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Abstract: Active, selective and stable catalysts are imperative
for sustainable energy conversion, and engineering materials
with such properties are highly desired. High-entropy alloys
(HEAs) offer a vast compositional space for tuning such
properties. Too vast, however, to traverse without the proper
tools. Here, we report the use of Bayesian optimization on
a model based on density functional theory (DFT) to predict
the most active compositions for the electrochemical oxygen
reduction reaction (ORR) with the least possible number of
sampled compositions for the two HEAs Ag-Ir-Pd-Pt-Ru and
Ir-Pd-Pt-Rh-Ru. The discovered optima are then scrutinized
with DFT and subjected to experimental validation where
optimal catalytic activities are verified for Ag–Pd, Ir–Pt, and
Pd–Ru binary alloys. This study offers insight into the number
of experiments needed for optimizing the vast compositional
space of multimetallic alloys which has been determined to be
on the order of 50 for ORR on these HEAs.

Introduction

High-entropy alloys (HEAs; in the form of single-phase
compositionally complex solid solutions) offer a vast compo-
sition space for optimization of catalytic properties.[1–5] The
many multi-element atomic surface sites found on such
complex surfaces contribute to a near-continuum of the
reaction intermediate adsorption energies that are descriptive
of catalytic activity. Tailoring the HEA composition can
improve the distribution of these adsorption energies to yield

better catalysts.[1] This is advantageous since new catalysts are
especially needed to facilitate chemical reactions for sustain-
able energy conversion in order to meet the increasing global
energy demand and to combat climate change.[6] One example
of a key reaction in the hydrogen cycle is the oxygen
reduction reaction (ORR), where current catalysts are still
far from ideal and cannot meet the demands for commercially
viable industrial implementation on a global scale. Thus,
further innovations are highly sought after, to get to that
ultimate goal.[7, 8]

Combinatorial exploration of vast alloy composition
spaces has been actively used as a tool in experimental
catalyst discovery for a variety of reactions and constituent
elements,[9–16] and efficient sampling of catalyst materials has
also progressed.[17] However, as the number of constituent
elements increases, the number of possible compositions
grows combinatorially large and individual point testing
cannot be accomplished within realistic time scales (see
Supporting Information (SI), Figure S2). This calls for the
need to sample the composition space more efficiently, such
as by guiding the search with the aid of a surrogate function.
Bayesian optimization of a Gaussian process (GP) is a feasible
choice for intelligent sampling problems,[18] and Bayesian
optimization has also been employed to optimize the catalytic
activity for methanol oxidation of a ternary alloy.[19] However,
knowing beforehand how many experiments would be
needed in such a compositional search is crucial for determin-
ing if such a search is tractable in the first place.
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Modeling the catalytic activity of highly diverse and
complex surfaces is still in its infancy with only a few studies
conducted,[1, 3, 4, 20,21] and modeling of other aspects relevant for
catalysis, such as surface stability under reaction conditions, is
also being investigated.[22, 23] We propose a way to estimate the
number of experiments needed using a model that has been
found to correctly predict experimental trends for electro-
catalytic ORR across hundreds of different alloy composi-
tions within the Ag-Ir-Pd-Pt-Ru system.[4] Because of that, we
expect the model to reproduce the complexity of an
equivalent experimental search, and therefore be likely
suitable as a proxy for substituting most of the necessary
experiments by simulations. By sampling alloy compositions
from the model, the number of experiments needed for future
composition optimizations can thus be estimated.

Using the Ag-Ir-Pd-Pt-Ru and Ir-Pd-Pt-Rh-Ru HEAs as
exemplary systems for a composition optimization, we use the
kinetic model combined with Bayesian optimization to
suggest alloy compositions for which high catalytic activities
for the ORR are predicted. Doing this affords sampling of as
few compositions as possible and yields the estimate of the
minimum number of experiments needed to discover activity
optima. The predicted optima subsequently undergo exper-
imental validation. Moreover, by sampling the whole space of
alloy compositions with the model in, for example, 5 atomic
percent (at. %) intervals, it is possible to assure with
reasonable certainty that all local and global optimal compo-
sitions have indeed been identified by the Bayesian optimi-
zation.

