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Abstract 
Tumorigenesis arises from the dysfunction of cancer genes, leading to uncontrolled cell proliferation through various mechanisms. 
Establishing a complete cancer gene catalogue will make precision oncology possible. Although existing methods based on graph 
neural networks (GNN) are effective in identifying cancer genes, they fall short in effectively integrating data from multiple views and 
interpreting predictive outcomes. To address these shortcomings, an interpretable representation learning framework IMVRL-GCN is 
proposed to capture both shared and specific representations from multiview data, offering significant insights into the identification of 
cancer genes. Experimental results demonstrate that IMVRL-GCN outperforms state-of-the-art cancer gene identification methods and 
several baselines. Furthermore, IMVRL-GCN is employed to identify a total of 74 high-confidence novel cancer genes, and multiview data 
analysis highlights the pivotal roles of shared, mutation-specific, and structure-specific representations in discriminating distinctive 
cancer genes. Exploration of the mechanisms behind their discriminative capabilities suggests that shared representations are strongly 
associated with gene functions, while mutation-specific and structure-specific representations are linked to mutagenic propensity 
and functional synergy, respectively. Finally, our in-depth analyses of these candidates suggest potential insights for individualized 
treatments: afatinib could counteract many mutation-driven risks, and targeting interactions with cancer gene SRC is a reasonable 
strategy to mitigate interaction-induced risks for NR3C1, RXRA, HNF4A, and  SP1. 

Keywords: cancer gene identification; interpretable deep learning; multiview representation learning; graph neural network; precision 
oncology 

Introduction 
Cancer remains a leading global health threat, causing nearly 10 
million deaths in 2020 [1]. Tumorigenesis involves gene function 
changes that provide a growth advantage to cells, thus identifying 
pivotal genes in the process as cancer genes [2]. Targeted thera-
pies, such as vemurafenib for BRAF mutations [3] and IMAB362 
for CLDN18.2 [4], have shown significant clinical success. How-
ever, tumor heterogeneity necessitates discovering new drivers to 
broaden targeted treatments. 

Efforts to catalog known cancer genes (KCGs) include projects 
like the Network of Cancer Genes (NCG) [5] and  the COSMIC Can-
cer Gene Census (CGC) [6]. Computational methods, leveraging 
genomic data, have accelerated this process. Methods like MuSiC 
[7], MutSigCV [8], deepDriver [9], and OncodriveCLUST [10] predict 
cancer genes through mutation analysis. Despite advances, rely-
ing solely on genomic data has limitations, ignoring mechanisms 
like epigenetic changes and protein interactions. Thus, the incor-
poration of diverse gene profiles is imperative. 

Recent approaches predict cancer genes using complemen-
tary information from diverse gene profiles and interaction 
information from intricate protein–protein interaction (PPI) 
networks that finely control human traits. Methods like LOTUS 
[11] and ModulOmics [12] illustrate the value of multiview 
data and interaction data. However, they are not specifically 
designed for graph-structured data and cannot fully exploit 
resourceful interaction knowledge. Graph neural networks (GNNs) 
[13] are deep learning frameworks developed specifically for 
graph-structured data, enhancing characterization by leveraging 
multiview data and interaction knowledge. Recently, several GNN-
based methods have been proposed for predicting cancer genes 
[14–16]. For example, EMOGI [14] integrates genomic, epigenomic, 
and transcriptomic features with PPI networks, demonstrating 
superior performance compared to methodologies lacking such 
integrative approaches. MTGCN [15] introduces an additional 
edge reconstruction task to utilize knowledge from unlabeled 
samples. MODIG [16] integrates multiple biological networks and 
utilizes multidimensional graph attention networks (GAT) to fuse
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multiple representations. These methods achieved elevated 
performances by considering multiview data and interaction 
knowledge simultaneously. Nevertheless, these methods straight-
forwardly integrated multiview data in a concatenated manner, 
thereby disregarding the significance of distinct views and failing 
to effectively leverage the consensus information inherent in 
multiple views. Another concern is the lack of interpretability 
and validation in the decision-making process for these deep 
learning methods, limiting the applicability and generalization 
of the results [17]. For cancer gene identification, obtaining a list 
of candidates without understanding the causal factors hinders 
further mechanism research and clinical therapy development. 

Multiview representation learning is a promising approach 
for modeling multiview data. Existing approaches mainly adopt 
two strategies: fusion and alignment. The fusion strategy fuses 
features from multiple views into a condensed representation [18, 
19], while the alignment strategy projects learned multiview rep-
resentations into an aligned space [20–23]. Recently, a particular 
type, known as the shared-and-specific disentangled method [21, 
22, 24], has attracted considerable interest. This method learns 
shared and specific representations from multiview data, demon-
strating consensus and complementary effects. Research shows 
that the comprehensive consideration of consensus and comple-
mentary effects can augment downstream learning tasks’ perfor-
mance [25, 26]. Moreover, these distinctly disentangled shared and 
specific representations make the model’s decision-making and 
prediction processes easier to understand. 

In this work, we present IMVRL-GCN, an Interpretable Multi-
View Representation Learning framework based on Graph 
Convolutional Network, to predict cancer genes using integrated 
multiview data and the PPI network. Compared to four self-
implemented baselines and three state-of-the-art cancer gene 
identification models in different experiments, IMVRL-GCN 
demonstrated superior performance in both AUC and AUPR 
metrics. Ultimately, we compiled a list of 74 high-confidence 
candidate cancer genes (CCGs) by implementing IMVRL-GCN. To 
understand the model’s decisions, we applied a comprehensive 
analysis of the multiview representations, highlighting the 
importance of both shared and specific representations in 
novel predictions. Additionally, our in-depth analyses of these 
representations suggest potential therapeutic interventions. 
Overall, IMVRL-GCN presents a promising approach to complete 
the KCG catalogue and advance cancer treatment development. 

