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Abstract

Functional interpretation of genomic variation is critical to understanding human disease but it 

remains difficult to predict the effects of specific mutations on protein interaction networks and 

the phenotypes they regulate. We describe an analytical framework based on multiscale statistical 

mechanics that integrates genomic and biophysical data to model the human SH2-phosphoprotein 

network in normal and cancer cells. We apply our approach to data in The Cancer Genome Atlas 

(TCGA) and test model predictions experimentally. We find that mutations in phosphoproteins 

often create new interactions but that mutations in SH2 domains result almost exclusively in loss 

of interactions. Some of these mutations eliminate all interactions but many cause more selective 

loss, thereby rewiring specific edges in highly connected subnetworks. Moreover, idiosyncratic 

mutations appear to be as functionally consequential as recurrent mutations. By synthesizing 

genomic, structural, and biochemical data our framework represents a new approach to the 

interpretation of genetic variation.

INTRODUCTION

TCGA and similar projects have generated extensive data on the mutational landscape of 

tumors1. To understand the functional consequences of these mutations it is necessary to 

ascertain how they alter protein-protein interaction (PPI) networks involved in regulating 

cellular phenotype. A wide spectrum of data are available on PPIs ranging from large-scale 

binding experiments2–4 to co-crystal studies. The interpretation of such data is hampered by 
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the absence of an analytical framework for integrating diverse measurements and for 

modelling the effects of cancer mutations. Such a framework must jointly model the genetic 

heterogeneity of cancer and the biophysical determinants of PPI specificity at the level of 

individual protein domains, multi-domain proteins, and PPI networks. In this paper we 

describe such a multiscale statistical mechanical (MSM) framework focusing on the subset 

of PPIs involving protein interaction domains (PIDs) in which SH2 domains bind to 

phospho-tyrosine peptides. Such interactions are essential components of receptor-mediated 

signaling and their misregulation is known to play a role in cancer and other diseases5–8.

The first challenge in modeling PID networks is integrating diverse low-throughput (LT) 

and high-throughput (HT) assays. LT methods such as fluorescence polarization 

spectroscopy provide precise interaction data on a few dozen PIDs and ligands but cannot 

easily be scaled to the full proteome2, whereas HT array-based methods provide greater 

scale but suffer from systematic artefacts and high false positive/negative rates, resulting in 

datasets that only partly agree2. A second challenge is modelling the effects of mutations in 

proteins with multiple binding domains and/or multiple sites of phosphorylation9, a reality 

for most signaling proteins (e.g. the Crk oncoprotein). Existing methods are either limited to 

individual domains10–13 or insufficiently precise to discern the effects of single residue 

changes14,15.

The MSM framework we have developed combines genomic, binding, and structural data 

and reconciles inconsistencies within and among datasets to generate PID networks for 

normal and cancer cells. We develop a bottom-up first principles approach involving a 

single mathematical equation based on statistical mechanical ensembles that models 

domains, proteins, and networks and then apply it to the analysis of SH2 networks and 

mutations found in TCGA16. We validate newly predicted interactions experimentally and 

demonstrate the sensitivity of MSM to single-residue mutations that cause subtle changes in 

binding affinity. Our analysis provides mechanistic insights into an important PID cancer 

network and validates a computational approach to PID networks that can be applied to 

other signaling domains and other diseases.

RESULTS

Modeling and Data Integration

The theory of statistical mechanics relates the energy of a state of a system, such as a 

particular configuration of bound and free peptides and PIDs, to measurable thermodynamic 

quantities such as disassociation constants (Fig. 1a); from the energy it is also possible to 

compute the probability that a system will assume a particular state. When the function 

specifying the energy of a state—known as the Hamiltonian—is available, the mathematics 

of statistical mechanics can be used to compute thermodynamic properties directly (Fig. 1b). 

However, with complex systems such as proteins in solution, the Hamiltonian cannot be 

readily derived from first principles. In this work, we recast statistical mechanics as a 

machine learning problem and develop a reverse workflow in which measurements of 

thermodynamic quantities are used to derive a Hamiltonian for SH2/pY-peptide 

interactions17 (Fig. 1c). Importantly, statistical mechanics does not fully constrain the 

mathematical form of the Hamiltonian or the set of states—known as the ensemble—whose 
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thermodynamic properties are being computed. We exploit this fact by choosing a form for 

the Hamiltonian that can model arbitrary SH2-peptide interactions, including mutated 

domains and unknown pY-peptides. This Hamiltonian is defined in terms of interactions 

between one residue in the peptide and one residue in the SH2 domain, ignoring multi-

residue interactions and steric effects between residues in the same protein. Thus, it is more 

appropriately termed a pseudo-Hamiltonian.

