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A B S T R A C T

Scientific development provides opportunities to replace many traditional manual methods to achieve more 
accurate results and higher efficiency. To scientifically ascertain the geographical origin of coffee, this study 
develops a method for the rapid determination of 16 inorganic elements in coffee using microwave digestion 
combined with the ICP-MS internal standard method. Principal component analysis (PCA), Fisher discriminant 
analysis (FDA), and Partial least squares discriminant analysis (PLS-DA) are employed to analyze 40 coffee 
samples from three production areas of Pu’er, Baoshan, and Wanning. The results show that the linear correlation 
coefficients of the 16 elements in this method are above 0.999, the detection limits are in the range of 
0.0004–0.63 mg/kg, the RSD of the precision experiments are 4.5 %–13.5 %, the recovery rate of the peak 
experiment is 86.0 %–96.3 % with the RSD of 1.1 %–8.8 %, and the results of the standard substances are within 
the range of standard values. Using the discriminant analysis of inorganic elements in coffee (FDA and PLS-DA), 
coffee origin discrimination was realized, and six key elements (Al, Mn, Fe, Cu, Na, and Ba) are identified as 
effective discriminatory indexes. Accordingly, a coffee origin discrimination model is established, and the overall 
accuracy discrimination rate of the discrimination model are all more than 90.0 %, and FDA > PLS-DA. The 
findings indicated that the method has good accuracy and reliability, is suitable for analyzing and determining 
multiple elements in sample components as targets, and may have a positive impact on the development of 
related industries.

1. Introduction

Coffee is one of the three major non-alcoholic beverages (cocoa, 
coffee, and tea) in the world, with a rich history dating back to the 9th 
century (Dos et al., 2024; Haile & Kang, 2019). Over the past millen
nium, coffee has captivated billions of enthusiasts due to its unique 
aroma, flavor, and recognized potential health benefits (Liu, Huang, 
Song, Li, & Mao, 2023). Coffee is cherished not only as a cup of fragrant 
and refreshing liquid, but rather abundant energy and a perfect working 
state, or even a symbol of comfortable and stable life (Van Dam, Hu, & 
Willett, 2020). Therefore, the related industries of coffee, including 

cultivation, processing, grading, and distribution, are increasingly 
becoming a mainstay in many cultures and economies (Barrea et al., 
2023; Velasquez & Banchon, 2023).

With the improvement of living standards and changes in con
sumption habits, more and more Chinese people are discovering and 
beginning to experience the allure of coffee. China has emerged as the 
most promising and rapidly expanding coffee market in the world. In the 
past year alone, nearly 100,000 new coffee shops have been established 
across China. Over 300,000 tons of coffee beans have been consumed, 
and the consumer market has surpassed a value of over 100 billion of US 
dollars. The preferences of this vast market are set to shape the 
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development of the coffee industry for a considerable period of time in 
the future. In 2020, three distinguished Chinese coffee varieties, 
including Baoshan small-grain coffee from Baoshan city in Yunnan 
province, Xinglong coffee from Wanning city in Hainan province, and 
Pu’er coffee from Pu’er city in Yunnan province were selected as the first 
batch of China-Europe protected geographical indications, representing 
the best quality, most popular, and most consumer-recognized coffee in 
China (Dong, Tan, Zhao, Hu, & Lu, 2015; Ma et al., 2022).

The meticulous and rigorous pursuit of coffee quality is paramount 
for growers, distributors, and consumers alike. However, for a long time, 
due to the limitations of scientific and technological level, the identifi
cation and quality assessment of various coffee products have primarily 
relied on the sensory evaluation of the flavor and taste led by well- 
trained coffee appraisers (Schaneberg, 2020). These appraisers use 
their exceptionally sensitive noses and tongues, honed through exten
sive and complex professional training, to make their judgments. 
Despite their expertise, the subjective nature of their assessments in
troduces a degree of bias. Additionally, the physical and sensory limi
tations of humans mean that appraisers can become fatigued or 
distracted, impacting the reliability of their judgments. Therefore, 
developing faster, more accurate, and simpler means to replace manual 
evaluations, and determine the difference in coffee products, has 
become an urgent and significant challenge in the current coffee 
industry.