Results and Discussion

We apply our previously published model[4] for predicting
current densities at 0.82 V vs. the reversible hydrogen
electrode (RHE) on the face-centered cubic (fcc) (111)
surfaces of the disordered quinary alloy systems of Ir-Pd-Pt-
Rh-Ru and Ag-Ir-Pd-Pt-Ru. This kinetic model is based on
the *OH and O* adsorption energies and their success at
describing the catalytic activity for the ORR through the
associative mechanism.[24, 25] The dissociative mechanism,
where O2 dissociates on the catalyst surface, will not contrib-
ute to the current density when the potential exceeds 0.8 V vs.
RHE.[26] For construction of the model, thousands of *OH
and O* adsorption energies were calculated with DFT in
order to enable *OH and O* adsorption energy predictions
on any surface site of the alloy at any composition (for details
see SI). Due to the linear scaling between *OH and *OOH
adsorption energies, focusing on the *OH and O* intermedi-
ates is sufficient to predict the catalytic activity.[27] The model
effectively maps an alloy composition to a relative measure of
a current density at a given potential using Equations (1)–(3).
By doing so it takes as input net adsorption energies of on-top
*OH and hollow site O* obtained by considering an intersite
neighbor blocking effect that ensures that no neighboring on-
top and hollow sites can adsorb intermediates at the same
time (for details see SI).
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Here j is the per site current density (in arbitrary units
only used for comparing catalytic activity between composi-
tions), N is the number of surface atoms in the simulated
surface, Nads is the number of sites at which adsorption has
happened (after considering the intersite neighbor blocking),
ji is the current at surface site i modeled using the Koutecký–
Levich equation, jD is the diffusion-limited current (set to@1)
ensuring that the current at each site only increases sigmoi-
dally at high overpotentials, jk,i is the kinetically limiting
current for site i modeled using an Arrhenius-like expression
assuming a Sabatier volcano relationship with the adsorption
energies, DGi is the *OH or O* adsorption free energy, DGopt

is the optimal *OH or O* adsorption free energy (set to
0.1 eV[24] and 0.2 eV[25] larger than for Pt(111) for *OH and
O* respectively as suggested by theory and experiment), e is
the elementary charge, URHE is the applied potential vs. RHE,
kB is the Boltzmann constant, and T is the absolute temper-
ature (set to 300 K).

The posterior mean of a GP was used to construct
a surrogate function mapping alloy composition to current
density. For estimating the uncertainty at any composition,
the posterior variance of the GP was used. The GP prior mean
was set to zero everywhere, and the squared exponential
kernel in Equation (4) was used as the covariance function.
This prior mean and kernel are convenient standard choices
that have applicability for many problems and therefore form
a natural starting point for an unbiased analysis (see SI for
details).

k xi; xj
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@ xj @ xi
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 !
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In Equation (4), xi and xj are molar fraction vectors,
specified as the molar concentrations of each of the constit-
uent elements in the alloy. For example, the alloy
Ag20Ir30Pd10Pt40 corresponds to the molar fraction vector x =

(0.2, 0.3, 0.1, 0.4, 0.0)T. C and l are the constant value and
length scale hyperparameters, respectively, of the kernel,
which were optimized with every update of the sampled data.
The superscript T denotes taking the transpose of the vector.

Figure 1 shows the workflow of the Bayesian optimization
algorithm. Two random compositions were initially chosen to
initiate the surrogate function. The expected improvement
acquisition function was then used to suggest the next
composition to investigate. The expected improvement takes
into consideration the current densities predicted by the
surrogate function as well as the readily obtained uncertain-
ties of the predictions.[28] It is a standard choice and a widely
used acquisition function,[29] making it a natural starting point
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for the current study (see the SI for details on the implemen-
tation). The kinetic model was then used to compute the
catalytic activity of the selected composition via Equa-
tions (1)–(3), and the GP posterior was updated with this
new sample using Bayesian inference as implemented in
scikit-learn.[30] By repeating this process we let the updated
acquisition function choose the next composition of interest,
and allowing the optimization to run for 150 iterations was
enough to discover the most active locally optimal composi-
tions in most cases.