We also exploit freedom in selecting ensembles. When learning the pseudo-Hamiltonian, an 

ensemble is comprised of the bound and unbound states of an SH2 domain and a single pY-

peptide (Fig. 1d). Such domain-level ensembles correspond to readily available 

thermodynamic measurements and we can therefore utilize a wide variety of LT and HT 

data in inferring the pseudo-Hamiltonian (for a mathematical treatment see Supplementary 

Note and Supplementary Fig. 1 and 2). Subsequently, we use the pseudo-Hamiltonian to 

compute difficult-to-obtain thermodynamic quantities for ensembles of multi-domain 

proteins and multiply phosphorylated substrates (Fig. 1e). In principle, data on isolated 

domains, multi-domain proteins, and multiply phosphorylated proteins can be used in 

learning. In practice, virtually all experimental data relates to single domain-pY-peptide 

interactions. Thus ensemble theory allows us to circumvent limitations in available data to 

predict interactions involving the types of proteins that are actually found in signaling 

networks.

To perform learning we combine binding data from four HT datasets18–21 (“MacBeath”, 

“Jones”, “Nash”, and “Cesareni”), and a diverse set of LT data21 (Supplementary Table 1). 

The combined dataset spans 111 SH2 domains (out of 122 known; no data is available for 

11 domains) and 5,016 pY-peptide sequences (the human proteome is estimated to contain 

~37,000 pY sites lying in ~12,000 proteins22). Data were binarized, yielding a training set of 

~20,000 positive and ~400,000 negative interactions. From this we learned the residue-

residue energies of the pseudo-Hamiltonian by maximizing agreement between predicted 

and experimental affinities of domains. We also aligned SH2 domains with 25 SH2-peptide 

co-crystal structures and exploited the resulting spatial information by applying the well-

established principle23 that selectivity is primarily determined by interacting residues in 

direct physical contact. Mathematically this principle is imposed by penalizing energy terms 

in proportion to the distance separating residues thereby assigning weaker energies to more 

distant interactions.

Domain Model Achieves High Accuracy and Reconciles Datasets

We evaluated the performance of the MSM domain model (MSM/D) using a nested cross-

validation approach designed to prevent overfitting. Data were randomly divided into three 

parts, one for fitting residue interaction energies, one for fitting distance-dependent 

penalization, and one for model tests (Supplementary Fig. 3a). We compared MSM/D to two 

existing SH2 models (SMALI10 and PEPINT11) and to a general PPI method, PrePPI14, 

using a Receiver-Operator Characteristic (ROC) curve (Fig. 2a). Global and dataset-specific 

performance was evaluated by grouping HT data into four subsets based on the source. We 

also subdivided data by combining LT dataset with high-confidence interactions (i.e. those 

confirmed by two (“HC2”) and three (“HC3”) data sources). Data for high-confidence 
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interactions were removed from the HT datasets to prevent cross-contamination during 

training.

We observed that MSM/D substantially outperforms existing methods in the “high 

precision” regime (False Positive Rate (FPR) = 0.001), yielding a True Positive Rate (TPR) 

6 times higher than the best existing method across all data and >50 times higher for the 

HC2 subset (Fig. 2a). Integrating the area under the ROC curve (AUC) yields a single 

performance number and this too was substantially higher for MSM/D than existing models 

on all subsets of the data (Table 1). Relative performance was particularly high for “gold 

standard” subsets, with MSM/D achieving a nearly perfect score of 0.99 AUC on the HC3 

dataset. The superiority of MSM/D relative to PrePPI does not take into account the latter's 

ability to model any protein; we include the comparison only to establish a baseline for 

general PPI methods. In addition, SMALI and PEPINT were trained on datasets only about 

1/3 as large as for MSM/D; we therefore retrained MSM/D using ~1/3 of the available data 

(Supplementary Fig. 3e) and found that the retrained model attained ~97% of the maximum 

AUC, which remains substantially superior to SMALI and PEPINT. We also computed 

separate ROC and metaparameter sensitivity curves for each cross-validation set 

(Supplementary Fig. 3b-c). The curves overlapped almost perfectly, indicating that MSM/D 

is robust to variation in training data. We conclude that MSM/D is significantly better than 

available methods at modeling interactions between SH2 domains and pY-peptides.