Methods 
Dataset collection 
In this study, we employed Peng’s dataset [15] including multiview 
data (three-omics and one structural data) for cancer gene 
identification. The three-omics data includes genomic (somatic 
mutation), transcriptomic (gene expression), and epigenomic 
(DNA methylation) profiles. The structural data is the PPI network 
from the Carcinogenic Potency Database (CPDB version 34) [27]. 
The structural data not only serve as input to the GCNs but are 
also utilized for extracting structural features that can effectively 
improve the identification of cancer genes, as previously done by 
Peng et al. [15]. Our benchmark dataset comprises 796 positive 
samples from the Network of Cancer Genes (NCG version 6.0) 
[5] and DigSEE [28], and 2187 negative samples, obtained by 
excluding genes present in NCG [5], Kyoto Encyclopedia of Genes 
and Genomes(KEGG) cancer pathways [29], Online Mendelian 
Inheritance in Man (OMIM) database [30], MSigDB [31], and 
those correlated to cancer gene expression [32]. To investigate 
the influence of diverse PPI networks on model performance, 

we considered eight other PPI networks. The first PPI network 
was from the STRING database (version 11) [33], with a low-
confidence interactions filtration threshold of 0.85. The remaining 
seven PPI networks were sourced from NDEx (version 2.5.1) [34]. 
We constructed corresponding datasets for these networks, and 
for ease of representation, we named the datasets according 
to the network’s name. The implementation is as follows: for 
each dataset, we utilized the same three-omics data as in Peng’s 
dataset, and for the structural data, we excluded genes that were 
deficient in multiview data and their connections. 

Workflow overview of interpretable multiview 
representation learning framework based on 
graph convolutional network 
Inspired by advances in multiview representation learning tech-
nology and accumulation of high-throughput biological data, we 
proposed IMVRL-GCN to improve the accuracy and interpretabil-
ity of cancer gene identification. IMVRL-GCN comprises four mod-
ules: a multiview feature extractor to obtain gene multiview 
features, a shared representation learner to capture shared multi-
view information, a specific representation learner to learn view-
specific information, and a cancer gene predictor to combine 
the shared information and specific information for cancer gene 
identification. The details of each module are outlined below and 
illustrated in Fig. 1. 

The multiview feature extractor 
Similar to MTGCN, we extracted multiview features from three-
omics data and structural data. For genomic data, the gene muta-
tion rate was defined as the average number of single-nucleotide 
variant (SNVs) across samples for a cancer type. For transcrip-
tomic data, the differential expression rate per gene was cal-
culated by averaging the log2 fold change between tumor and 
normal pairs. For epigenomic data, the differential DNA methy-
lation rate per gene was characterized as the mean difference in 
the methylation signal values between tumor and normal pairs. 
These three-omics data were calculated for each of the 16 cancer 
types based on 8000 samples as the three-omics features [35]. 
For structural data, a network embedding algorithm (i.e. node2vec 
[36]) was performed on the PPI network from the CPDB database 
to obtain a feature of each gene, which can capture the topological 
structural information in the PPI network. Thus, we obtained four-
view features for each gene. Given a set of genes, their multiview 
features can be expressed as X = {Xv}V 

v=1, where  V denotes the 
total number of views, which is equal to 4 for the four-view 
features in this study. For the k-th gene in the training set of K 
genes, Xv 

k denotes its v-th view feature, Xv 
k ∈ Rl, with  l = 16 

denoting the input gene feature dimension. 

The shared representation learner 
Shared representations should be consistent across multiview 
features to maintain their consensus impact on cancer gene 
identification. Specifically, we leveraged the GAN-based frame-
work [22, 25] to render shared representations that present sim-
ilar classification indicators for preserving their mutual influ-
ence on cancer gene identification. Given the i-th and the j-
th view features of the k-th gene Xi 

k and Xj 
k, i �= j, we  fed  

them into the well-designed generators Gi 
shared and Gj 

shared, respec-
tively, which are multi-layer GCNs, where i, j = 1, . . . , V. After  
that, we obtained their shared representations Gi 

shared

(
A, Xi 

k

)
and 

Gj 
shared

(
A, Xj 

k

)
, where  A is the adjacent matrix of the PPI network, 

then employed a discriminator Dij 
shared to distinguish the generated 

Gi 
shared

(
A, Xi 

k

)
and Gj 

shared

(
A, Xj 

k

)
, resulting in the consensus score
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Figure 1. Overview of the IMVRL-GCN. The IMVRL-GCN is an end-to-end framework consisting of four modules, namely, the multiview feature extractor, 
the shared representation learner, the specific representation learner, and the cancer gene predictor. The shared and specific representation learners 
capture the consensus and complementary information from multiview features through their separate generators and discriminators, respectively. 
The cancer gene predictor yields the probability of a certain gene as a potential cancer gene based on the fusion of the consensus and complementary 
information. 

formulated as follows: 

Pij 
k = Dij 

shared

(
Gi 

shared

(
A, Xi 

k

)
, Gj 

shared

(
A, Xj 

k

))
(1) 

where Pij 
k ∈ [0, 1]. In the training procedure, the designed gener-

ators and discriminator were assigned the opposite optimization 
objectives, with generators Gi 

shared and Gj 
shared aiming at maximiz-

ing Pij 
k for capturing the consistent information between the i-th 

and the j-th views and discriminator Dij 
shared seeking to minimize 

Pij 
k . That is, the generators Gi 

shared and Gj 
shared aim at deceiving 

discriminator Dij 
shared, resulting in the finally derived shared view 

representations Gi 
shared

(
A, Xi 

k

)
and Gj 

shared

(
A, Xj 

k

)
being as consis-

tent as possible, contributing to the manifestation of consensus 
effects in cancer gene identification. 

