphs are in same direction.

Several assays for eco-toxicological testing of nanoma-
terials have been developed. Different model systems
such as bacteria [41], fathead minnows [42], zebrafish
embryos [43], copepod [44], Daphnia [45,46], and rain-
bow trout [47,48] have been reported [49]. In addition to
standard tests, there is a need to establish better, rapid
and convenient methods to predict the toxic effects of
nanomaterials. Till now, A few studies have reported the
toxicity effect of nanomaterials on A. salina [38,50-52].
These studies were investigated on metal nanoparticles
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Figure 1 Comparison of Artemia salina and MTT assay results
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and we want develop the A. salina assay for toxicity as-
sessment of different class of nanomaterials especially
those used for drug deliveries.

In this work, cytotoxicity of 16 NPs was assessed using
two methods: the brine shrimp lethality assay and the MTT
assay in 1929 cells. According to the results (Figure 1) the
correlation between the LCsy and ICsq values is significant
(R*>=0.72, P =0.000). This mean that 72% variability noted
in MTT method could be accounted for by brine shrimp
lethality assay and 28% is unaccounted for due to measure-
ment error. There was not statistically significant difference
between two assays when the results were compared with
paired t test (P = 0.402). Also the comparison between LCsg
and ICsy mean values statistically analyzed by chi square
test and the result showed that there is no differences
between two assay methods (P = 0.235). This mean that re-
sults obtained by brine shrimp lethality assay is comparable
with MTT results. Both the ranking and the degree of cyto-
toxicity were similar between the brine shrimp lethality
assay and the MTT assay. As it has been shown in Table 2,
the ranges of 95% confidence limit are wide. The width of
the confidence interval for an individual study depends to a
large extent on the sample size. Larger studies tend to give
more precise estimates of effects (and hence have narrower
confidence intervals) than smaller studies. In order to ob-
tain a more reliable estimate of the confidence interval it
may be necessary to perform several independent assays
and to combine these into one single confidence interval
[53]. The results demonstrate the ability of the brine shrimp
lethality assay to accurately quantify cytotoxicity of NPs
and to replace the MTT assay, which is expensive and tedi-
ous. In this field, cytotoxicity assays and experimental
procedures often lack a simple, convenient, and rapid
screening method. On the other hand, the brine shrimp
lethality assay has been used in toxicology research rou-
tinely for over thirty years [36]. The genus Artemia has a
several advantages that make it ideal for general toxicity
assays including wide geographical distribution, adaptability
to extreme conditions, capability to use several nutrient re-
sources, and availability of their cysts for collection [36].
The brine shrimp assay is convenient because it is rapid
(24 h), economical, and simple. The eggs of A. salina are
readily available at low cost and remain viable for years in
dry storage. The assay easily accommodates a large number
of nauplii for statistical validation and no special equipment
is needed. Moreover, this assay does not require animal
serum and thereby it prevents unnecessary use of animals
in scientific experiments. In summary, it is possible to
measure cytotoxicity of NPs using the brine shrimp lethality
assay instead of the common in vitro cell culture assays.

Conclusion
This work shows that the brine shrimp lethality assay can
be used to study toxicity of nanostructures. Self-sufficiency
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and rapid results are important advantages of this method.
Artemia-based toxicity assay of NPs are cheap, conti-
nuously available, simple and reliable and are thus an im-
portant answer to routine needs of toxicity screening, for
industrial monitoring requirements or for regulatory pur-
poses. Our data are expected to facilitate pharmacological
and nanotoxicological research.
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