Available datasets for SH2-peptide interaction agree only partially4,24,2, likely due to 

systematic biases and high false negative/positive errors. We therefore tested the ability of 

MSM/D to reconcile disagreement in the experimental record. FPR and TPR were estimated 

for three HT assays (Fig. 2b) by comparison with HC3 data. We found that, at all FPR 

levels, MSM/D exhibited higher precision and recall than any experimental dataset. To test 

the ability of MSM/D to integrate diverse data, we left out one of the five datasets during 

training and then tested the model against the excluded dataset. MSM/D performance 

remained high against high-confidence datasets (e.g. AUC of 0.938 vs. 0.947 on HC2) but 

dropped when predictions were tested on the HT data excluded during training (Table 2). 

We interpret this as arising from systematic error in the excluded data that cannot be 

modeled a priori; however, we cannot exclude impact from uneven coverage of sequence 

space. Our results nonetheless show that MSM/D can correct for random and systematic 

experimental error to generate a consolidated representation of SH2-pY interactions that is 

superior to any single dataset or simple polling strategies.

To determine the ability of MSM/D to model SH2 domains absent from the training set, we 

retrained the model on data from which one domain had been excluded and then computed 

the AUC for the excluded domain; the process was iterated over all SH2 domains. In Figure 

2c, we plot AUCs as a function of sequence identity between the excluded domain and its 

nearest included neighbor. MSM/D modelled excluded SH2 domains with AUC ~ 0.8 even 

when sequence identity to the nearest neighbor averaged ~62%. In contrast, prediction of 

unknown domains cannot be performed using PEPINT and SMALI. When we left out ~13 

SH2 domains at a time, reducing nearest neighbor sequence identity to ~45% 

(Supplementary Fig. 3d), AUC dropped to ~0.75, but the model retained significant 

predictive capability. We also examined the properties of the 11 SH2 domains for which no 
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experimental data are available and found binding selectivity comparable to that of other 

SH2 domains but ~50 fold fewer binding partners (at p > 0.85 threshold). Thus, the absence 

of data for these 11 domains likely reflects the low probability of observing an interaction 

experimentally18. We conclude that MSM/D can model unseen SH2 domains and peptides, 

including those carrying cancer mutations.

Protein and Mutation Models Capture Multi-site Interactions

Interactions between SH2- and pY-containing proteins involve tandem domains and 

phosphoproteins with up to 25 phosphosites. A majority (82/112) of SH2-containing 

proteins also contain one or more pY sites. To model such interactions we constructed 

statistical mechanical ensembles comprising all physical binding configurations, accounting 

for the combinatorics of multiple domains and phosphosites (Fig. 1e and Supplementary Fig. 

1), to yield the MSM protein model (MSM/P). Competitive binding between sites is 

accounted for by the ensemble formulation. By default, MSM/P assumes all phosphosites 

are phosphorylated and interacting proteins are equally expressed, but this assumption is 

unlikely to pertain to actual cells and can be relaxed.

To validate MSM/P experimentally we focused on GCSAM, a protein previously implicated 

in B-cell lymphoma25,26 for which a large discrepancy exists between the number of 

published interacting SH2 partners (two are known: GRB227 and SYK28) and the number 

predicted by MSM/P (nine more with affinities comparable to that of GRB2). We co-

expressed GCSAM fused to the monomeric red fluorescent protein TagRFP and one of 12 

SH2 domains tagged with GFP. HEK293T cells were then treated with pervanadate for 5 

minutes to promote tyrosine phosphorylation, lysates prepared and SH2-containing 

complexes immunoprecipated using anti-GFP beads. Fluorescent imaging of the beads and 

the supernatant made it possible to normalize the level of bound SH2 domain to the total 

level of SH2 and GCSAM expression, resulting in excellent reproducibility between 

biological replicates (ρ = 0.99, Fig. 3a). Using the bead-based assay we detected binding by 

all SH2 domains predicted by MSM/P to associate with GCSAM and the correlation 

between measured and predicted affinities was high (ρ = 0.80, Fig. 3a). This is a stringent 

test of MSM/P since (i) the agreement is quantitative and spans a broad range of affinities, 

(ii) the SH2 domains we tested have diverse primary sequences, and (iii) GCSAM contains 

three pY sites, thereby testing the performance of the protein-level ensemble model.