Therefore, the objective function of shared view representation 
learning can be written as: 

Lshared = 
1 

K · V · V 

K∑
k=1 

V∑
i=1 

V∑
j=1 

max 
θ

Gi 
shared 

,θ 
G j shared 

min 
θ 

D ij shared 

Pij 
k (2)
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where θGi 
shared 

, θ
Gj 

shared 
, and  θ

Dij 
shared 

are the trainable parameters for 

generators Gi 
shared, Gj 

shared, and discriminator Dij 
shared, respectively. 

We then averaged all the shared view representations to get 

the final shared representations as Xshared 
k = 1 

V 

V∑
v=1 

Gv 
shared

(
A, Xv 

k

)
to 

retain the consistent contributions of its shared components. 

The specific representation learner 
Specific view representations should own their respective distinc-
tive classification indicators to preserve their individual influence 
on cancer gene identification. Given the i-th and the j-th view 
representations Xi 

k and Xj 
k, we also first devised two separate 

multilayer GCNs Gi 
specific and Gj 

specific as generators and fed Xi 
k and 

Xj 
k into Gi 

specific and Gj 
specific, respectively, to derive their specific 

view representations Gi 
specific

(
A, Xi 

k

)
and Gj 

specific

(
A, Xj 

k

)
, and  then  

exploited a discriminator Dij 
specific to discriminate the generated 

Gi 
specific

(
A, Xi 

k

)
and Gj 

specific

(
A, Xj 

k

)
. Mathematically, the comple-

mentary score Qij 
k ∈ [0, 1] is defined as follows: 

Qij 
k = Dij 

specific

(
Gi 

specific

(
A, Xi 

k

)
, Gj 

specific

(
A, Xj 

k

))
(3) 

Specifically, the generators Gi 
specific and Gj 

specific aim at mini-

mizing Qij 
k for capturing the distinctive information between the 

i-th and the j-th views and the discriminator Dij 
specific seeks to 

maximize Qij 
k . In other words, the generated shared view repre-

sentations Gi 
specific

(
A, Xi 

k

)
and Gj 

specific

(
A, Xj 

k

)
try to deceive dis-

criminator Dij 
specific, resulting in the finally derived shared view 

representations Gi 
specific

(
A, Xi 

k

)
and Gj 

specific

(
A, Xj 

k

)
to be as unique 

as possible, contributing to the presentation of complementary 
effects in cancer gene identification. We concatenated specific 
view representations for preserving the unique characteristics of 
one gene: 

Xspecific 
k = ⊕V 

v=1Gv 
specific

(
A, Xv 

k

)
(4) 

where ⊕ denotes the concatenation operation. 
Therefore, the objective function of shared view representation 

learning can be written as: 

Lspecific = 
1 

K · V · V 

K∑
k=1 

V∑
i=1 

V∑
j=1 

min 
θ

Gi 
specific 

,θ 
G j 

specific 

max 
θ 

D ij 
specific 

Qij 
k (5) 

Similar to the shared representation learner, θGi 
specific 

, θ
Gj 

specific 
, and  

θ
Dij 

specific 
are the trainable parameters for generators Gi 

specific, G
j 
specific, 

and discriminator Dij 
specific, respectively. 

The cancer gene predictor 
Shared and specific view representations were concatenated to 
generate the final view representations of the i-th gene: 

Xfinal 
k = Xshared 

k ⊕ Xspecific 
k (6) 

Finally, we employed a classifier C to obtain the cancer gene 
prediction scores ŷk: 

ŷk = C
(
A, Xfinal 

k

)
(7) 

where C comprises a multilayer GCN followed by a fully connected 
layer, to map a given feature to a probability score. 

Hence, the loss of cancer gene identification is quantified using 
the binary cross-entropy: 

Lpred = − 1 
K 

K∑
k=1

[
yk log

(
ŷk

) + (
1 − yk

)
log

(
1 − ŷk

)]
(8) 

where ŷk and yk are the prediction score and the label (0 or 1) of 
gene k, respectively. 

Our model was jointly trained in an end-to-end manner 
where both the representation loss and classification loss are 
back-propagated together. Therefore, the joint loss Ltotal can be 
expressed as: 

Ltotal = αLpred + 
1 − α 

2

(
Lshared + Lspecific

)
(9) 

where α controls the weight of the cancer gene identification task. 

Results 
Overview of interpretable multiview 
representation learning framework based on 
graph convolutional network 
We introduced IMVRL-GCN, an end-to-end deep learning approach 
for predicting cancer genes utilizing genomic, transcriptomic, 
epigenomic, and structural data. As illustrated in Fig. 1, IMVRL-
GCN comprises four modules: (i) multiview feature extractor, (ii) 
shared representation learner, (iii) specific representation learner, 
and (iv) cancer gene predictor. Initially, IMVRL-GCN extracts 
multiview features from the data using the multiview feature 
extractor. Subsequently, IMVRL-GCN discerns shared and specific 
representations from these features through dedicated learners. 
Finally, IMVRL-GCN combines these representations and feeds 
them into the cancer gene predictor to determine probabilities of 
identifying certain genes as cancer genes. 

The multiview feature extractor implements strategies out-
lined by Peng et al. [15] for each view. The shared and spe-
cific representation learners utilize generative adversarial net-
work–based (GAN) frameworks [22, 25] to disentangle interview 
and intraview information from the multiview features. These 
learners consist of four generators corresponding to the four-
view features and one discriminator. To ensure structural consis-
tency, the shared and specific learners are designed with identical 
architectures and share a common discriminator. However, the 
generators within each learner operate with distinct parameters 
to accommodate the generation of distinct representations. In 
order to obtain consistent representations, the discriminator in 
the shared representation learner instructs that shared outputs 
from the generators show similar classification indicators by 
maximizing their consensus scores for presenting their accor-
dant contributions in cancer gene identification. The final shared 
representations are obtained by averaging the generators’ shared 
outputs. Conversely, the discriminator in the specific representa-
tion learner instructs that specific outputs from generators show 
respective unique classification indicators without sharing with 
others by minimizing their complementary scores for presenting 
their unique contributions to cancer gene identification. Finally, 
the integration of such two kinds of feature representations is fed 
into the cancer gene predictor, composed of graph convolutional 
layers and fully connected layers, to generate the cancer gene
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prediction score. More details of the IMVRL-GCN can be found in 
the Methods section. 