When discussing the issue of food authenticity (especially in the case 
of coffee), it is important to use a variety of analytical techniques to add 
depth and breadth to the study. Common additional analytical tech
niques include gas chromatography–mass spectrometry (GC–MS), high- 
performance liquid chromatography (HPLC), and near infrared spec
troscopy (NIR). These techniques can provide chemical information 
about the composition of food products and help identify samples from 
different sources. However, ICP-MS (Inductively Coupled Plasma Mass 
Spectrometry) has demonstrated unique advantages in elemental anal
ysis with its ability to detect a wide range of elements, including trace 
elements, with great sensitivity and accuracy, providing a wealth of 
chemical information for research (Moor, Devos, Guecheva, & Kobler, 
2000; Nguyen et al., 2023; Zhao et al., 2011).

The introduction of ICP-MS has injected novelty into the study of 
food authenticity, mainly in its ability to analyze multiple elements in a 
sample simultaneously and provide isotopic ratios of the elements. This 
data not only reveals the origin and processing history of the sample but 
also helps scientists to identify cases of forgery or adulteration. For 
example, by analyzing metallic elements in coffee, it is possible to 
identify the growing region and soil composition, thus verifying its 
authenticity.

Further, machine learning methods such as Principal Component 
Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA) 
and Linear Discriminant Analysis (LDA) can effectively process and 
model chemical data obtained from techniques such as ICP-MS. These 
methods can reveal underlying structures and patterns in the data and 
effectively differentiate between samples from different sources. By 
analyzing multiple samples of multidimensional data on elemental 
content, machine learning models are able to identify characteristic 
differences between authentic and counterfeit products, providing a 
scientific basis for authenticity testing.

In this study, the changing pattern of multi-element composition of 
coffee samples from three production areas, namely, Pu’er, Yunnan; 
Baoshan, Yunnan; and Wanning, Hainan, was investigated by utilizing 
ICP-MS instead of the traditional coffee characterization method. Based 
on the fingerprints of 16 inorganic elements, combined with machine 
learning methods such as PCA, PLS-DA, and LDA, the coffee samples 
from the three different production areas were characterized. The nov
elty of this study is the comparison of PLS-DA and LDA machine learning 
methods for geographic traceability of coffee identification with 
selected markers. This approach helps to screen the optimal machine 
learning model for coffee geographic traceability, as well as the most 

effective chemical markers among inorganic elements for tracing the 
origin of coffee globally.

2. Materials & methods

2.1. Reagents

Analytical grade concentrated nitric acid (HNO3, 65 %) and 
hydrogen peroxide (H2O2, 30 %) are sourced from Tianjin Komio Co, 
China. Tuning liquid Li, Co, In, and U (10 mg/L) are from o2si Co, US; 
Standard solution Al, Ba, Ca, Cd, Co, Cu, Cr, Na, K, Fe, Mg, Mn, Zn, Ni, 
Pb, Se, Sc, Ge, Rh, Re (1000 mg/L), from National Nonferrous Metals 
and Electronic Materials Analysis and Testing Center, China. CRMs 
including GBW10016a-Tea, GBW10021-Beans were purchased from the 
National Institute of Metrology of China. The glassware is soaked 
overnight in 20 % v/v HNO3 and thoroughly rinsed with pure water 
during use.

2.2. Sample collection and preparation

Totally 40 individual coffee samples were collected between October 
2022 and April 2023 from three production areas, including: Pu’er city 
(22◦ 02′ to 24◦ 50′ N, 99◦ 09′ to 102◦ 19′ E, 317 m to 3370 m above sea 
level, 19.5 ◦C average annual temperature, 1172 to 2780 mm annual 
rainfall), in Yunnan province (12 samples), Baoshan city (98◦ 05′ to 100◦

02′ N, 24◦ 08′ to 25◦51′ E, 535 m to 3781 m above sea level, 15.5 ◦C 
average annual temperature, 922 to 2112 mm annual rainfall) in 
Yunnan province (15 samples), and Wanning city (18◦ 35′ to 19◦ 06′ N, 
110◦ 00′ to 110◦ 34′ E, 9 m to 1288 m above sea level, 24.0 ◦C average 
annual temperature, 1646 to 2691 mm annual rainfall) in Hainan 
province (13 samples) (Fig. 1). Subsequently, all coffee beans were fully 
dried in the air and ground into powder using a high-speed grinder 
(FW100, Tianjin Taist Co, China) according to traditional methods.