Next, we modelled the effects of mutations on SH2-pY interactions by constructing 

ensembles whose states simultaneously represent the behavior of the PPI before and after 

mutation (Fig. 1e and Supplementary Fig. 1). The resulting model distinguishes between 

consequential and non-consequential changes in binding affinity (Supplementary Fig. 2) and 

accounts for the “protein context” of a mutation, including buffering effects from other 

phosphosites or domains present in the same protein. To experimentally evaluate the 

sensitivity of MSM/P to single amino acid substitutions, we analyzed binding of the 

regulatory subunit α of phosphatidylinositol 3-kinase, PIK3R1, to a mutant in the insulin-

like growth factor receptor, IGF1R-A1347V (COSM12856; a mutation in squamous cell 

carcinoma29). This is a stringent test of the model because: (i) it does not create a 

predictable canonical motif such as pYXXM; (ii) the mutation occurs in the complex protein 
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context of IGF1R which has 11 phosphosites22; (iii) we predict a gain-of-function increase 

in affinity rather than a more common loss-of-function decrease (see below); and (iv) 

PIK3R1 contains two SH2 domains. We co-transfected GFP-tagged IGF1R with constructs 

expressing mCherry linked to either the N- or C-terminal PIK3R1 SH2 domain or to a 

construct encoding both domains and performed quantitative co-immunoprecipitation using 

anti-RFP beads. As predicted, IGF1R-A1347V exhibited stronger binding to the SH2 

domains of PIK3R1 than the wild-type protein (Fig. 3b, one-sided T-test for 5 biological 

replicates of p = 6.2 × 10−5 for the N-terminal domain, p = 9.0 × 10−3 for the C-terminal 

domain, and p = 5.9 × 10−5 for the tandem protein). The increase in affinity was correctly 

predicted to stem from stronger binding of both domains to mutant receptor with the C-

terminal domain being the stronger of the two (p = 0.016). The effect is potentially 

biologically significant, since PIK3R1 and IGF1R are oncogenes that interact through the 

adaptor IRS1. We conclude that MSM/P is effective at capturing the effects of mutations on 

SH2-pY binding affinity. However, the data also highlight the limitation that MSM/P does 

not account for non-additive avidity effects in tandem domains and therefore underestimates 

the affinity of PIK3R1 for wild-type IGF1R.

Cancer Network Model Enriches for Causal Cancer Genes

Cancer cells typically contain many mutations, a subset of which directly promotes the 

transformed phenotype (driver mutations), making it necessary to model the net effect of 

multiple mutations on a network. We formally treat cancer as a stochastic sampling process 

in which any given genotype is realized by random draws from a pool of mutations. This 

simplification ignores the sequential and interdependent accrual of cancer mutations because 

of insufficient data on these dependences, but it can be relaxed as data become available. 

Probabilities of mutations are derived empirically from unbiased whole genome databanks 

such as TCGA16. We construct an ensemble over all mutations, and associate a perturbed 

PPI network with each state in this ensemble. The resulting cancer-network model (MSM/N) 

assigns to every potential PPI a quantity, Pperturb, defined as the probability that the given 

PPI will be disrupted or activated by a randomly drawn mutation (Fig. 1e and 

Supplementary Fig. 1). Pperturb integrates information at the levels of domains, proteins, and 

networks to model the impact of mutations in multiple proteins and their disease-specific 

frequencies. Pperturb is central to our approach and rigorously captures the concept of a 

mutation that is causally responsible for a qualitative change in PPI behavior.

We first used MSM/P to reconstruct the human SH2-phosphoprotein network from first 

principles using primary sequence data on SH2 domains and 2,292 phosphoproteins, about 

half of which contained multiple phosphosites (Supplementary Fig. 4 and 5, and 

Supplementary Table 2). We then obtained all whole-genome tumor sequences from 

COSMIC16, filtered to include mutations in SH2 domains and residues proximate to 

confirmed sites of tyrosine phosphorylation (i.e. those with 2 or more sources of 

experimental support)22. This yielded 807 mutations in SH2 proteins and 4,648 mutations in 

phosphoproteins across 24 tissue types and 2,206 tumor samples. We pooled all mutations 

and used MSM/N to derive Pperturb values for every PPI (Supplementary Fig. 6 and 

Supplementary Tables 3 through 28). The resulting tumor network exhibited strong 

enrichment for cancer genes (Fig. 4a). The percentage of SH2/phosphoproteins annotated as 
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oncogenes or tumor suppressors is ~23% (by TSGene30 and allOnco) and increases 

somewhat (to ~25%) when we consider only mutated SH2/phosphoproteins in COSMIC. In 

contrast, cancer gene enrichment increases to 75% for the top 10 interactors and 43% for the 

top 100 when scored by Pperturb (COSMIC and Pperturb did not reach parity until ~10,000 

PPIs were included). We conclude that COSMIC mutations with high Pperturb values are 

strongly associated with cancer genes.