The quinary alloy composition space is equivalent to the
set of all points in a 4-simplex (the 4-dimensional version of
a regular tetrahedron), so plotting the resulting surrogate
functions directly is hindered by the dimensionality of the
plot. Instead, the local optima obtained from the resulting
surrogate functions for each of the quinary alloys are listed in
Table 1 in order of descending catalytic activity with the most
active catalyst at the top. For illustration, a projection of the
surrogate function for the Ag-Ir-Pd-Pt-Ru HEA at various
stages of the optimization is given in Figure 2 a. Figure 2b
shows the modeled current densities that are sampled during
a run of the optimization with some noticeable minima (i.e.
compositions with high absolute values of modeled current
densities) shown explicitly as well as the emergence of the
local minima of the surrogate function. Figure 2c,d shows the
evolution of the constant value and length scale kernel
hyperparameters in Equation (4) as more compositions are
sampled. Important to notice is the length scale of the kernel
which, although not directly transferable to the compositions,
does give an indication of the frequency with which the
current density is expected to change with composition. To be
specific, the found length scale of about 0.4 is rather large
compared to the molar fractions with values between 0 and 1,
indicating that the current density is expected to vary with
rather low frequencies. This is also indicated by the contours
of the surrogate function in Figure 2a which is seen to vary
slowly with changes in the molar fractions. This also means
that only a few local optima are expected for this hypersurface
which will likely decrease the number of samples needed for
their discovery.

Indeed, the most active discovered optimal compositions
in Table 1 form three groups of alloys, namely the binaries
Ag18Pd82, Ir&50Pt&50, and the ternary Ir&10Pd&60Ru&30, with the
latter two compositions discovered independently from both
the Ag-Ir-Pd-Pt-Ru and the Ir-Pd-Pt-Rh-Ru quinary alloy
models, supporting the robustness of the presented method-
ology.

For proof of concept and to verify that all local optima had
indeed been discovered by the Bayesian optimization, we
simulated all compositions in 5 at. % for both HEA systems,
corresponding to 10626 simulations for each. This is a much
more demanding task compared to Bayesian optimization.
Without a high degree of automation it is also an impractical
objective for an actual experimental realization, not to
mention the cost associated with the precursor materials
and the automated instrumentation.

The discovered locally optimal compositions using this
5 at. % grid search of the quinary composition space are
shown in Table 2. It indeed appears that the most important
compositions for catalysis were found by the Bayesian
optimization. Most noticeably, the locally optimal composi-
tions Ag20Pd80 and Ir&50Pt&50 with high absolute values of
predicted current densities are confirmed. Simplifying the list
of optimum compositions by grouping similar compositions
makes it possible to match the other optima found by
Bayesian optimization in Table 1 with corresponding counter-
parts in the 5 at. % grid search analysis in Table 2. For
example, the closely related Ir9Pd64Ru27 optimum for the Ag-
Ir-Pd-Pt-Ru HEA and the Ir12Pd56Rh4Ru28 optimum for the

Figure 1. Workflow of the Bayesian optimization algorithm. The algo-
rithm was terminated after N = 150 samples to ensure enough evalua-
tions for gauging the deviation in the number of samples needed for
discovery of the optimal compositions. For evaluation of the acqui-
sition function n =1000 random compositions were sampled.
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Ir-Pd-Pt-Rh-Ru HEA with a mod-
eled current density of about @0.16
(arb. units) in Table 1 correspond to
the Ag&0Ir&10Pd&60Pt&0Ru&30 and
Ir&10Pd&60Pt&0Rh&0Ru&30 groups of
compositions with similar current
density highlighted in boldface in
Table 2. In fact, the optima found
with Bayesian optimization may
constructively be thought of as the
locally optimal compositions that
the 5 at. % grid search would con-
verge to if the step resolution was
increased. We note that the trace
amounts of other elements in the
group of Pd-Ru-rich optima appear
not to be very influential on the
modeled current density, because
the quinary composition space
forms a rather flat plateau around
Pd65Ru35 as shown in Figure S4. We
therefore simplify our analysis of

Table 1: Locally optimal compositions and the number of compositions needed to identify them for the
two quinary HEAs.

HEA Local optimum[a] Predicted current
density
(arb. units)[b]

Idenfication
success rate [%][c]

Number of samples for
identification of
local optimum[b,d]

Ag-Ir-Pd-Pt-Ru Ag18Pd82 @0.203(2) 100 50(21)
Ir9Pd64Ru27 @0.160(2) 100 28(28)
Ir48Pt52 @0.147(2) 100 25(10)
Ag78Ru22 @0.063(3) 69 93(27)
Ir46Ru54 @0.003(0) 2 73(20)
Ir10Ru90 @0.002(1) 14 110(27)
Ru @0.001(1) 14 48(33)

Ir-Pd-Pt-Rh-Ru Ir42Pt58 @0.165(2) 100 23(8)
Ir12Pd56Rh4Ru28 @0.164(1) 100 19(10)
Rh @0.001(2) 27 48(42)

[a] Determined as the local optima of the resulting surrogate function after sampling of 150 compo-
sitions for 64 random realizations of the two initial compositions (one such realization is shown in
Figure 2). The spread in these compositions is on the order of 1 at.%. [b] Given as the mean followed by
the sample standard deviation on the last digit(s) in parentheses. [c] Determined as the proportion of
the resulting surrogate functions after sampling of 150 compositions for 64 random initializations that
identify the optimum as a local maximum. [d] Determined as the number of samples needed for those of
64 surrogate functions with random initializations that successfully identified the optimum. The
optimum has been considered identified when the molar fraction is within a 10 at.% difference of the
optimum, for example, Ag23Pd77 would be regarded as a successful discovery of the Ag18Pd82 optimum.

