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Williams syndrome (WS) is a genetic disorder caused by the partial deletion
of chromosome 7. Individuals with WS have atypical cognitive abilities, such as
hypersociability and compromised visuospatial cognition, although the mechanisms
underlying these deficits, as well as the relationship between them, remain unclear. Here,
we assessed performance in mental rotation (MR) and level 2 visual perspective taking
(VPT2) tasks in individuals with and without WS. Individuals with WS obtained lower
scores in the VPT2 task than in the MR task. These individuals also performed poorly
on both the MR and VPT2 tasks compared with members of a control group. For the
individuals in the control group, performance scores improved during development for
both tasks, while the scores of those in the WS group improved only in the MR task,
and not the VPT2 task. Therefore, we conducted a second experiment to explore the
specific cognitive challenges faced by people with WS in the VPT2 task. In addition to
asking participants to change their physical location (self-motion), we also asked them to
adopt a third-person perspective by imagining that they had moved to a specified location
(self-motion imagery). This enabled us to assess their ability to simulate the movement of
their own bodies. The performance in the control group improved in both the self-motion
and self-motion imagery tasks and both performances were correlated with verbal mental
age. However, we did not find any developmental changes in performance for either task
in the WS group. Performance scores for the self-motion imagery task in the WS group
were low, similar to the scores observed for the VPT2 in this population. These results
suggest that MR and VPT2 tasks involve different processes, and that these processes
develop differently in people with WS. Moreover, difficulty completing VPT2 tasks may
be partly because of an inability of people with WS to accurately simulate mental body
motion.

Keywords: Williams syndrome, visual perspective taking, mental rotation, developmental trajectory, children,

developmental disorder, reference frame

INTRODUCTION
Williams syndrome (WS) is a rare genetic disorder caused by
the deletion of approximately 25 genes on chromosome 7. The
prevalence of WS is between 1:20000 and 1:7500 (Stromme et al.,
2002; Meyer-Lindenberg et al., 2006). Although there is hetero-
geneity in the cognitive domains that are affected by WS (Porter
and Coltheart, 2005), several specific cognitive strengths and
weaknesses have been consistently reported in this population
(Bellugi et al., 2000; Meyer-Lindenberg et al., 2006; Martens et al.,
2008; Riby and Porter, 2010; Jarvinen et al., 2013). For instance,
the literature suggests that while language and auditory abili-
ties are generally preserved (Bellugi et al., 1990; Karmiloff-Smith
et al., 1997; Jordan et al., 2002; Brock, 2007), elements of visu-
ospatial cognition, such as perceptual grouping, mental imagery,
and global motion processing, are impaired (Bellugi et al., 1988;
Pezzini et al., 1999; Farran et al., 2001; Nakamura et al., 2001;
Atkinson et al., 2003, 2006; Hoffman et al., 2003; Farran and

Jarrold, 2004, 2005). The observed deficits in visuospatial pro-
cessing in people with WS may be due to atypical processing
in the construction, but not the modality, of perception (Farran
and Jarrold, 2003; Hoffman et al., 2003). Some evidence has also
suggested that such visuospatial deficits extend to the memory
domain (Vicari et al., 2003, 2005), and may, for instance, include
the abnormal representation of reference frames (Nardini et al.,
2008).

Neuroimaging research has indicated that visuospatial deficits
in individuals with WS may be caused by a dysfunctional dorsal
stream (Atkinson et al., 1997). Several atypical cortical structures
have been observed in this population, such as (1) a low density
of gray matter in the superior parietal regions (Reiss et al., 2004;
Eckert et al., 2005), including the intraparietal sulcus (Meyer-
Lindenberg et al., 2004), (2) bilateral reductions in the depth of
the intraparietal/occipitotemporal sulci (Kippenhan et al., 2005)
compared with controls, and (3) prominent folding abnormalities
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in the dorsal parietal cortex (Van Essen et al., 2006). Atypical
fractional anisotropy in the right superior longitudinal fascicu-
lus, which is associated with deficits in visuospatial construction,
has also been reported in individuals with WS (Hoeft et al., 2007).