Idiosyncratic Mutations Rewire SH2 Signaling Networks

Of 5,455 COSMIC mutations that occur in SH2- or phosphoproteins, 4,254 (78%) were 

idiosyncratic, occurring in only a single sample. However, we found that idiosyncratic 

mutations were as likely to rewire PPIs as recurrent mutations: of 419 recurrent mutations, 

23 (5.5%) are predicted to rewire PPIs at >33% probability, and 5 (1.2%) at >50% 

probability. Of 4,254 idiosyncratic mutations, 262 (6.2%) are predicted to rewire PPIs at 

>33% probability, and 47 (1.1%) at >50% probability. These results imply that tumor 

mutations should be analyzed with respect to function rather than frequency alone. MSM is 

one way to detect potentially functional non-recurrent mutations.

Most Cancer Mutations Disrupt Individual PPIs

Tumorigenic mutations commonly affect enzymatic function by inactivating a tumor 

suppressor such as PTEN or constitutively activating an oncogene such as PI3 kinase31. It 

has been hypothesized that some mutations function by selectively rewiring PPIs6. We 

therefore analyzed MSM/N tumor networks to identify mutations that selectively disrupted 

single high-affinity PPIs while leaving intact higher- and lower-affinity interactions 

mediated by the same mutated protein. We found that the majority (69%) of strong cancer 

mutations (p > 0.5) target a single PPI (Fig. 4b). This appears to hold true irrespective of the 

number of interactions mediated by the wild-type protein (ρ = 0.2 with one outlier removed; 

see Fig. 4c). One exception is a mutation in the GRAP2 SH2 domain that changes a 

tryptophan to a cysteine at a critical residue and is predicted to disrupt 117 out of 130 

interactions. Mutating a homologous tryptophan in the related GRB2 protein has been 

shown to similarly abolish its ability to bind pY-peptides32.

We also observed a difference in the predicted effect of cancer mutations on SH2 proteins 

and phosphoproteins (Fig. 4d). The vast majority of strong mutations (95%) target 

phosphoproteins, and result in both gain (37%) and loss (63%) of interactions. Conversely, 

SH2 mutations almost universally lead to loss of interactions (96%). The strength of the 

perturbational effect also differed. It takes on average ~100 draws from the pool of 

phosphoprotein mutations to disrupt an interaction, but only ~10 draws from the pool of 

SH2 mutations. For gain-of-function mutations, it takes on average ~250 draws for 

phosphoproteins and ~200 for SH2-proteins.

Two Modes of Network Rewiring by Cancer Mutations

To identify associations between cancer tissue and changes in SH2 networks, we examined 

the 20 most strongly disrupted PPIs as ranked by Pperturb across 24 cancer tissues of origin. 

We observed two modes of action: “node” and “pathway”. These modes are not mutually 

exclusive and occur in combination. In “node” cases (e.g. breast and liver), one or more 
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mutations target a single protein and obliterate all its interactions or result in a gain-of-

function loss of selectivity (Fig. 5a). This mode of disruption is analogous to enzymatic 

mutations, and may be therapeutically addressable with drugs that target a single protein. In 

the “pathway” mode, multiple mutations disrupt PPIs that form a connected path within a 

network (Fig. 5b and 6). Random targeting of such connected paths is highly improbable, as 

each mutation can affect ~250,000 edges, suggesting that selection may be exerted at the 

level of the signaling pathway. Therapeutic intervention in such cases may require agents 

that restore pathway-level function. We also observed differential targeting of PPIs 

involving the same protein across different tissues. For example, the tumor suppressor 

PTEN is predicted to gain or lose distinct interactions in cancers of the large intestine, 

endometrium, and prostate (Fig. 5c), and the affected proteins are pertinent to the tumor 

type. For instance, in prostate, TNS1, TNS4, BCAR1, and RAC1 are known to regulate 

cellular motility and invasiveness33,34, and the estrogen receptor ESR1 is known to enhance 

proliferation35.

DISCUSSION

In this paper we attempt to advance the state-of-the-art in functional genomics by 

developing an analytical framework for reconstructing SH2 phospho-tyrosine signaling 

networks in normal and cancer cells via multiscale statistical mechanics. MSM methodology 

integrates and reconciles diverse genomic, biochemical, and structural data, and provides 

insights into determinants of binding specificity and the consequences of genetic mutations 

based on biophysical principles (Fig. 8d). On the molecular level, we find that the majority 

of mutations that are consequential for PPIs occur in phosphoproteins and are equally likely 

to result in gain or loss of interactions. Conversely, SH2 domain mutations are mostly loss-

of-function. At the network level, cancer mutations rewire SH2 networks in a bimodal 

fashion, coordinately rewiring connected subnetworks in one mode and disrupting the total 

function of individual proteins in the other mode.