2.3. Samples digestion

The prepared coffee powder (0.5000 g) was added into 65 % of 
concentrated nitric acid (6 mL) and 30 % of hydrogen peroxide (2 mL) 
(Khan et al., 2014). The mixture was incubated at 100 ◦C for 2 h, and 
then digested using a microwave digestion instrument (MARS, CEM Co, 
US). At a power of 1600 W, the sample was firstly heated to 120 ◦C 
within 10 min and maintained for 5 min, followed by heating to 150 ◦C 
within 5 min and maintaining for 5 min, and then heated to 180 ◦C 
within 5 min and maintain for 20 min. After this, the resulting sample 
was slightly cooled and treated using an acid catcher (VB24 UP, Beijing 
Laibertek Co., China) at 160 ◦C until almost dry. It was then cooled again 
and diluted with ultrapure water in a 25 mL colorimetric tube for testing 
(Khan et al., 2013).

2.4. Test methods

The test solution was determined using an ICP-MS (X2, Thermo 
Fisher Co, US) under an optimized condition (Collision gas: high purity 
He; 1350 W; Cooling air flow rate 15.0 L/min; Atomizing airflow speed 
0.75 L/min; Sampling depth 7.5 mm; Ni sampling cone; Ni intercepts the 
cone) (Chen et al., 2011). The quantitative analysis was performed using 
external standard method. Sc, Ge, Rh, and Re are used as internal 
standard elements, analyzed by injection at the same time with the 
samples, and the determination was repeated three times for each 
sample.

2.5. Method validation criteria

Method linear relationship validation. Under the set instrument 
conditions, the prepared mixed standard solution was measured, and the 
linear correlation coefficient r of the solution was calculated based on 
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the experimental results to obtain the linear relationship of the method.
Method detection limit and limit of quantification validation. Under 

the set instrument conditions, measure 11 blank solutions and calculate 
the standard deviation of the blank solution based on the results to 
obtain the detection limit of the method. The detection limit of the blank 
solution is calculated as three times the standard deviation. The limit of 
quantification for blank solutions is calculated as ten times the standard 
deviation.

Method precision experiment. According to the established experi
mental method for detecting coffee elements, the results were processed 
and measured six times in parallel. The relative standard deviation 
(RSD) of the data was calculated based on the experimental results to 
evaluate the accuracy of the method.

Method accuracy experiment. One is the standard substance vali
dation experiment, which uses the established experimental method to 
determine the standard substances of tea (GBW10016a) and beans 
(GBW10021). Another method is the peak recovery experiment, which 
measures the recovery rates of 16 selected elements and generates peaks 
at two selected concentration levels of 0.1 and 1.0 μg⋅g− 1 based on the 
concentration in the sample.

2.6. Statistical analysis

SPSS 26.0 software was used for statistical analysis, applying sta
tistical methods including PCA, FDA, PLS-DA. Significance differences 
were evaluated by comparing the effects of different sample (p < 0.05).

3. Results & discussion

3.1. Method validation

The linearity, detection limit, limit of quantification, precision, ac
curacy, and peak recovery experiments of the applied analytical method 
demonstrate that the method meets the requirements and standards of 
the complies with the Chinese national standard - GB/T 27417–2017 
Conformity Assessment Guidelines for the Confirmation and Validation 
of Chemical Analytical Methods. The linear correlation coefficients r of 
each element are all above 0.999, indicating a good linear relationship 
between the elements within the concentration range of the standard 
curve. The detection limit of 16 elements in coffee is 0.0004–0.63 mg/ 
kg, and the limits of quantification is 0.0012–1.9 mg/kg, which meet the 
requirements of analytical experiments. The relative standard deviation 
(RSD) of 16 elements is 4.5 % ~ 13.5 %, indicating that the measure
ment method used in this experiment has good repeatability. The veri
fication experiment of standard substances shows that the experimental 
results are within the standard value range of standard substances and 
meet the relevant accuracy requirements. The recovery rate of the peak 
experiment is 86.0 % ~ 96.3 %. The RSD ranges from 1.1 % to 8.8 %, 
indicating that the established detection method is accurate and reliable 
and can be used for rapid analysis of multiple elements in coffee.