Performance assessment of interpretable 
multiview representation learning framework 
based on graph convolutional network 
To demonstrate IMVRL-GCN’s superiority, we compared it with 
four baselines (random forest (RF), GAT [37], GCN [38], Chebnet 
[39]), and three state-of-the-art cancer gene identification mod-
els (EMOGI [14], MODIG [16], MTGCN [15]). We used the same 
multiview features as IMVRL-GCN, concatenated as input for the 
baselines. RF sets the tree number to 1000, while GAT, GCN, and 
Chebnet each comprise three layers, with ReLU activation for the 
first two layers and sigmoid activation for the final layer. EMOGI, 
MODIG, and MTGCN were implemented using the same multiview 
features and were parameterized as recommended or adjusted for 
optimal performance. 

Firstly, we conducted 10 five-fold cross-validations to evaluate 
IMVRL-GCN and compared models, using AUC and AUPR metrics, 
on the cross-validation set of Peng’s dataset (see Methods). As 
shown in Fig. 2A and B, IMVRL-GCN achieved an AUC of 0.9130 
and an AUPR of 0.8372, outperforming all compared models. 
Among the compared models, RF outperformed EMOGI and 
MODIG, suggesting they may not efficiently integrate multi-
view data. IMVRL-GCN’s performance highlights its advanced 
multiview integration capability, capturing concise and valuable 
information from multiview data. 

Further, we evaluated IMVRL-GCN and the compared mod-
els across different PPI networks and independent test sets to 
assess robustness. All models were retrained on these multi-
view datasets utilizing different PPI networks. Figure 2C illustrates 
that IMVRL-GCN performed best on CPDB and STRING datasets, 
demonstrating remarkable node characterization ability within 
complex networks, as detailed in Supplementary Table 1. Within 
sparse networks, performance dropped for IMVRL-GCN and state-
of-the-art models due to their high reliance on network knowl-
edge, yet IMVRL-GCN still excelled. We then trained these models 
using all training samples and tested them on the OncoKB and 
NCG + Bailey datasets separately. The OncoKB dataset comprises 
manually curated cancer genes with validated oncogenic effects 
from OncoKB [40], while the NCG + Bailey dataset comprises high-
confidence cancer genes in publications from NCG [5] and  those  
compiled using different computational tools by Bailey et al. [41]. 
Overlapping genes with training samples were removed for inde-
pendence. Focusing on true-positive prediction performance, we 
used AUPR as the evaluation metric here. Figure 2D shows that 
IMVRL-GCN achieved the highest mean AUPR of 0.2088 on the two 
independent datasets, outperforming other models, which ranged 
from 0.1553 to 0.1994. 

These studies confirm IMVRL-GCN’s superiority and robust-
ness compared to state-of-the-art cancer gene identification 
models. 

Ablation experiments 
To investigate the importance of different components, we per-
formed ablation experiments and designed the following seven 
variants of IMVRL-GCN: 

• ‘IMVRL-GCN without genomic data’ (w/o GD) removes the 
genomic profiles. 

• ‘IMVRL-GCN without transcriptomic data’ (w/o TD) removes 
the transcriptomic profiles. 

• ‘IMVRL-GCN without epigenomic data’ (w/o ED) removes the 
epigenomic profiles. 

• ‘IMVRL-GCN without structural data’ (w/o SD) removes the 
structural profiles. 

• ‘IMVRL-GCN without shared representation learning module’ 
(w/o SH) removes the shared representation learning module. 

• ‘IMVRL-GCN without specific representation learning module’ 
(w/o SP) removes the specific representation learning module. 

• ‘IMVRL-GCN without representation learning module’ (w/o 
RL) integrates multiview features in a concatenated manner 
instead of representation learning module. 

Table 1 shows the performance of IMVRL-GCN and its variants, 
evaluated by 10 five-fold cross-validations on Peng’s dataset. After 
removing view data, the mean AUC of variants (w/o SD, w/o GD, 
w/o TD, and w/o ED) ranged from 0.8786 to 0.9122, the mean AUPR 
from 0.7690 to 0.8359, and the mean MCC from 0.5384 to 0.6381, 
indicating the necessity of all view data. Performance dropped 
significantly without genomic and structural data, indicating the 
importance of genome-level aberration and functional interaction 
knowledge in cancer gene identification. The experiment on the 
variants (w/o RL, w/o SH, w/o SP) confirmed that the represen-
tation learning module is necessary and outperforms the direct 
concatenation of multiview features. 

To further discuss how these data combinations affect 
model performance, we tested an additional six dual data 
combinations (GD + TD, GD + ED, GD + SD, TD + ED, TD + SD, 
ED + SD) (Supplementary Table 2). Among these combinations, 
GD + SD performed the best, closely followed by the TD + SD 
and ED + SD. This indicates that combining structural data with 
other data types significantly enhances model performance. The 
triple data combinations further improved model performance, 
particularly when transcriptomic data or epigenomic data were 
added to the GD + SD combination. However, in some cases, 
the inclusion of additional data types did not always result 
in significant performance improvements. For instance, the 
combination GD + TD + ED did not show an advantage over the 
combinations GD + TD or GD + ED. This suggests that there may 
be some degree of redundancy between transcriptomic data and 
epigenomic data. 