Figure 2. Example of a Bayesian ORR composition optimization for the quinary Ag-Ir-Pd-Pt-Ru system. a) Pseudo-ternary plots (with Ir, Pt, and Ru
collected into a single concentration) of the surrogate function after sampling of 15, 28, 54, and 150 compositions. Yellow colors signify regions
with high absolute values of modeled current density, and blue colors signify regions with correspondingly low values. Previously sampled
compositions are shown as black circles, and the best composition found so far is marked with a star. When projecting current densities from the
quinary to the pseudo-ternary composition space, more compositions will inevitably occupy the same points in the diagram. In the shown plots
the maximal absolute value of the current density for overlapping compositions has therefore been depicted. b) Current densities sampled during
the Bayesian optimization (black solid line) and the emergence of the three most active locally optimal compositions (blue dashed lines).
c,d) Variation of the GP squared exponential kernels’ [Eq. (4)] constant term (c) and length scale (d) hyper-parameters.
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this optimum in the following, and treat it as a binary Pd–Ru
alloy.

Similarly, the less optimal Ag78Ru22, can be assigned
a counterpart (Ag85Ru15) in Table 2. However, it also appears
that local optima with relatively low absolute current
densities are not matched as well between the Bayesian
optimization and the grid search. For instance, the similar
compositions Ag5Ir10Pd20Pt65 (from Ag-Ir-Pd-Pt-Ru) and
Ir15Pd20Pt55Ru10 (from Ir-Pd-Pt-Rh-Ru) from the grid search
in Table 2 do not have counterparts from the Bayesian
optimization in Table 1. The reason for this is either that these
compositions are not actually local optima and therefore not
identified as such by the Bayesian optimization, or that they
are weak local optima but were not sampled by the
acquisition function due to small predicted absolute current
densities. In either case this highlights the advantage of
efficient sampling, where compositions that are not expected
to be active are left untested.

We note that the Bayesian optimization algorithm in the
current study could have been implemented in a number of
other ways. For instance, the constraint that the molar
fractions add to unity could be accounted for using con-
strained GPs.[31] In the current study this constraint was only
included in the sense that evaluations only were done for valid
molar fractions. This, however, appears to have been suffi-
cient, which is evident from the fact that the 5 at. % grid
search gave identical optima to the Bayesian optimization.
Moreover, for a practical experimental composition optimi-
zation, a proper termination criterion is needed to know when
to stop the search with confidence that the global optimum
has been found. This criterion could for instance be based on
the value of the acquisition function.[29]

Since the model uses calculated adsorption energies of the
quinary alloys, it is essentially extrapolating to the edges of the
composition space when predicting the current density of the

discovered near-binary optimal compositions. This is because
only the most central composition space is likely to be
sampled when generating random configurations of five
elements for the simulated surfaces. To confirm the current
density optima and the modelQs predictive ability for the
binary alloys, DFT adsorption energies computed solely on
the Ag–Pd, Ir–Pt and Pd–Ru binary alloys were used as input
for the model.

Additionally, several regression algorithms were tested
with two schemes for choosing the features of the simulated
adsorption sites in order to predict the adsorption energies
accurately on the binary alloys (see Tables S6, S7 and Fig-
ure S6). This confirmed that a combination of a per-unique-
site based linear regression model and the most influential
neighboring atoms[32,33] maintains a low model complexity
while still providing high adsorption energy prediction
accuracy. However, for the binary alloys it was possible to
achieve exceptionally low prediction error by using a non-
linear regression algorithm (a gradient-boosted decision tree)
and an extensive description of the adsorption site motif. This
is true even though the simulated 2 X 2 atom-sized surfaces
limit the variations of the nearest neighbors due to the
periodic boundary conditions (see SI for details).