3.2. Inorganic element content in coffee

Follow the established experimental method for pre-treatment and 
machine testing. According to the results in Fig. 2, coffee from Yunnan 
Pu’er, Yunnan Baoshan, and Hainan Wanning regions all contain rich 
inorganic elements such as K, Mg, Ca, Mn, Na, Fe, and there are also 

Fig. 1. Sampling locations in major coffee producing provinces in China.
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significant differences in the content of various elements. The content of 
K element in coffee from three producing areas is the highest, with an 
average of over 20 g/kg and a maximum value of 29.8 g/kg; The content 
of Mg element reaches 1720–3200 mg/kg; The content of Ca element 
reaches 978-2335 mg/kg; The content of Mn and Ni is also above 10 mg/ 
kg. Similar to the findings of Worku et al. in terms of trends, especially in 
the concentrations of key elements such as Cu and Mn (Worku et al., 
2019). The harmful heavy metals such as Cd and Pb in coffee meet the 
limit requirements of the Codex Alimentarius Commission’s Codex 
General Standard for Contaminants and Toxins in Food, but there are 
still significant differences in the elemental content of coffee from 
different origins. Therefore, in response to the complex situation of 
coffee quality and pollution status in different regions, it is necessary to 
analyze the common main factors of coffee from different regions as 
quality control indicators, and timely understand the pollution risk of 
heavy metals in coffee from different regions.

An analysis of variance was conducted on 16 elements in coffee from 
three different producing areas. The results showed that there were 
significant differences (P < 0.05) in the content of Al, Ba, Ca, Cd, Co, Cu, 
Cr, Na, K, Fe, Mg, Mn, Zn, Ni, Pb, and Se in coffee samples from different 

producing areas. The element content in coffee samples from different 
producing areas had their own regional characteristics. From Table 1, it 
can be found that the Al, Cr, Fe, Co, Ni, Cu, Zn, Se, Na, Ba elements in 
coffee from Hainan are generally significantly higher than those from 
Yunnan (P < 0.05). The content of various elements in coffee from Pu’er 
and Baoshan in Yunnan is relatively similar, but the difference is not 
significant; The manganese content in the Wanning area of Hainan was 
significantly lower than that in the other two areas (P < 0.05); The 
content of K, Mg, and Ca in coffee from the three producing areas is 
similar, and K element is significantly higher than the other two ele
ments; The content of Cd and Pb is relatively low, and the production 
areas of Pu’er in Yunnan are significantly higher than those of Baoshan 
in Yunnan and Wanning in Hainan (P < 0.05). Therefore, from the 
differences in the content of multiple elements in coffee, it can be seen 
that its inorganic element content is influenced by environmental factors 
such as different growing soils, climatic conditions, and hydrology. It 
means that specific geographic characteristics of coffee, such as soil 
composition, climatic conditions, and agricultural practices, can affect 
the way inorganic elements are taken up and accumulated by coffee 
plants. For example, higher abundance of specific elements in the soil 

Fig. 2. Box plots of 16 element contents in coffee from Yunnan Pu’er, Yunnan Baoshan, and Hainan Wanning regions.

X. Pan et al.                                                                                                                                                                                                                                      Food Chemistry: X 24 (2024) 101980 

4 



may result in higher concentrations of these elements in the coffee plant.