One prominent social phenotype of people with WS is that
they display an empathetic nature and an extreme interest in
both familiar and unfamiliar people. This particular trait has
been termed “hypersociability” (Jones et al., 2000). Individuals
with WS are often able to retrieve explicit emotional informa-
tion from facial expressions (Gagliardi et al., 2003; Plesa-Skwerer
et al., 2006; Skwerer et al., 2006) and perceive human actions from
point-light motion (Jordan et al., 2002; Reiss et al., 2005; Hirai
et al., 2009). However, the ability of this population to interpret
emotional states seems to be atypical, such that they may have dif-
ficulty understanding unfamiliar facial expressions (Frigerio et al.,
2006; Porter et al., 2007) or retrieving information about intent
from motion (Van Der Fluit et al., 2012).

People with WS may have difficulty inferring the thoughts or
emotions of others, although research on this issue has produced
unclear results. An early WS study reported that individuals with
this disorder perform well in a location change task (Karmiloff-
Smith et al., 1995). Another study found that half of a group of
people with WS performed similarly to normal adults on a task
where participants were asked to identify complex emotional
states from photographs of eyes (Tager-Flusberg et al., 1998).
However, later studies of children with WS found impaired
mentalizing ability (Tager-Flusberg et al., 1997; Sullivan and
Tager-Flusberg, 1999; Tager-Flusberg and Sullivan, 2000). Porter
et al. (2008) reported a specific deficit in social understanding
in one of two WS subgroups, indicated by poor performance
on a non-verbal version of the theory of mind (ToM) task. This
effect persisted even when the effects of mental or chronological
age were removed. This finding suggests cognitive heterogeneity
in the social cognition of individuals with WS (Porter and
Coltheart, 2005).

Accumulating evidence shows that individuals with WS have
atypical cognitive abilities, such as hypersociability and impaired
visuospatial cognition. However, the mechanisms underlying
these deficits are unclear, as is the relationship between impaired
social cognition and impaired visuospatial cognition.

Visual perspective taking tasks can be used to assess connec-
tions between visuospatial and social cognitive processes. Visual
perspective taking has two levels: Level 1 visual perspective taking
(VPT1) refers to knowledge about which objects in one’s frame
of view are visible to another observer, while Level 2 visual per-
spective taking (VPT2) refers to the knowledge that two different
observers can have unique visual experiences of the same scene
or object (Flavell et al., 1984). Developmental psychological stud-
ies have shown that both levels are not acquired simultaneously.
Infants are first able to understand VPT1 at approximately 24
months (Moll and Tomasello, 2006). It is not until later, in the
preschool period, that individuals are able to understand VPT2
(Flavell, 1999). For instance, a recent study reported that 3-year-
old children are able to successfully complete a VPT2 task (Moll
and Meltzoff, 2011).

Several studies have investigated the connection between
different characteristics of cognitive tasks. For instance, one

behavioral study reported a clear relationship between the
performance of children aged 4–8 years on a ToM and a VPT2
task, but not between a ToM and a mental rotation (MR) task
(Hamilton et al., 2009). This suggests that ToM and VPT2 tasks
may have common cognitive processes that may not be required
for MR tasks. Therefore, the VPT2 task may be useful in assess-
ing mentalizing ability in individuals with WS. The notion that
ToM and VPT2 tasks may have common cognitive processes has
been supported by several neuroimaging findings. For instance, in
adults, the temporoparietal junction (TPJ) is activated by VPT2
tasks (Zacks et al., 2003b; Aichhorn et al., 2006) and false-belief
tasks (Saxe and Kanwisher, 2003). The importance of the TPJ
for performance on the above-mentioned tasks has been demon-
strated by lesion studies (Apperly et al., 2004) and transcranial
direct current stimulation studies (Santiesteban et al., 2012).
However, these studies reported no overlap in terms of the neu-
ral activities underlying the VPT2 and MR tasks, indicating that
differential brain networks are involved.