Identification of 74 high-confidence novel 
candidate cancer genes 
We trained IMVRL-GCN using all positive and negative samples 
from the benchmark dataset to predict the possibility of unlabeled 
genes being cancer genes. Setting a threshold of 0.99, we identified 
74 high-confidence CCGs as specified in Supplementary Table 3 
and verified their reliability as follows. 

First, we compared the predicted CCGs with high-confidence 
candidates from OncoKB [40], NCG [5], and the study by Bailey et al. 
[41]. Figure 2E shows that 74.32% (55/74) of our CCGs were vali-
dated by at least one piece of evidence. For the remaining 19 CCGs, 
we used CancerMine [42], a text-mining-based, regularly updated 
cancer gene database, to avoid potential omissions from out-of-
date resources. We noticed 14 of 19 candidates were supported 
by CancerMine, and ultimately 93.24% (69/74) of our CCGs had at 
least one piece of supporting evidence, confirming their potential 
role in tumorigenesis. 

Next, we implemented the state-of-the-art models (MTGCN, 
EMOGI, and MODIG) and compared their respective top 74 pre-
dictions with our CCGs. Figure 2F shows that 74.32% (55/74) of 
our predictions overlapped with at least one of these models, and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae418#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae418#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae418#supplementary-data
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Figure 2. IMVRL-GCN outperforms compared models and identifies 74 high-confidence CCGs. (A) ROC curve comparison with other models. (B) Precision– 
recall (PR) curve comparison with other models. (C) AUPR values for IMVRL-GCN and other models across different PPI networks. (D) Performance 
comparisons of IMVRL-GCN with other models on two independent cancer gene sets. (E) Multisource supporting evidence for the newly identified CCGs 
by IMVRL-GCN. (F) Venn diagram of the overlap between the CCGs identified by IMVRL-GCN and several compared models. (G) The supporting rate of 
different methods under List1 and List2. List1 contains convincing candidates in the independent cancer gene sets while List2 additionally compiles the  
results from CancerMine. 

18.92% (14/74) overlapped with two or more models. Our CCGs had 
the highest agreement with MTGCN, which performed second-
best to IMVRL-GCN in cross-validation ( Fig. 2A). We then calcu-
lated each model’s supporting rates against the aforementioned 
high-confidence cancer gene sets. For ease of representation, 
we refer to the candidates in OncoKB, NCG, and the study by 
Bailey et al. collectively as List 1, while List 2 additionally incorpo-
rates up-to-date candidates in CancerMine. Figure 2G shows that 
IMVRL-GCN had the highest supporting rate of 74.32%, surpassing 
other models (47.30%–67.57%). Consistently, for List 2, IMVRL-GCN 
exhibited an even higher supporting rate of 93.24%, outperform-
ing other models (78.38%–91.89%). 

In conclusion, the implementation of IMVRL-GCN led to the 
identification of 74 novel high-confidence CCGs, most supported 
by diverse evidence, validating their status as bona fide cancer 
genes. 

Analysis of multiview representations 
interpreted their contributions to IMVRL-GCN’s 
predictions 
In IMVRL-GCN, our disentangled shared and specific multiview 
representations are interpretable, aiding in understanding the 
model’s decisions. We conducted a comprehensive analysis of 
these representations to evaluate their contributions to the novel
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Table 1. The results of IMVRL-GCN and variants in ablation experiments. 

Method Description AUC AUPR MCC 

IMVRL-GCN (w/o GD) IMVRL-GCN without genomic data 0.8946 ± 0.0012 0.7937 ± 0.0034 0.5839 ± 0.0077 
IMVRL-GCN (w/o TD) IMVRL-GCN without transcriptomic data 0.9069 ± 0.0008 0.8281 ± 0.0018 0.6349 ± 0.0083 
IMVRL-GCN (w/o ED) IMVRL-GCN without epigenomic data 0.9122 ± 0.0010 0.8359 ± 0.0025 0.6381 ± 0.0050 
IMVRL-GCN (w/o SD) IMVRL-GCN without structural data 0.8786 ± 0.0013 0.7690 ± 0.0030 0.5384 ± 0.0073 
IMVRL-GCN (w/o SH) IMVRL-GCN without shared representation learning module 0.9103 ± 0.0012 0.8321 ± 0.0028 0.6334 ± 0.0068 
IMVRL-GCN (w/o SP) IMVRL-GCN without specific representation learning module 0.9105 ± 0.0005 0.8325 ± 0.0018 0.6349 ± 0.0067 
IMVRL-GCN (w/o RL) IMVRL-GCN without representation learning module 0.9110 ± 0.0012 0.8312 ± 0.0022 0.6211 ± 0.0087 
IMVRL-GCN IMVRL-GCN 0.9130 ± 0.0012 0.8372 ± 0.0024 0.6429 ± 0.0062 

Figure 3. Attribution score distribution of shared and specific representations on the predicted results for (A) all predicted genes. (B) 74 novel CCGs, each 
dot represents a CCG, and the arrow points to the peaks of prominent importance. Attribution scores have been subjected to min-max normalization. 

predictions. Specifically, we investigated the attribution scores of 
these representations for cancer gene identification using Inte-
gratedGradients [ 43], a powerful axiomatic attribution method 
based on backpropagation (see Supplementary Methods). 

As depicted in Fig. 3A, all types of multiview representations 
demonstrated a modest or even negative impact on the major-
ity of the predictions. This is attributed to the fact that most 
predictions are noncancer-related genes, showing no discernible 
difference between tumor and normal samples. We then con-
centrated on the contributions of the 74 CCGs. In Fig. 3B, we  
observed that the distribution of shared, mutation-specific, and 
structure-specific representations displayed distinct peaks near 
the most important regions, denoted as Peak 1, Peak 2, and Peak 
3, respectively, indicating that the corresponding representations 
are of great importance in the decision-making progress for a 
large portion of CCGs. Peak 1 included all CCGs, highlighting the 
vital roles of shared representations in all CCG predictions, with 
a median attribution score of 0.94, indicating that the consensus 
effect is a discerning indicator in cancer gene identification. Peak 
2 and Peak 3 encompassed 52 and 15 CCGs, respectively, indicat-
ing the pivotal roles played by mutation-specific and structure-
specific representations for these genes. 