3.3. Correlation analysis of element content in coffee from different 
origins

Using 16 elements as analysis indicators, correlation analysis was 
conducted on coffee samples from three producing areas. The larger the 
absolute value of the correlation coefficient, the stronger the correlation, 
the closer the correlation coefficient is to 1 or − 1, the stronger the 
correlation, the closer the correlation coefficient is to 0, and the weaker 
the correlation (Song et al., 2022). From the correlation coefficient in 
Fig. 3, it can be seen that there is a significant correlation (| r | > 0.6) 
between many elements in coffee, such as Al and elements such as Ba, 
Ni, Zn, Na, etc., which are positively correlated and negatively corre
lated with Mn; Fe is positively correlated with elements such as Cu and 
Ba, while Cu is positively correlated with elements such as Ba and Se. 
Related analysis indicates that there is a synergistic or antagonistic 
relationship between these elements to promote mutual absorption. The 
inorganic element content of coffee is influenced by various factors, such 
as soil, climate, and internal distribution of plants. Although the content 
of each element is influenced by different factors, there may be some 
inherent patterns in their changes, and tracing the origin of coffee has 
certain potential applications. The correlation results indicate that these 
element indicators can reflect the origin information of coffee to a 
certain extent, and there is a certain correlation between them.

3.4. Principal component analysis (PCA)

The principal component analysis method extracts a few indepen
dent comprehensive indicators (i.e. principal components) from a large 
amount of data that can fully reflect the information of the original 
variables by reducing the role of dimensions (Jolliffe & Cadima, 2016; 
Souza et al., 2024). Using the content of 16 elements in coffee from 
different regions as indicators, principal component analysis (PCA) was 
conducted using SPSS software. The results showed that the KMO sta
tistic for this analysis was 0.660, indicating a significant correlation 
between all elements. The analysis obtained the characteristic values, 
contribution rates, and cumulative contribution rates of each principal 
component (Table 2a). The results of principal component analysis 
showed that the characteristic values of the first five principal compo
nents were 5.332, 2.461, 1.851, 1.664, and 1.008, respectively, with 
variance contribution rates of 33.324 %, 15.381 %, 11.569 %, 10.399 %, 
and 6.298 %, and cumulative contribution rates of 76.971 %, exceeding 
70 % of the total variance. It can be concluded that the first five principal 
components can represent the characteristic information of inorganic 
elements in coffee.

From Fig. 4a, it can be seen that the first two principal components 
are positively correlated with some elements. The first principal 
component is positively correlated with Al, Ni, Cu, Zn, Ba, and nega
tively correlated with Mn, while the second principal component is 
positively correlated with Mg and K. Therefore, Al, Mn, Ni, Cu, Zn, Ba, 
Mg, and K are characteristic elements of coffee, which can effectively 
affect the composition of inorganic elements in coffee and fully reflect 
the information of sample data. By applying this scientific analysis 
technique, the elemental characteristics of coffee samples from different 
origins were analyzed in depth, thus providing reliable data support for 
coffee origin traceability.

Table 1 
Determination results of different areas (mg/kg, n = 2).

element Pu’er, Yunnan (n = 12) Baoshan, Yunnan (n = 15) Wanning, Hainan (n = 13)

mean value Relative deviation mean value Relative deviation mean value Relative deviation

Al 2.32c 0.83 3.06b 0.83 7.06a 1.57
Cr 0.382b 0.22 0.239c 0.13 0.531a 0.32
Mn 88.05a 18.46 73.03b 13.17 38.6c 11.41
Fe 39.63b 7.45 34.20b 5.05 53.7a 11.31
Co 0.321b 0.11 0.347b 0.18 0.406a 0.31
Ni 1.07c 0.31 1.44b 0.48 2.27a 0.97
Cu 16.18b 2.43 13.68b 2.85 23.4a 4.97
Zn 4.31b 0.81 4.69b 0.67 6.38a 2.14
Cd 0.049a 0.079 0.0230b 0.021 0.0201b 0.025
Pb 0.078a 0.17 0.016c 0.015 0.0205b 0.01
Se 0.036b 0.014 0.037b 0.012 0.093a 0.068
Na 14.02c 2.37 17.93b 2.28 23.6a 5.16
Mg 2469.92a 444.61 2421.27a 315.02 2437a 231.5
K 22,198.08a 4889.66 20,846.07b 2723.85 21961a 3635.4
Ca 1442.67b 266.64 1538.47a 272.57 1532a 273.91
Ba 3.60b 0.86 2.11c 0.90 7.46a 2.35

Fig. 3. Pearson correlation coefficients between elements in coffee.