To summarize the selectivity of SH2 domains, we developed a new matrix representation: 

Position Energy Matrices (PEMs) (Fig. 7a, Supplementary Note, and Supplementary Table 

29). Existing position-specific scoring matrices (PSSMs) describe determinants of binding 

selectivity by specifying the relative preferences for a base or amino acid at each position in 

the bound biomolecule. In contrast, PEMs describe per-residue interaction energies using a 

scale that is universal across SH2 domains and residue positions (Fig. 7c). This makes it 

possible to compare absolute preferences between peptide positions and capture selectivity 

effects that are obscured by PSSMs (Fig. 7a and 7b). The PEM representation also makes 

clear that residue-specific negative interaction energies (those lying below the line) play a 

significant role in binding selectivity. By mapping the position-specific MSM/D energies 

onto the 3D structure of the SH2/pY-peptide binding interface (Fig. 7d) we find that positive 

and negative energetic hotspots lie primarily in the peptide binding pocket (dark pink) 

showing that MSM/D captures the physico-chemical basis of protein-peptide interaction.

Because it is probabilistic, MSM/D can estimate the proportion of false positives (FPs) and 

negatives FNs in experiments (Fig. 8a). An interaction deemed to be an experimental 

negative but which is assigned a 90% probability by MSM/D has only a 10% probability of 
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being an experimental true negative (TN) and a model FP. Using a sensitivity threshold at 

which MSM/D is expected to predict as many new interactions (TPs) as it loses (FNs), 

MSM/D eliminates ~7 times more FPs than it adds (Fig. 8b); at a sensitivity threshold at 

which MSM/D is expected to add the same number of FPs as it eliminates, MSM/D 

discovers ~5 times more TPs than it loses. These results suggest a role for MSM in pruning 

large-scale data as a means to increase quality, sensitivity, and concordance across assays 

(Fig. 8c). By analogy, the introduction of Phred quality scores for DNA sequencing was 

critical in reducing error and increasing throughput in genomics36. Data pruning can also be 

used in an iterative approach involving model training on data and data refinement using a 

model. More generally we propose that precise statistical modeling is a superior approach to 

reconcile irreproducible and discordant data in biomedicine37 than simple repetition.

The MSM framework is applicable to any PID for which interaction and structural data are 

available (e.g. PTB, SH3, PDZ domains), including DNA-binding protein domains. Certain 

PIDs (e.g. SH3 domains) will present additional difficulties because they lack the absolute 

reference frame for peptide alignment provided by pTyr residues, possibly necessitating 

threading and structural alignment. Moreover, MSM does not currently take into account 

levels of protein expression or actual states of tyrosine phosphorylation in cells, but can be 

extended to incorporate this data as it becomes available (e.g. from quantitative mass 

spectrometry). The ultimate goal is to model information flow through PID networks under 

different physiological conditions as a means to understand normal physiology, disease-

associated mutations, and patient-specific phenotypic responses. Statistical mechanical 

ensembles such as those described here provide the conceptual framework needed to achieve 

this.

ONLINE METHODS

Quantitative co-Immunoprecipitation of GCSAM interacting proteins

N-terminal GFP tagged SH2 domains and C-terminal TagRFP tagged GCSAM were co-

transfected into HEK293T cells acquired from ATCC. After 24 hours, cells were treated 

with freshly prepared pervanadate according to a previously published protocol27 and 

subsequently lysed using Cell Signaling® Lysis Buffer according to the manufacturer's 

protocol. Cleared lysate was added to GFP-Trap® agarose conjugated beads (ChromoTek 

gta-20) and then incubated for 1 hour at 4°C. After centrifugation, 40μL of supernatant was 

transferred to a 384-well plate. The beads were subsequently washed twice and also 

transferred into the same 384-well plate for imaging on Operetta® High Content Imaging 

System in both GFP and RFP channels. By normalizing the bead RFP signal by the bead 

GFP signal and the supernatant RFP signal, a quantitative value is obtained that is linearly 

related to the association constant of the two species under the assumption that bead GFP 

signal primarily reflects the unbound state. To facilitate quantitative comparison, the signals 

were divided by the signal of the weakest binder, CRK, yielding fold change (f) 

measurement that were rescaled between 0.5 and 1 using the equation f/(1+f). This quantity 

represents the relative occupancy of the bound and unbound states.
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Determining the effect of the IGF1R A1347V mutation