The current study comprised two experiments. The first
focused on developmental changes in MR and VPT2 task perfor-
mance in individuals with WS, and employed tasks developed by
Hamilton et al. (2009). In Experiment 1, we hypothesized that, (1)
in light of previous findings regarding deficient visuospatial skills
in individuals with WS, this population would have impaired MR
ability compared with normal controls, and (2) if individuals with
WS exhibited impaired mentalizing ability (Tager-Flusberg et al.,
1997; Tager-Flusberg and Sullivan, 2000; Porter and Coltheart,
2005; Porter et al., 2008), then VPT2 task performance would be
poor compared with normal controls.

In our preliminary experiment, we found that members of the
WS group consistently had difficulties completing the VPT2 task.
Therefore, our second experiment was designed to explore the
nature of these difficulties. Although a recent neuroimaging study
has demonstrated that different brain regions are involved in the
spatial transformation of oneself vs. another person (Mazzarella
et al., 2013), behavioral evidence suggests that spatial perspective
taking is an embodied cognitive process, in the sense that the par-
ticipant’s own body posture can interfere with performance on a
VPT2 task. This implies that cognitive processes underlying spa-
tial transformation of oneself and of others may overlap (e.g.,
Kessler and Thomson, 2010). Thus, differential performance on
VPT2 and spatial transformation tasks could help to explain the
difficulty observed in the VPT2 task in Experiment 1.

In Experiment 2, we manipulated the location of the partici-
pants with respect to an object (first-person location). We asked
the participants to either move to a new position or to imagine
that they had moved. Both manipulations were designed to match
the difficulty of the procedure in Experiment 1. If the expected
difficulties in VPT2 task completion in Experiment 1 were due to
defective mental body motion simulation in people with WS, then
this would reflect performance on the self-motion imagery task.

MATERIALS AND METHODS (EXPERIMENT 1)
PARTICIPANTS
Twenty-six people with WS (13 males and 13 females) partic-
ipated in the experiments (Table 1). Twenty participants were
recruited from our institute, and six were recruited through the
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Table 1 | Participants.

Group N (F/M) Chronological age Verbal mental age

mean (year) range mean (year) range

(years; months) (years; months)

WS 26 (13/13) 16.2 ± 7.2 (6;0–33;4) 7.46 ± 2.46 (3;3–11;1)

VMA 26 (13/13) 7.67 ± 2.7 (3;9–13;2) 7.62 ± 2.5 (3;5–12;3)

CA 26 (13/13) 16.3 ± 8.4 (6;5–40;6) N/A

(Mean ± SD).

Williams Syndrome Association in Aichi prefecture (Elfin Chubu,
Nagoya). All participants had been phenotypically diagnosed by
clinicians, with their diagnoses confirmed through positive fluo-
rescence in situ hybridization testing. The ages of the participants
ranged from 6 years 0 months to 33 years 5 months (mean age =
16 years and 2 months). Verbal intelligence was measured with the
Japanese version of the Picture Vocabulary Scale (JPVS) (Ueno
et al., 2008).

Fifty-two typically developed children, adolescents, and adults
were recruited from elementary schools, junior high schools, and
universities near the institute as control groups (Table 1). For
the verbal mental age-matched (VMA) group, 26 children (13
males) were selected to match individual JPVS scores obtained
from participants with WS. For the chronological age-matched
(CA) group, the ages of the control participants were individually
matched to the ages of the participants with WS.

ETHICAL CONSIDERATIONS
All children, their parents, and adult participants provided
informed consent. The study protocol was approved by the Ethics
Committee at the Institute for Developmental Research in the
Aichi Human Service Center.

THEORY OF MIND TESTING
As in previous studies (Tager-Flusberg and Sullivan, 2000;
Hamilton et al., 2009), we conducted the location change task
(Wimmer and Perner, 1983; Baron-Cohen et al., 1985) and the
unexpected contents task (Hogrefe et al., 1986) prior to conduct-
ing the MR and VPT2 tasks in the WS and VMA groups. Both
tasks were scored such that one point was given when a par-
ticipant successfully completed a ToM task; otherwise the score
remained at 0. Because all of the participants in the CA group
were above 6 years of age, they easily passed the ToM tasks.
Thus, we did not include their performance on these tasks in the
analysis.