Plotting the predicted current density of the binary alloy
gradient-boosted model against the same results from the
linear model trained on the quinary alloys, it is seen for the
Ag–Pd system in Figure 3 that at high Pd content both models
predict an activity maximum around Ag15Pd85. This activity
stems almost exclusively from O* bound in fcc hollow sites
composed of two Pd atoms and one Ag atom with some
contribution from three-fold Pd sites as shown in Figure 3b,c.
However, due to the discrepancy of the modelsQ prediction of
*OH bound at on-top Pd sites (Figure 3d,e), the binary-
trained model retains high catalytic activity for a wider span
of compositions compared to the quinary-trained model
which drops below the activity of Pt(111) at around 45 at.%
Ag content as shown in Figure 3 a. We would thus still expect
appreciable catalytic activity for Ag–Pd at the equimolar
composition using the binary alloy model.

Ir–Pt and Pt–Ru were similarly scanned as shown in
Figure 4 and more detailed in Figures S7 and S8 and display
overall good agreement with the quinary alloy model. Both
models predict optimum compositions around Ir45Pt65 and
Pd65Ru35, and equivalent trends in the predicted current
densities for the entire composition spans are observed.

The high catalytic activity of the Ag–Pd, Ir–Pt, and Pd–Ru
alloys is not surprising since alloying the active elements Pd
and Pt is a general way to enhance the activity for ORR.[34]

Moreover, these alloys have indeed been tested experimen-
tally with optimal compositions determined for the respective
reaction conditions to be around Ag10Pd90,

[35] Ir15Pt85,
[36] and

Pd50Ru50.
[37]

To validate and compare the proposed catalytic trends of
the discovered binary compositions, thin-film composition
spreads of the predicted Ag–Pd, Ir–Pt, and Pd–Ru binary
alloys were synthesized and then analyzed by the use of
a scanning droplet cell (SDC) in 0.1m HClO4. This high-
throughput electrochemical technique allows localized char-
acterization of selected compositions along the compositional

Table 2: Locally optimal compositions found using a 5 at.% grid search
over the two quinary composition spaces.

HEA Local optimum[a] Modeled current density
(arb. units)

Ag-Ir-Pd-Pt-Ru Ag20Pd80 @0.21
Ag5Ir10Pd60Pt5Ru20 @0.16
Ag5Ir5Pd65Ru25 @0.16
Ir20Pd60Ru20 @0.16
Pd65Pt5Ru30 @0.16
Pd55Pt20Ru25 @0.15
Ir55Pt45 @0.15
Ir45Pt55 @0.15
Ag5Ir10Pd20Pt65 @0.09
Ag85Ru15 @0.06

Ir-Pd-Pt-Rh-Ru Ir10Pd55Rh5Ru30 @0.17
Ir50Pt50 @0.17
Ir40Pt60 @0.17
Ir15Pd60Pt5Ru20 @0.16
Ir15Pd20Pt55Ru10 @0.08
Pt65Rh35 @0.07

[a] Defined as compositions for which a :5 at.% change in any molar
fraction would result in a less active catalyst. Compositions in boldface
refer to the group of Ir&10Pd&60Ru&30 compositions with similar predicted
current densities.
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gradient. Precise positioning above the investigated sample is
enabled by assembling the SDC head with robotic arms and
a force sensor. An electrochemical cell is formed by pressing
the Teflon tip to the surface of the sample, defining the
surface of the working electrode in every measurement area
(MA).

We used an automated setup to exclude any human error
and provide the same measuring conditions for each mea-
surement. Together with the high reliability and accuracy of
the data this allows credible comparison of the activity
between different MAs and samples. Figure 4 shows mea-
sured current density values vs. the composition of the Ag–Pd,
Pd–Ru, and Ir–Pt systems. All linear sweep voltammograms
(LSVs) are available in Figure S9. We note that catalytic
trends on the quinary alloys obtained with the same
experimental setup have been reported previously.[4] There-
fore the scope of the current study is on the verification of the
discovered optimal compositions. For the Pd–Ru composition
spread we observed a broad minimum in ORR current
densities for compositions ranging from ca. Pd68Ru32 to
Pd59Ru41, covering the predicted optimal composition of
Pd65Ru35. In the case of the Ag–Pd composition spread, only
the lower Ag content compositions could be measured
without visible corrosion (see Figure S9a). Here, a current
density optimum was found at the composition Ag14Pd86,
corresponding very well to the predicted optimum of
Ag15Pd85.

In contrast, the Ir–Pt composition spread shows a clear
increase of the activity toward ORR with decreasing content
of Ir, that is, here we do not observe an agreement with the

predicted optimal composition. In order to examine if the
plateau at low Ir content observed in Figure 4 c is the expected
optimum, a sample covering higher Pt contents was prepared
and tested as shown in Figure 4d.