The A1347V mutation was introduced into a plasmid encoding IGF1R using site directed 

mutagenesis. IGF1R Quantitative co-IP was performed similarly to the GCSAM 

experiments described above, except that IGF1R was GFP tagged, SH2 domains were 

tagged with mCherry, and immunoprecipitation was done with RFP-Trap® (ChromoTek 

rta-20). Five biological replicates were performed on different days and the imaging 

parameters were optimized in each experiment so as to prevent signal saturation; the data 

from each biological replicate were therefore rescaled using a constant that related the signal 

intensities of imaging.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Multiscale Statistical Mechanical Framework. (a) Statistical mechanics establishes 

mathematical relationships between the energy of a state s of a system, known as the 

Hamiltonian H(s), and measurable thermodynamic quantities of that state, such as its 

probability of occurrence P(s). (b) In simple physical systems, the Hamiltonian is known, 

and the mathematics of statistical mechanics can be directly used to infer thermodynamic 

quantities. (c) Experimental data on thermodynamic quantities can be used in the reverse 

direction to infer the Hamiltonian (more precisely, a pseudo-Hamiltonian) using machine 

learning techniques. (d) In MSM, learning of the Hamiltonian is performed at the single 

domain level (MSM/D), by creating ensembles that correspond to bound and unbound 

SH2/pY-peptide complexes. (e) The learned Hamiltonian can be used to make predictions 

for more complex ensembles. At the whole protein level (MSM/P), ensembles comprise all 

physical binding configurations, accounting for the combinatorics of multiple domains and 

multiple phosphorylation sites. At the network and mutation level (MSM/N), ensembles 

comprise states that simultaneously represent the behavior of the PPI before and after a 

mutation is introduced. This selectively captures mutations that result in consequential 

changes to binding affinity (see Main Text, Supplementary Fig. 1, and Supplementary Note 

for more details).
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Figure 2. 
Assessment of Domain Model (MSM/D) Performance. (a) Receiver-Operator Characteristic 

(ROC) curves assessing the performance of MSM/D and other methods (SMALI, PEPINT, 

and PrePPI) in predicting the binding states of SH2-phosphopeptide interactions. ROC 

curves characterize a model's ability to predict SH2/pY-peptide interactions by computing 

the true positive rate (TPR) of predictions as a function of the false positive rate (FPR). A 

method that makes random guesses will produce a straight line with a slope of 1 (dashed 

black line) whereas a perfect method produces a constant TPR value of 1 (dotted black line). 

Tests were performed on the combined dataset (All) and a high-confidence subset (HC2). 

(b) A close up view of (a), showing the relative performance of high-throughput datasets. (c) 

The Areas Under the Curve (AUCs) of MSM/D on predicting held out SH2 domains are 

plotted as a function of the domains’ sequence identity to the closest homolog in the training 

set. A histogram of AUC values is overlaid on the y-axis.
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Figure 3. 
Experimental Validation of Wild-type and Mutated Protein Level Interactions. (a) 

Quantitative co-immunoprecipitation signals of GCSAM to partner proteins show excellent 

experimental reproducibility (ρ = 0.99) and a high correlation with MSM/P predictions (ρ = 

0.80). (b) A1346V mutated IGF1R exhibits higher affinity to the PIK3R1-N, PIK3R1-C, and 

PIK3R1-NC SH2 domains (p = 6.2 × 10−5, p = 9.0 × 10−3, and p = 5.9 × 10−5, respectively, 

using one-sided T-test) as predicted by MSM/P. Error bars represent the standard error of 

five biological replicates.
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Figure 4. 
Enrichment and Analysis of Cancer Mutations. (a) The percentage of genes already known 

to be involved in cancer (as oncogenes or tumor suppressors) are plotted as a function of 

their ranking by the model (Pperturb). Rankings were done based on edges (top) and nodes 

(bottom). (b) Histogram of the expected values (per mutation) of lost and gained 

interactions. (c) Bubble chart depicting number of interactions gained or lost in a mutation 

as a function of the number of wild-type interaction partners of the mutated protein (circle 

size indicates number of mutations with the same profile). One mutation was removed when 

calculating correlation (faint yellow circle). (d) Distributions of Pperturb values for SH2 

proteins and phosphoproteins broken down by gain of function (yellow) and loss of function 

(orange) mutations.
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Figure 5. 
Tissue-Specific Tumor Networks. (a) MSM/N predictions of top 20 interactions gained and 

lost (green and yellow edges, respectively) in four tumor networks overlaid on the wild-type 

SH2-phosphosignaling network (gray edges, each representing an interaction with p > 0.85 

probability, as in Supplementary Fig. 4), showing a bias for the “node” mode of 

perturbations. (b) Four tumor networks that show a bias for the “pathway” mode of 

perturbations. (c) Local neighborhoods of the PTEN network in different cancer tissue types. 