Table 2a 
The characteristic value, contribution rate and cumulative contribution rate of 
each principal component.

principal 
component

characteristic 
value

Variance 
contribution rate 
(%)

Cumulative variance 
contribution rate (%)

1 5.332 33.324 33.324
2 2.461 15.381 48.705
3 1.851 11.569 60.274
4 1.664 10.399 70.673
5 1.008 6.298 76.971
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3.5. Fisher discriminant analysis (FDA)

Through the study of the differences in inorganic element content, it 
can be found that there are differences in the inorganic element content 
of coffee from different regions, but this cannot accurately distinguish 
the coffee production area. In order to determine the origin of coffee, 
Fisher discriminant analysis method was used to perform discriminant 
analysis on coffee samples from three production areas, including Fisher 

function and cross validation.
In addition, in order to better understand the discrimination of 

various element content indicators on the origin of coffee, a general 
discrimination method based on Fisher discriminant function was 
established, and multivariate discriminant analysis was used to 
comprehensively analyze coffee samples. A total of 16 mineral elements 
were selected as independent variables in the analysis, and stepwise 
discriminant analysis was conducted to construct a discrimination 

Fig. 4. a)Principal Component Analysis of 16 Element Contents in Coffee from Different Regions; b) Fisher Discriminant Analysis of 16 Elements in Coffee from 
Different Regions (The blue square represents Yunnan Pu ‘er coffee; The green rhomboid represents Hainan Wanning coffee; Red ball represents Yunnan Baoshan 
coffee); Comparison of the results of PLS-DA determination of 16 elements in coffee of different origins: c) Score plot (The blue square represents Yunnan Pu ‘er 
coffee; The green rhomboid represents Hainan Wanning coffee; Red ball represents Yunnan Baoshan coffee); d) Histogram of the replacement test; e) Plot figure of the 
replacement test. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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model. Stepwise discriminant analysis helps to construct a discriminant 
model that is able to classify the origin of coffee samples based on 
elemental content. By comparing the contribution of different elements 
in the model, six inorganic elements, Al, Mn, Fe, Cu, Na, and Ba, are 
identified as elements with significant effect in discriminating coffee 
samples of different origins. The contents of these elements vary 
significantly among different origins and play a key role in the con
struction of the discriminant model. The discriminant function model 
coefficients shown in Table 2b and the discriminant results demon
strated in Table 3 confirm that these elements have significant 
discriminatory power in distinguishing coffee samples of origin from 
Yunnan Pu’er, Yunnan Baoshan and Hainan Wanning. This finding 
provides a scientific basis for coffee origin traceability and lays the 
foundation for future research and application.

Fisher linear discriminant model for coffee producing areas is ob
tained from Table 3:

Y1 = 0.588 × 1–0.026 × 2 + 0.057 × 3 + 0.135 × 4 + 0.138 × 5 +
0.251 × 6–9.146;

Y2 = -0.126 × 1 + 0.032 × 2 + 0.04 × 3 + 0.06 × 4–0.126 × 5 +
0.358 × 6–3.57.

The classification results indicate that discriminant analysis has 
successfully distinguished three coffee producing areas in China, 
achieving traceability of the origins of Yunnan Pu’er, Yunnan Baoshan, 
and Hainan Wanning coffee. The correct discrimination rate of the back- 
generation test reached 92.5 %, while the overall correct discrimination 
rate of the cross-test was 90.0 %, showing the model’s ability to 
discriminate in practical applications.

In the cross-examination, three samples from the Baoshan produc
tion area in Yunnan were mistakenly identified as the Yunnan Pu’er 
production area, and one sample from the Yunnan Pu’er production area 
was mistakenly identified as the Yunnan Baoshan production area. In 
contrast, the discrimination rate of the Wanning production area in 
Hainan was 100 %, which is consistent with the differences in element 
content mentioned earlier. Overall, the misjudgment rate of the cross- 
examination is less than 10 %, indicating that the model has practical 
application value for coffee origin traceability and that differences based 
on inorganic element fingerprints can effectively distinguish coffee from 
different origins.