MENTAL ROTATION TASK AND LEVEL 2 VISUAL PERSPECTIVE TAKING
TASK
As in a previous study (Hamilton et al., 2009), we conducted
two experimental tasks (MR and VPT2) in same session, with a
short (a few minutes) break between them. We performed three
familiarization trials to familiarize the participant with the exper-
imental settings prior to the first session. At the beginning of each
familiarization trial, a small toy (a dog) was placed on a square
turntable, which had distinctly colored sides. The participant was
shown a piece of paper in a transparent folder (to prevent any

damage to the paper) with four pictures of the toy, taken from
four perspectives (front, back, left, and right). The participant
was then asked: “Which dog are you looking at?” The partic-
ipant was instructed to point to the picture that matched the
perspective of the toy as it appeared on the turntable. After the
participant pointed to one of the four pictures, the toy was cov-
ered with a transparent bucket, and the participant was asked:
“When I lift the bucket, which dog will you see?” If the partic-
ipant made errors during the trials, the experimenter corrected
them. We initially found that the familiarization task was difficult
for young children with WS, so we decided to use a transparent
bucket.

Following the familiarization session, we conducted six trials
for each task (MR and VPT2). The task order was counterbal-
anced across participants. For each task, we put a toy in either a
front or back position for three trials, and then in a profile posi-
tion for three trials. We used six different toys (one for each task;
car, dump truck, loading shovel, reindeer, panda, and owl) to pre-
vent the participant from remembering the position of each toy,
and to draw their attention to the toy during the experiment. The
response sheet contained four pictures of each toy, taken from
four perspectives. These were placed in a random order to exclude
any response bias effects.

For the MR task, the experimenter told each participant to
“watch carefully” and then placed a new toy on the table. The
experimenter then showed the participant the response sheet and
asked them to point to the picture that matched the position
of the toy. This ensured that the participant was paying atten-
tion to the toy. The experimenter covered the toy with an opaque
bucket and turned the table 90◦ clockwise, 180◦, or 90◦ counter-
clockwise. After turning the table, the experimenter asked the
child: “If I lift the bucket, which “toy name” (i.e., “Panda” in
Figure 1A) will you see?” The participant was instructed to point
to the picture that they thought matched the position of the toy
(Figure 1A).

For the VPT2 task, the experimenter placed a toy on the table
and told the participant to “watch carefully.” The experimenter
then gave the participant the response sheet and asked them to
point to the picture that matched that position of the toy. The
experimenter covered the toy with the opaque bucket, took out
a doll from behind their back, and placed it on the left, right,
or far side of the table, away from the participant. The experi-
menter then shook the doll side to side to draw the participant’s
attention, and asked: “This is Ai-chan; when I lift the bucket,
which “toy name” (i.e., “Panda” in Figure 1B) will Ai-chan see?”
Emphasis was put on the word “Ai-chan” when asking the ques-
tion. The experimenter asked the participant to point to the
picture that matched the perspective of the toy that the doll would
see (Figure 1B).

The experiment was performed in a quiet playroom at our
institute. During the sessions, the experimenter provided moti-
vational feedback to the participant (e.g., “You are doing well!”)
to keep their attention focused on the task, irrespective of
their responses. We did not give any feedback regarding accu-
racy to the participants, and the experimenter told the partic-
ipants that there was no time limit within which they had to
respond.
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FIGURE 1 | Detail of the experimental procedure (a top-down view).

(A) mental rotation (MR), (B) level 2 of visual perspective taking (VPT2), (C)

self-motion (SM), and (D) self-motion-imagery (SMI). In all experimental
conditions, the experimenter began by confirming that the participants were

attending to the orientation of the toy. After covering the bucket and
completing the experimental manipulation, the experimenter asked the
participants to point to one of the pictures on the response sheet, shown at
the right side of the figure.

DATA ANALYSIS
We counted the number of participants who successfully com-
pleted each ToM task. Chi-square analysis was used to assess
performance across groups.