The aforementioned analysis demonstrates the superior 
discrimination capabilities of shared, mutation-specific, and 
structure-specific representations in identifying cancer genes, 
and their respective meanings provided us with insights that 
elucidate the factors contributing to their discriminative capabili-
ties. Shared representations denote consistent information across 
views, emphasizing the superior cancer gene discrimination capa-
bilities inherent in the biological nature of these CCGs. Mutation-
specific representations exhibit complementary information 

captured exclusively from the mutational view, suggesting that 
genomic aberrations in these 52 CCGs are noteworthy and may 
serve as the primary causes of their tumorigenesis. Structure-
specific representations indicate the complementary information 
captured exclusively from the structural view, implying that these 
15 CCGs may be involved in tumorigenesis through interactions 
in the PPI network. 

Biological explanations for the most important 
multiview representations 
In this section, we conducted in-depth studies on shared, 
mutation-specific, and structure-specific representations to 
validate the above hypotheses about their superior cancer gene 
discrimination capabilities and glean further insights for novel 
therapies. 

Shared representations exhibit an association with gene 
functions 
We clustered CCGs by their shared representations to examine if 
each cluster showed a common biological nature. As illustrated in 
Fig. 4A and Supplementary Figure 1, 74 CCGs are categorized into 
seven clusters using eigengap analysis, where a significant drop 
between consecutive eigenvalues indicates natural data separa-
tion [44]. 

We used Gene Ontology (GO) annotations to examine common 
biological process (BP), cellular component (CC), and molecular 
function (MF) terms within each cluster, elucidating the rela-
tionship between shared representations and biological nature. 
Figure 4B highlights that Cluster 1 and 4 have recurrent BP terms, 
signifying functional commonalities among their genes. Genes 
in Cluster 1 are involved in axon guidance (GO:0007411) and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae418#supplementary-data
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Figure 4. Analysis of shared representations reveals their connections to gene functions. (A) Spectral clustering results of 74 CCGs based on their shared 
representations. (B) Biological process terms shared by each cluster. The number of shared term values is averaged by the cluster size. (C) Consistent 
pattern between the shared representation similarities and the BP term similarities within Cluster 1. Each dot represents a gene–gene pair. The P values 
are calculated by the Spearman correlation analysis. (D) Hierarchical clustering of semantic similarities of genes in Cluster 1. 

the transmembrane receptor protein tyrosine kinase signaling 
pathway (GO:0007169), suggesting their crucial roles in regulating 
neuronal axon growth and signaling processes via tyrosine kinase 
activity. Genes in Cluster 4 participate in RNA polymerase II-
mediated transcription (GO:0045944 and GO:0006357), essential 
for controlling gene expression during cell development. Notably, 
the shared pathways for Cluster 1 are intricately linked to tumori-
genesis. Pancreatic cancer genomes undergo frequent somatic 
aberrations in axon guidance genes [ 45]. Mouse models further 
support the notion that disturbances in axon guidance signals can 
mitigate pancreatic ductal carcinoma progression [46]. Receptor 
tyrosine kinases (RTKs) are crucial for cell growth, motility, dif-
ferentiation, and metabolism. Consequently, dysregulation of RTK 
signaling significantly contributes to many diseases, particularly 
cancer [47]. The correlation analysis between BP term semantic 
similarities and shared representation similarities in Cluster 1 
showed a significant agreement, thereby substantiating the con-
nection between gene biological function and shared represen-
tation (P = .026, Fig. 4C). Within Cluster 1, NOTCH3 and NEDD4 
exhibit lower semantic similarity with other genes (Fig. 4D), likely 
due to their lack of RTK signaling pathway annotation. How-
ever, their close relationship with RTK signaling has been con-
firmed: NOTCH3 encodes a key receptor in NOTCH signaling, likely 
cross-regulates with RTK signaling [48], and NEDD4 enhances 
insulin-like growth factor (IGF, a member of the superfamily 
of RTKs) signaling by mediating IRS-2 and IGF1R ubiquitination 
[49, 50]. 

Regarding CC, an observed convergence in the cellular 
localization of genes within each cluster suggests similar function 
modes (Supplementary Figure 2A). Specifically, products of genes 
in Cluster 1 are predominantly located at the plasma membrane 
and cytosol, genes in Cluster 3 at the extracellular region, genes 
in Cluster 4 at the nucleoplasm and nucleus, genes in Cluster 5 
at the cytoplasm, and genes in Cluster 7 at the cytosol. For MF 
in Supplementary Figure 2B, all clusters shared the GO:0005515 
term, indicating their bindings to a protein but limited utility 
for cancer gene recognition. Apart from GO:0005515, terms 
such as GO:0046875 for Cluster 1 and GO:1990837, GO:0003700, 
GO:0000981, and GO:0000978 for Cluster 4 align with their 
respective shared BP terms. 

In conclusion, shared representations play a significant role in 
recognizing cancer genes, possibly stemming from their associa-
tion with gene functions. Moreover, these representations offer a 
novel perspective for studying gene functions, where deep learn-
ing models autonomously assimilate consistent information from 
multiview data and infer unknown gene functions based on those 
sharing similar consistent information. 