All networks were generated using a spring-electrical embedding in the Mathematica 

software package.
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Figure 6. 
Kidney Tumor Network. MSM/N predictions of top 20 perturbed interactions (green and 

yellow arrows) in kidney cancer overlaid on wild-type SH2-phosphosignaling network (gray 

edges, each representing an interaction with p > 0.85 probability, as in Supplementary Fig. 

4). Networks were generated using a spring-electrical embedding in the Mathematica 

software package.
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Figure 7. 
PEMs Capture the Biophysical Basis of SH2 Domain Specificity. (a) PEM representation. 

Amino acids exhibiting attractive interactions lie above the dividing line whereas amino 

acids involving repulsive interactions lie below, with the height of the residue corresponding 

to the magnitude of the interaction energy. PEMs capture the effects of negative selectivity 

and differential energy contributions at different residue positions. (b) PEM for the domain 

SH2D1B shows that a tyrosine at position −2 (relative to the pY site) contributes less to 

affinity than a leucine or isoleucine at position +3. In the PSSM the situation is reversed, 

because the PSSM representation forces each position to contribute equally to the total 

probability which causes the dominant valine at position +3 to appear more important than it 

is in terms of actual energetics. Negative selectivity is also readily evident using PEMs: in 

the case of the SH2 domain TXK specificity involves repulsive interactions, specifically 

proline, asparagine, and lysine at positions +1, +3, and −1, respectively. These effects on 

selectivity cannot be discerned from the corresponding PSSM. (c) Heatmap of pairwise 

amino acid interaction energies at the SH2-phosphopeptide interface as derived from 

MSM/D. Instances of strong negative energies (bright pink) correspond to electrostatic 

repulsion (e.g. R and K) whereas positive energies (bright blue) are electrostatically 

complementary (e.g. R and D) or involve buried hydrophobic amino acids (e.g. L and L). (d) 

Heatmap of the average magnitude of interaction energies per residue position projected 

onto a structural representative of SH2 domains (white) in complex with phosphopeptide 

(green) (accession code: 1JU5).
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Figure 8. 
Model Enriches High-Throughput Experiments. (a) SH2/pY-peptide interactions were rank-

ordered by their predicted interaction probability and binned into overlapping windows. The 

average probability within each bin (x-axis) is plotted against the proportion of experimental 

positives in the same bin (y-axis). We found the agreement to be high, indicating that on a 

statistical level MSM/D can predict experimental accuracy. (b) Expected proportions of 

various outcomes (TP/TN/FP/FN) for model and experiment are plotted as a function of 

model sensitivity. Right dashed vertical line indicates a sensitivity level at which MSM/D is 

expected to predict as many new interactions (green) as it loses due to oversensitivity (red). 

At this threshold, MSM/D is expected to eliminate ~7 times more FPs than it adds (415 

model FPs added vs. 2973 experimental FPs eliminated). Left dashed vertical line 

corresponds to a sensitivity at which MSM/D is expected to add the same number of FPs 

(yellow) as it eliminates (orange). At this threshold, MSM/D discovers ~5 times more TPs 

than it loses (3091 model TPs added vs. 614 experimental TPs lost). (c) Model predictions 

can be used as quality indicators to enrich HT experiments for TPs by eliminating low 

probability interactions. Model predictions can also be used to add novel interactions that 

have not been experimentally probed. (d) Genomic mutation data only provides node-level 

information (i.e. which gene is mutated). Model converts node-level mutation information 

into edge-level perturbations, and integrates the known or predicted PPI network to model 

the buffering effects of multi-site proteins.
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Table 1

Performance Breakdown (AUCs)

Overall MacBeath Jones Nash Cesareni LT + HC2 HC2 HC3

SMALI 0.713 0.663 0.594 0.709 0.714 0.820 0.821 0.890

PEPINT 0.777 0.627 0.629 0.701 0.793 0.761 0.795 0.899

PrePPI 0.615 0.580 0.576 0.586 0.584 0.708 0.580 0.738

MSM/D 0.882 0.762 0.730 0.769 0.896 0.887 0.947 0.991
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Table 2

Dataset Transferability (AUCs)

Overall MacBeath Jones Nash Cesareni LT + HC2 HC2 HC3

Transfer 0.771 0.671 0.737 0.711 0.707 0.836 0.938 0.971

*AUCs computed by withholding an entire dataset from the training set and testing performance of MSM/D exclusively on the held out dataset. 
LT, HC2, and HC3 were treated as a single dataset.
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