The overall correct discrimination rate of the model reaches an 
acceptable standard (>90 %), which is based on the results of selecting 
16 elements for detection. Although adding some elements can increase 
the discrimination rate to a certain extent, its effect is limited, and it is 
based on the increase in workload costs. In response to this, we have 
tried our best to eliminate redundant elements and achieve a suitable 
result.

Substituting the inorganic element content of coffee samples into the 
above discriminant traceability model, scatter plots were created based 
on the scores of Y1 and Y2, respectively. From Fig. 4b, the origins of 
Yunnan Pu’er, Yunnan Baoshan, and Hainan Wanning coffee can be 
more intuitively identified. Among them, there is a small overlap be
tween Yunnan Pu’er and Baoshan coffee origins, which can easily cause 
model discrimination errors.

3.6. Partial least squares discriminant analysis (PLS-DA)

In contrast to PCA, a trend of increasing emphasis on differentiating 
samples from different production areas can be observed in the PLS-DA 
results (Fig. 4c). Unlike PCA, which relies only on the content of the 
elements themselves to distinguish different production areas, PLS-DA 
presupposes a matrix related to the production areas to assist in the 
distinction and is a more appropriate method to differentiate between 
different coffee geographic origins.

After the PLS-DA model is built, it is usually necessary to use some 
tests to verify the fit of the model and the accuracy of the prediction. The 
replacement test is currently the most commonly used evaluation 
method for PLS-DA models, and R2Y and Q2Y are the two most common 
parameters for the replacement test. As shown in Fig. 4d, the parameters 
of the fitted model are R2Y = 0.769 and Q2 = 0.363, indicating that the 
model has good explanatory ability for dependent variables Y (R2Y =
0.769; usually the closer the R2 is to 0.8, the more the model can explain 
most of the variance in the original data), and Q2 = 0.363 also indicates 
that the model has good predictive ability. The P < 0.05 for the 
replacement test reinforces this point.

In addition, as shown in Fig. 4e, the horizontal axis of the figure 
shows the correlation between the dependent variable after data label 
substitution and before substitution, and the vertical coordinates are the 
values of R2Y and Q2. Usually, to determine whether the model is 
overfitted based on the replacement test, one needs to focus on the 
following components: 1) all blue points on the left side should be lower 
than the original points on the rightmost side; 2) all red points on the left 
side should be lower than the original points on the rightmost side; and 
3) the intercept of the regression line of the predicted value of Q2 on the 
Y-axis should be less than 0. Based on the above criteria, the model is not 
overfitted and is reliable.

For PLS-DA, their biggest value in differentiating between coffees of 
different geographical origins is “providing VIP value.” The VIP value 
reflects the contribution of each element to the interpretation of the 
model. In simple terms, the larger the VIP value of the element, the more 
important it is to distinguish between different coffee producing areas 
and the more worthy of attention. Usually, we think that VIP > 1 is one 
of the criteria for screening characteristic elements. The study found that 
the six most important elements, namely Al (VIP:1.398), Mn 
(VIP:1.321), Fe (VIP:1.152), Cu (VIP:1.142), Na (VIP:1.137), and Ba 
(VIP:1.546), are considered to be an important element characteristic to 
distinguish coffee samples from different origins, and this result is 
consistent with Fisher discriminant analysis.

3.7. Comparison of FDA and PLS-DA classification effectiveness

The Receiver Operating Characteristic Curve (ROC) is a visualization 
tool for evaluating classification methods and models. It is used to assess 
the effectiveness of certain metrics in distinguishing between samples 
from two or more different categories. By plotting the ROC curve and 
calculating the area under the curve (AUC), accuracy, and sensitivity, it 
is possible to compare the classification effectiveness of different 
methods. In general, the closer the accuracy, sensitivity, and AUC values 
are to 1, the better the classification performance is represented.

As shown in Fig. 5, when comparing the results of the two classifi
cation methods, FDA and PLS-DA, we find that both methods have the 
same accuracy (0.917) and sensitivity (0.889). However, the AUC value 
of FDA is 0.978, which is significantly higher than that of PLS-DA 
(0.833), which suggests that FDA is better than PLS-DA in terms of 
classification effectiveness, thus enabling more accurate traceability of 
coffee samples from different producing regions.