As per previous studies, we focused on correct answer
responses (Hamilton et al., 2009) and error responses (e.g.,
Samson et al., 2007) when analyzing the data from Experiment
1. Our preliminary observations suggested that younger chil-
dren tend to show an egocentric bias (i.e., even when the doll
was placed in a different position, their response was identi-
cal to the response they gave before the toy was covered with
the bucket) during the VPT2 task, as previously depicted in
the three-mountain paradigm (Piaget and Inhelder, 1956). We
defined this type of error as “egocentric-bias error”; and any other
error was defined as a “non-egocentric-bias error.” In our analysis,
we calculated the proportion of egocentric errors (the proportion
of egocentric errors made in relation to the overall number of
errors).

For statistical analysis, we applied a two-way mixed-design
repeated measures analysis of variance (ANOVA) to the correct
answers and the proportion of egocentric-bias errors. Group (WS,
VMA, and CA groups) was used as a between-subject factor, and
Task (MR and VPT2) was used as a within-subject factor.

We also analyzed correct responses based on performance in
the two ToM tasks. In this analysis, we focused on the data from
the WS and VMA groups, because the participants in the CA
group were all older than 6 years, as mentioned above. We defined
participants who passed both ToM tasks (i.e., the score was 2
points) as members of the ToM pass group. The two ToM tasks
had similar levels of difficulty, and so a participant who passed
one but not the other may just have been guessing. We applied a
Three-Way mixed-design repeated measures ANOVA to the cor-
rect responses. Group (WS and VMA) and ToM performance
(Pass group and Fail group) were used as between-subject fac-
tors, and Task (MR and VPT2) was used as a within-subject
factor.

If the sphericity assumption was violated, as indicated by
Mauchly’s sphericity test, then the Greenhouse–Geisser epsilon
coefficient was used to correct the degrees of freedom. Tukey’s
honestly significant difference test was applied for multiple com-
parisons. The F and P-values were then recalculated. A P-value of
< 0.05 was considered statistically significant.

In addition to these analyses, we adopted a developmental tra-
jectory approach (Thomas et al., 2009) to assess developmental
changes in task performance in both the WS and VMA groups.
We did not include the CA group in this analysis because their
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performance scores reached a ceiling level, and therefore, further
developmental changes could not be observed. For this analysis,
we calculated coefficients and evaluated improvements in perfor-
mance based on developmental changes in verbal mental age.

RESULTS (EXPERIMENT 1)
THEORY OF MIND TESTING
A comparison of the location change task scores from the three
groups revealed a significant difference in performance [χ2

(1) =
4.16, p < 0.05]. Further binomial testing revealed that signif-
icantly more than half of the participants in the VMA group
passed the test (p < 0.01), while this was not the case in the
WS group (p = 0.17). A comparison of the unexpected contents
task scores also revealed a significant difference in performance
[χ2

(1) = 11.5, p < 0.01]. Further binomial testing revealed that
significantly more than half of the participants in the VMA group
passed the test (p < 0.01), while this was not the case in the WS
group (p = 1.0). The results indicate that significantly more par-
ticipants in the VMA group passed the ToM tasks compared with
the WS group. Conversely, significantly more participants in the
WS group failed the ToM tasks compared with the VMA group
(Table 2).

MENTAL ROTATION TASK AND LEVEL 2 VISUAL PERSPECTIVE TAKING
TASK
To examine performance on the MR and VPT2 tasks, we
first compared the number of correct responses in each group
(Figure 2A). We observed significant effects of Group [F(2, 75) =
39.8, p < 0.01] and Task [F(1,75) = 50.7, p < 0.01], and a signifi-
cant two-way interaction between Group × Task [F(2,75) = 5.8,
p < 0.01]. Subsequent follow-up analyses revealed that perfor-
mance on the MR task was significantly greater than performance
on the VPT2 task for participants in the WS [F(1, 75) = 35.6,
p < 0.01] and VMA [F(1, 75) = 24.1, p < 0.01] groups. No sig-
nificant differences were observed in the CA group [F(1, 75) = 1.9,
p = 0.17].

In terms of group differences, we observed that the perfor-
mance of the WS group was worse than the performance of the
VMA (p < 0.01) and CA groups (p < 0.01) on the MR task,
although we found no difference between the VMA and CA
groups (p = 0.07). For the VPT2 task, performance scores from
the CA group were significantly better than scores from the VMA
(p < 0.01) and WS groups (p < 0.01). Performance scores from
the VMA group were significantly better than performance scores
from the WS group (p < 0.01).