To ensure the enhanced activity can indeed be fully
assigned to the composition effect and the impact of changes
in surface roughness can be ruled out, atomic force micros-
copy (AFM) measurements of surface roughness at different
spots of the binary thin-film composition spreads were made.
For all of the considered samples the changes in surface
roughness between different areas of the sample are negli-
gible. Correlation of measured current densities with compo-
sition of the samples and their surface roughness are
presented in Figure S10.

In order to determine the crystal structure and fully
understand the measured correlation between current den-
sities and binary compositions, X-ray diffraction (XRD) was
conducted. The crystal structures of as-deposited Ag–Pd, Pd–
Ru, and Ir–Pt thin films for various compositions were
determined from XRD diffractograms shown in Figure S11.
Five XRD peaks were observed in all three binary systems,
which are characteristic for Bragg reflections from fcc
structures. The diffraction patterns exhibit the highest inten-
sity reflection along the (111) plane and four weak reflections
along the (200), (220), (311), and (222) planes. For Ag–Pd and
Pd–Ru, the diffraction peaks continuously shift to lower 2q

values with increasing Ag or Pd amount. The lattice
parameters for these two systems are determined from
BraggQs law, and the calculated results show that the variation
of lattice parameters with chemical composition agrees well

Figure 3. a) Simulated current densities of the Ag–Pd system in a composition range from pure Pd to pure Ag with 1 at.% increments. A linear
regression model trained on DFT-calculated samples of the Ag-Ir-Pd-Pt-Ru alloy is used alongside a gradient-boosted model trained on DFT-
calculated samples of Ag–Pd to predict the adsorption energies of the simulated surface. These predictions serve as input for Equations (1)–(3)
which yield the resulting current densities. b–e) *OH and O* net adsorption energy distributions (after intersite blocking) for selected
compositions corresponding to the annotations in (a). A scaled visualization of the modeled current density in Equation (3) is shown (black solid
line).
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with a linear dependence based on VegardQs law. This reveals
that as-deposited Ag–Pd and Pd–Ru binary systems with
different compositions form continuous solid solutions with
an fcc structure. In the case of the Ir–Pt system, the (111) peak
splits into two peaks. This is due to the coexistence of two
phases and implies that Ir and Pt are not completely mixed,
which is consistent with the large miscibility gap of the Ir–Pt
phase diagram.

Conclusion

To summarize, we have combined a kinetic model with
Bayesian optimization to predict compositions of highest
current density for ORR starting from the quinary HEAs Ag-
Ir-Pd-Pt-Ru and Ir-Pd-Pt-Rh-Ru. The most important locally
optimal compositions come out at around Ag15Pd85, Ir50Pt50,
and Ir10Pd60Ru30. The model, trained on DFT-calculated *OH
and O* adsorption energies on Ag-Ir-Pd-Pt-Ru and Ir-Pd-Pt-
Rh-Ru HEAs, was successful in extrapolating catalytic

Figure 4. Comparison of simulated and experimental catalytic activities (black curves) for a) Ag–Pd, b) Pd–Ru, and c,d) Ir–Pt (for different
composition ranges in (c) and (d)) at 800 mV vs. RHE. The simulated current densities were normalized to the experimental current densities by
ensuring that the minimum and maximum current densities match up. For Pd–Ru in (b) three outliers that gave rise to very high current densities
were left out (see Figure S9b).
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activity trends to the discovered optimal binary alloys Ag–Pd,
Ir–Pt, and Pd–Ru as confirmed by training new models with
new data specific for these. The model was also shown to
reasonably reproduce the catalytic activity trend from syn-
thesized thin-film composition spreads of the Ag–Pd, Ir–Pt,
and Pd–Ru systems for which optimal compositions of around
Ag14Pd86, Ir35Pt65, and Pd65Ru35 were determined. A direct
comparison between the model and the experiment, however,
should be done with caution since many reaction condition
parameters are not accounted for in the model. While
suggesting optimal alloy catalysts, the model is at the same
time able to estimate the number of experiments needed for
the discovery of optimal compositions in the vast composi-
tional space of quinary alloy systems. With the Bayesian
optimization of the kinetic model employed herein, the
number of experiments comes out at about 50 for discovery of
the most important optima for the two investigated quinary
HEAs. This number gives hope that composition optimiza-
tions of vast multi-metallic composition spaces are indeed
experimentally realizable in the laboratory.
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