3.8. Comparison with similar studies

In the research field of food source identification, the combination of 
elemental fingerprints and chemometric methods has been proven to be 

Table 2b 
Distinctive coffee distinguish function model coeffieient.

inorganic elements function

1 2

Al(X1) 0.588 -0.126
Mn(X2) − 0.026 0.032
Fe(X3) 0.057 0.04
Cu(X4) 0.135 0.06
Na(X5) 0.138 − 0.126
Ba(X6) 0.251 0.358
(Constant) − 9.146 − 3.57
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a powerful tool. ICP-MS technology is especially favored due to its high 
sensitivity and multi-element analysis ability. From Table 4, it can be 
seen that ICP-MS technology has played a key role in identifying the 
geographical sources of different foods. For example, Su et al. (Su et al., 
2022) analyzed 39 mineral elements through ICP-MS in their study of 
wine and combined chemometric methods such as PCA, HCA, LDA, and 
ANN to achieve a correct classification rate of over 81.7 %. However, 
this paper achieved over 90 % accuracy in identifying the geographical 
origin of coffee using carefully selected 16 elements and ICP-MS 

technology, combined with PCA and FDA. This result highlights the 
possibility of reducing the number of analytical elements while main
taining or improving classification accuracy.

Of particular note, Habte et al. (Habte et al., 2016) analyzed 45 el
ements in Ethiopian coffee using ICP-OES and ICP-MS and applied CA, 
LDA, and PCA, achieving a 100 % recognition rate. Although this result 
is impressive, this paper achieved similar high accuracy with fewer key 
elements, which not only reduces analysis costs but also improves 
analysis efficiency.

In addition, Liu et al. (Liu, Zeng, Zhao, & Tong, 2020) achieved a 
correct classification rate of more than 90 % by analyzing key elements, 
including 86Sr and 112Cd, using ICP-MS and ICP-OES techniques 
combined with PCA, LDA, and PLS-DA in the geographic origin identi
fication of tea. This demonstrates that efficient geographic source 
identification can be achieved by selecting highly geographically char
acterized elements, even when the number of elements is limited.

These studies demonstrate the potential of ICP-MS technology in 
food authenticity analysis, especially in this paper, where higher clas
sification accuracy was achieved using fewer elements by optimizing 
element selection and chemometric methods. This not only provides a 
new strategy for food source identification but also provides a valuable 
reference for future research.

4. Conclusion

This study demonstrates that ICP-MS combined with principal 
component analysis, Fisher discriminant analysis, and Partial least 
squares discriminant analysis effectively distinguishes the geographical 
origin of coffee based on its inorganic element content. By identifying 
the key elements—Al, Mn, Fe, Cu, Na, and Ba—and modeling based on 
them, both FDA and PLS-DA obtained more than 90 % correct 
discrimination rate, but FDA had better identification performance than 
PLS-DA. These findings offer a scientific approach to coffee origin 
traceability, providing a reliable alternative to traditional sensory 
evaluations. This advancement is pivotal for enhancing quality control, 
ensuring authenticity, and supporting the burgeoning coffee industry in 
China.
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Table 3 
General discriminant analysis of Lycium barbarum from different origins.

method producing area Prediction group members total Discrimination accuracy/ 
%

Overall correct discrimination 
rate/%

Baoshan, 
Yunnan

Pu’er, 
Yunnan

Wanning, 
Hainan

Initiala Count

Baoshan, 
Yunnan

10 2 0 12 83.3

92.5Pu’er, Yunnan 1 14 0 15 93.3
Wanning, 
Hainan 0 0 13 13 100

Cross 
validationbc Count

Baoshan, 
Yunnan 9 3 0 12 75

90.0Pu’er, Yunnan 1 14 0 15 93.3
Wanning, 
Hainan

0 0 13 13 100

Note: a) Correctly classified 92.5 % of the original grouped cases; b) Perform cross validation only for the individual cases in the analysis. In cross validation, each case 
is classified by functions derived from all cases outside of that case; c) Correctly classified 90.0 % of grouped cases that underwent cross validation.

Fig. 5. ROC curve: a) FDA; b) PLS-DA.
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