In all groups, MR task scores were significantly above chance
[CA: t(25) = 60.2, p < 0.01; VMA: t(25) = 12.9, p < 0.01; WS:
t(25) = 4.7, p < 0.01]. In contrast, the scores from the WS group

Table 2 | Performance on two theory of mind tasks.

Group Unexpected contents task Location change task

WS 9/26 13/26

VMA 22/26 21/26

(Number of participants who passed the task/ Number of participants).

on the VPT2 task were not significantly better than chance
[t(25) = 1.6, p = 0.13]. The scores from the VMA group on the
VPT2 task [t(25) = 3.2, p < 0.01] and CA [t(25) = 12.8, p < 0.01]
were significantly above chance.

We also examined the proportion of egocentric-bias errors
(Figure 2B). The effects of Group [F(2, 75) = 7.06, p < 0.01] and
Task [F(1,75) = 59.2, p < 0.01] were significant, but the two-way
interaction between Group × Task [F(2, 75) = 1.10, p = 0.34] was
not. This suggests that the proportion of egocentric-bias errors
in the VPT2 task was significantly higher than that in the MR
task, for all groups. In terms of group differences, the propor-
tion of egocentric-bias errors in both the WS and VMA groups
(p < 0.01) was significantly higher than that in the CA group,
for both tasks. However, no significant differences were observed
between the WS and VMA group.

Regarding ToM task performance (Figure 3), we found that
the main effects of Group [F(1, 48) = 4.31, p < 0.05], ToM

FIGURE 2 | (A) Mean number of correct trials (max: 6) in the MR and VPT2
tasks for three groups [blue: Williams syndrome (WS) group; pink: verbal
mental age-matched (VMA) group; green: chronological age-matched (CA)
group]. (B) Mean proportion of egocentric errors (the proportion of
egocentric errors made in relation to the overall errors) for both tasks. Error
bars indicate standard error. ∗∗p < 0.01.
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FIGURE 3 | Mean number of correct trials (max: 6) in the MR and VPT2

tasks based on ToM task performance of two groups [blue: Williams

syndrome (WS) group; pink: verbal mental age-matched (VMA)

group]. ∗∗p < 0.01; ∗p < 0.05.

performance [F(1, 48) = 16.9, p < 0.01], and Task [F(1, 48) =
58.5, p < 0.01] were significant. Moreover, a three-way interac-
tion of Group × ToM performance × Task [F(1, 48) = 6.0, p <

0.01] was significant.
A follow-up analysis revealed that, for the VMA group, there

were significantly more correct responses on the VPT2 task in the
ToM pass group than in the ToM fail group [F(1, 96) = 21.3, p <

0.01]. This was not the case for the MR task [F(1, 96) = 1.26, p =
0.27]. For the WS group, there were significantly more correct
responses on the MR task in the ToM pass group than in the ToM
fail group [F(1, 96) = 4.41, p < 0.05]. This effect was not observed
for the VPT2 task [F(1, 96) = 1.90, p = 0.17].

Regarding group differences, the VMA children who passed
both ToM tasks had a significantly higher rate of correct VPT2
task performance than the individuals with WS who passed both
ToM tasks [F(1, 96) = 7.0, p < 0.01]. All other effects were not
significant (all Fs < 3.2, ps > 0.08).

Regarding differences in performance across tasks, the WS
group obtained significantly more correct answers in the MR task
than in the VPT2 task, regardless of ToM task performance [ToM
pass group: F(1, 48) = 16.6, p < 0.01; ToM fail group: F(1, 48) =
10.5, p < 0.01]. For the VMA participants, the above was true for
the ToM fail group [F(1, 48) = 36.2, p < 0.01], but not the ToM
pass group [F(1, 48) = 3.8, p = 0.06] in the VMA group.