Mutation-specific representations mirror the susceptibility 
of candidate cancer genes to genomic aberrations 
Firstly, to validate the primary causative roles of the mutational 
information in tumorigenesis for the 52 CCGs in Peak 2 (Fig. 3B), 
we cross-referenced them with the CCGD database [51], a mouse 
model-based mutation-driven cancer genes database, and found

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae418#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae418#supplementary-data
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that ∼63% (33/52) are included. We calculated the mutation rate 
of all CCGs in the pan-cancer patient cohort [52] and observed a 
significantly higher rate of CCGs in Peak 2 compared to others 
(Fig. 5A). The gene mutation burden, defined as the number of 
mutations per mega-base (MB) in the coding region, eliminating 
the influence of gene length, was also higher for CCGs in Peak 2, 
indicating their susceptibility to mutations and potential carcino-
genesis risk (Fig. 5B). 

Subsequently, we conducted a univariate Cox regression analy-
sis to assess these CCGs as prognostic biomarkers. As depicted in 
Fig. 5C, we identified 12 potential tumor prognostic biomarkers. 
Genes like MACF1 in cholangiocarcinoma [53]; SPTA1 in hepato-
cellular carcinoma [54]; HMCN1 and TTN in hepatocellular carci-
noma [55]; and OBSCN in highly aggressive tumors like glioblas-
toma, melanoma, and pancreatic carcinoma [56] are known muta-
tional drivers. Furthermore, we observed that the copy numbers 
of these genes frequently altered consistent with point muta-
tions, collectively impacting 4%–24% of patients in the pan-cancer 
cohort (Fig. 5D), suggesting a broader at-risk population and a 
need for effective therapeutic interventions. 

Finally, we screened existing drugs for potential therapeutics 
against these risk genes (see Supplementary Methods). Among 
the 12 risk genes, 6 exhibited significant expression changes due 
to genomic alterations, indicating potential concurrent function 
dysregulation (Fig. 5E). Leveraging the Genomics of Drug Sensi-
tivity in Cancer (GDSC) dataset [57], we identified drugs sensi-
tive to the expression of these risk genes (Fig. 5F). The screen-
ing revealed sensitivity of 40, 204, 112, 93, 228, and 1 drugs 
to RYR1, SYNE1, ANK2, HMCN1, TTN, and  OBSCN, respectively, 
with 19 drugs exhibiting sensitivity to at least four risk factors 
(Supplementary Table 4). Notably, Afatinib, an inhibitor of the ErbB 
tyrosine kinases used for nonsmall cell lung cancer, demonstrated 
sensitivity to five of the six risk genes, suggesting its potential 
therapeutic utility against these risk genes. 

Structure-specific representations indicate the hub node 
status of candidate cancer genes in the protein–protein 
interaction network 
We analyzed the 15 CCGs in Peak 3 (Fig. 3B) for their roles in 
biological mechanisms. Figure 6A shows that these genes are 
enriched in cellular response processes, such as to organic 
cyclic compound, hormone stimulus, and growth factor stimulus, 
indicating they are crucial hubs in signal transduction. Further 
evidence supported that these CCGs have a higher number of 
interactions (Fig. 6B), highlighting their central roles in the PPI 
network. 

To pinpoint causal interactions for these structure-driven 
CCGs, we utilized IntegratedGradients to compute the link impor-
tance by accumulating gradients along the path between the 
baseline (all-zero graph) and the state of the graph. Consequently, 
we extracted these CCGs and the subnetwork containing their 
causal interactions (Fig. 6C). These interactions implicated several 
KCGs, such as IL6ST, which encodes a signal transducer, interacts 
with nonreceptor tyrosine kinase LYN, and adapter proteins 
GRB2 and SHC1, crucial contributors to signal transduction. 
These interactions indicated that LYN, GRB2, and  SHC1 are key 
participants in IL6ST-induced adverse consequences. Notably, 
another KCG, SRC, implicated in the most interactions, encoding 
a steroid receptor coactivator, not only interacts with SHC1 as a 
nonreceptor tyrosine kinase to impact signal transduction, but 
also with four transcription factors (TFs) including NR3C1, RXRA, 
HNF4A, and SP1, boosting transcription by participating in all 
gene expression substeps [58]. 

Previous research highlighted the potential oncogenic roles of 
HNF4A and SP1. HNF4A is involved in the AMPK-HNF4A-WNT 
signaling cascade, a novel targetable oncogenic mechanism in 
gastric cancer, while SP1 serves as a central TF regulating pathway 
crucial to tumorigenesis [59, 60]. Their expression patterns across 
cancer types revealed distinct profiles. HNF4A is highly expressed 
in a few cancer types including colorectal, hepatobiliary, and 
esophagogastric cancers (Fig. 6D), indicating that HNF4A encodes 
a functionally specific TF. In contrast, SP1 has variable expression 
across cancers, with low expression in glioma and high expression 
in pancreatic and esophagogastric cancers (Fig. 6E), indicating 
that SP1 encodes a pleiotropic TF. Therefore, enhancing or block-
ing their interactions with SRC based on cancer type may be a 
promising therapeutic strategy for SRC-induced cancers. 

Discussion 
The traditional view of cancer as primarily a genetic mutation-
driven disease has evolved to encompass various biological mech-
anisms. This includes epigenetic changes and TF-mediated mod-
ifications. Despite advances, our understanding of KCGs remains 
limited, hindering the development of effective treatments. Com-
putational methods, particularly GNN-based approaches, have 
improved KCG identification by handling relational data well. 
However, existing methods fail to integrate multiview data effec-
tively, as they overlook the distinct value of each perspective 
and neglect to leverage the consensus information from multiple 
views. Additionally, these methods lack interpretability. Although 
some can determine the importance of different views, identifying 
causal factors remains challenging due to the complex associ-
ations across views. This complicates understanding prediction 
processes and hinders further exploration of mechanisms and 
clinical applications of novel targets. 