We used a developmental trajectory approach to explore devel-
opmental changes in the WS and VMA groups in terms of correct
and egocentric-bias error responses for both tasks (Figure 4).
For the WS group, we observed a significant positive correla-
tion between verbal mental age and performance on the MR
(r = 0.47, p = 0.01) but not the VPT2 task (r = 0.02, p = 0.91).
For the VMA group, we observed significant positive correlations
between verbal mental age and performance for both the MR and

FIGURE 4 | Developmental trajectories for the number of correct

responses in (A) the MR task, and (B) the VPT2 task, for two groups

[blue: Williams syndrome (WS) group; pink: verbal mental

age-matched (VMA) group].

VPT2 tasks (MR task; r = 0.56, p < 0.01; VPT2 task; r = 0.70,
p < 0.01). In terms of egocentric-bias errors in the WS group,
we did not observe any significant correlations (MR: r = −0.25,
p = 0.22; VPT2: r = 0.01, p = 0.97). For the VMA group, we
observed a significant negative correlation for the VPT2 (r =
−0.57, p < 0.01) but not the MR task (r = −0.24, p = 0.24)
(Figure 5).

MATERIALS AND METHODS (EXPERIMENT 2)
PARTICIPANTS
The participants that took part in Experiment 1 also took part in
Experiment 2 (Table 1).

SELF-MOTION TASK AND SELF-MOTION-IMAGERY TASK
In Experiment 1, we found that the VPT2 task was more difficult
for individuals with WS than the MR task. The performance of
the WS group on the VPT2 task did not improve across develop-
ment, in contrast with performance on the MR task. This moti-
vated us to conduct a further experiment to explore alternative
explanations for the observed difficulty, such as impaired men-
tal simulation of one’s own body motion. Behavioral evidence
suggests that spatial perspective taking is an embodied cognitive

Frontiers in Human Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 856 | 6

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Hirai et al. Perspective-taking in Williams syndrome

FIGURE 5 | Developmental trajectories for the number of

egocentric-bias errors in (A) the MR task, and (B) the VPT2 task for

two groups [blue: Williams syndrome (WS) group; pink: verbal mental

age-matched (VMA) group].

process (Kessler and Thomson, 2010). Imagining one’s own bod-
ily motion can induce activation in distinct cortical regions, such
as the left posterior parietal cortex (Creem et al., 2001), or supple-
mentary motor areas (Wraga et al., 2005). Although these findings
suggest that the demands of the VPT2 task include embodiment
processes, it is likely that the neural activities involved in imagin-
ing one’s own bodily motion are distinct from those activated by
the VPT2. Thus, if we observed differential performance between
VPT2 tasks and tasks requiring one to imagine the motion of their
body, this might help to explain the difficulty observed in com-
pleting the VPT2 task in Experiment 1. To verify this possibility,
we designed an experiment in which we manipulated the position
(perspective) of the participant, instead of asking the participant
to imagine a third-person perspective, as in Experiment 1. In
Experiment 2, therefore, we introduced two experimental tasks,
self-motion (SM) and self-motion imagery (SMI), in an attempt
to match the task difficulty to that of Experiment 1.

For the SM condition, the experimenter placed a toy on a table
and asked the participant to point to the picture on the response

sheet (described in the methods for Experiment 1) that matched
the position of the toy. This was done to make sure that the par-
ticipant was paying attention to the toy. The experimenter then
covered the toy with the opaque bucket and another experimenter
gently took the participant’s arms or shoulders to guide them in
changing his or her location (to the left, right, or far side of the
table with respect to the original position). After guiding the par-
ticipant to the new position, the experimenter asked: “If I lift the
bucket, which “toy name” (i.e., “Panda” in Figure 1C) will you
see?” The participant was instructed to point to the picture that
matched the perspective of the toy that they would see from their
new position (Figure 1C).

For the SMI condition, the procedure was the same as in
the SM condition, except that the experimenter pointed to a
location (left, right, or far side of the table) instead of guiding
the participant to that position. Before pointing to the loca-
tion, the experimenter made sure that the participant under-
stood the concept of imagining self-movement. The experi-
menter then asked the participant: “If you moved to this posi-
tion and I lifted the bucket, which “toy name” (i.e., “Panda”
in Figure 1D) would you see?” The participant was asked
to point to the picture that matched the perspective of the
toy that they would see from their new imagined position
(Figure 1D).