To address these issues, we developed IMVRL-GCN. This 
framework skillfully extracts shared and specific multiview 
representations for each gene, not only synthesizing this infor-
mation to enhance cancer gene identification but also facilitating 
comprehension of the model’s decisions as such disentangled 
representations are explicit and easy to understand. IMVRL-GCN 
outperforms state-of-the-art models and baselines, identifying 
74 CCGs with high-confidence evidence. Furthermore, we explain 
each CCG prediction by identifying crucial view representations, 
highlighting the importance of shared, mutation-specific, and 
structure-specific representations for many CCGs. This insight 
underlines the importance of the multiview representation 
learning-based approach in cancer research. 

We observed that genes with similar shared representations 
showed high semantic similarity, suggesting a link between 
consensus effects and biological functions. Clustering the 74 CCGs 
based on shared representations revealed that genes in Cluster 1 
are implicated in carcinogenesis via the RTK signaling pathway, 
whereas Cluster 4 influences carcinogenesis by impacting RNA 
polymerase II-mediated transcription. Our conclusions stemmed 
from examining the correlation between shared representations 
and three gene function descriptors, i.e. BP, CC, and MF. However, it 
is noteworthy that these descriptors may not fully encapsulate the 
complexity of gene function. Therefore, developing more precise 
descriptions of biological functions, such as semantic embeddings 
based on gene function descriptions, could offer additional 
evidence linking shared representations and gene function. In 
summary, the importance of consensus effects in cancer gene 
identification may stem from their ability to glean valuable 
biological insights. This revelation also inspires innovative

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae418#supplementary-data
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Figure 5. Analysis of mutation-specific representations indicates their connections to gene mutagenic propensity. (A) Different genetic alteration rates 
between CCGs in Peak 2 and other CCGs. The P values are calculated using unpaired Student’s t-tests. ∗∗∗P value <.001. (B) Different mutation burden 
between CCGs in Peak 2 and other CCGs. The P values are calculated using unpaired Student’s t-tests. ∗∗∗P value <.001. (C) Univariate Cox regression 
analysis identifies 12 risk factors associated with poor overall survival in the pan-cancer cohort. The P values are calculated by the log-rank test. (D) 
Waterfall chart showing the genomic alteration distribution of 12 risk factors in the pan-cancer cohort. (E) Risk factors display a notable difference in 
expression between the altered type and wild type. The P values are calculated using an unpaired Wilcoxon rank-sum test. ∗P value <.05, ∗∗P value 
<.01, ∗∗∗P value <.001. (F) Responses to several drugs are correlated with risk factor expression levels across diverse cancer cell lines. The P values are 
calculated using two-side Spearman’s correlation test. 

approaches to studying candidates with unknown functions, i.e. 
one can speculate on their roles by summarizing and comparing 
the functions of genes with similar shared representations. 

Prominent mutational and structural complementary effects 
emphasize the importance of their respective perspectives. 
Our analysis identified 52 CCGs with prominent mutational 
effects, noting their high mutation burdens. Among these, 15 

prognostic biomarkers were recognized, many of which are known 
mutational drivers, indicating that we can effectively repro-
duce their causal molecular factors. In terms of treatment, 
Afatinib demonstrated widespread sensitivity to these mutation-
driven CCGs, underscoring its therapeutic promise. For the 15 
CCGs with prominent structural effects, we identified their 
extensive interactions within the PPI network. Prioritizing the
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Figure 6. Analysis of structure-specific representations indicates their connections to the central role of genes in functional synergy. (A) Bubble chart  
of enriched biological processes for genes in Peak 3. The circle color and size represent the significance of the difference and hit count, respectively. (B) 
Different cancer gene interaction numbers between CCGs in Peak 3 and other CCGs. The P values are calculated using unpaired Student’s t-tests. ∗∗P 
value <.01. (C) Extraction of PPI subnetwork components containing genes in Peak 3 and their top five contributory neighbors. The circles represent 
genes in Peak 3, and the triangles represent their important neighbors. The triangle size represents the node degree, and the color indicates the neighbor 
type. (D, E) The mRNA alteration frequency of TFs HNF4A in (D) and SP1 in (E) in pan-cancer cohort. 

most important interactions, we observed that several causal 
interactions implicated well-known cancer genes, particularly 
SRC, whose interactions resulted in the highest number of 
predicted outcomes for those CCGs. Specifically, SRC protein 
boosts gene transcription by binding with the TFs NR3C1, RXRA, 
HNF4A, and SP1, whose expression patterns were investigated 
across various cancers to warn potential risks. 

Our proposed IMVRL-GCN is an extensible framework, which 
can not only accommodate various view profiles, including 
chromosome conformation, proteome, metabolome, etc., but also 
extend different gene association profiles, such as coexpression 
network, to construct a multidimensional network. Our method 
heralds a promising paradigm for multiview integration in 
pan-cancer research, and in the future, we could refine it for 
cancer type–specific research using transfer learning methods. 

By leveraging the knowledge acquired at the pan-cancer level, we 
can identify more reliable cancer type–specific cancer genes and 
therapeutic targets. Considering the advantages of IMVRL-GCN in 
multiview data integration and interpretability, we believe it can 
be applied to other research areas in the future. 

Key Points 
• Innovative cancer gene identification with GCN and 

shared-and-specific disentangled representation learn-
ing. 

• Disentangled shared and specific view representations 
from multiview data are crucial for accurate cancer gene 
identification. 
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• Assessing the importance of interpretable disentangled 
representations helps to understand the model’s deci-
sions. 

• Significantly outperforms state-of-the-art methods and 
demonstrates robustness and generalization across 
diverse datasets. 

• Analyzing the compiled 74 high-confidence candidates 
aids in comprehending their molecular mechanisms and 
directing personalized treatments. 

Supplementary data 
Supplementary data are available at Briefings in Bioinformatics 
online. 
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