Other than those detailed above, the experimental procedures
were identical to those in Experiment 1. Six trials were performed
for each task and the task order was counterbalanced across par-
ticipants. The experiment was conducted in the same room as
Experiment 1.

DATA ANALYSIS
As in Experiment 1, a Two-Way ANOVA was applied to the cor-
rect responses and the proportion of egocentric-bias errors. In
the analysis, Group (WS, VMA, and CA groups) was used as a
between-subject factor, and Task (SM and SMI) was used as a
within-subject factor.

In addition to the ANOVA, we used the same methods as in
Experiment 1 to analyze correct and incorrect ToM task responses
for the WS and VMA groups. For each ToM task, a three-way
mixed-design repeated measures ANOVA was applied to the cor-
rect responses. Group (WS and VMA) and ToM performance
(Pass group and Fail group of participants) were used as between-
subject factors, and Task (SM and SMI) was used as a within-
subject factor. If the sphericity assumption was violated as per
Mauchly’s sphericity test, then the Greenhouse–Geisser epsilon
coefficient was used to correct the degrees of freedom. Both the
F and P-values were then recalculated. A P-value of < 0.05 was
considered statistically significant.

In addition to these analyses, we adopted a developmental
trajectory approach to assess developmental changes in task per-
formance for both the WS and VMA groups (Thomas et al.,
2009). As in Experiment 1, we did not apply this analysis to
the CA group because their performance scores reached a ceil-
ing level, thus, preventing further developmental changes from
being observed. For this analysis, we calculated coefficients and
evaluated improvements in performance based on developmental
changes in verbal mental age.
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RESULTS (EXPERIMENT 2)
To examine performance on the SM and SMI tasks, we applied
an ANOVA to the number of correct responses (Figure 6A).
We found that the effects of Group [F(2, 75) = 59.8, p < 0.01]
and Task [F(1, 75) = 6.7, p < 0.05] were significant. A two-way
interaction between Group × Task was marginally significant
[F(2, 75) = 2.5, p = 0.09]. This suggests that performance on the
SM task was significantly better than performance on the SMI
task, for all groups. With respect to group differences, the CA
group performed significantly better than the VMA (p < 0.01)
and WS (p < 0.01) groups. Performance in the VMA group was
better than performance in the WS group (p < 0.01).

We also examined the proportion of egocentric-bias errors
(Figure 6B). The effects of Group [F(2, 75) = 10.4, p < 0.01] and
Task [F(1, 75) = 18.7, p < 0.01] were significant, but the two-way
interaction between Group × Task [F(2, 75) = 1.18, p = 0.31] was

FIGURE 6 | (A) Mean number of correct trials (max: 6) in the SM and SMI
tasks for three groups [blue: Williams syndrome (WS) group; pink: verbal
mental age-matched (VMA) group; green: chronological age-matched (CA)
group]. (B) Mean proportion of egocentric errors (the proportion of
egocentric errors made in relation to the overall errors) for both tasks. Error
bars indicate standard error. ∗∗p < 0.01.

not. This indicates that the proportion of egocentric-bias errors
was significantly higher in the SMI task than the SM task, for
all groups. With respect to group differences, the proportion
of egocentric-bias errors in both the WS (p < 0.01) and VMA
(p < 0.01) groups was significantly higher than that in the CA
group. However, no significant differences were observed between
the WS and VMA groups.

In all groups, SM task performance was significantly above
chance [CA: t(25) = 54.7, p < 0.01; VMA: t(25) = 8.52, p < 0.01;
WS: t(25) = 2.18, p < 0.05]. In contrast, the performance of the
WS group on the SMI task was not significantly better than chance
[t(25) = 0.61, p = 0.54]. Performance in the VMA [t(25) = 7.02,
p < 0.01] and CA [t(25) = 33.7, p < 0.01] groups on the SMI task
was significantly better than chance.

Regarding the relationship between ToM task performance
and the number of correct responses (Figure 7), we found a sig-
nificant main effects of Group [F(1, 48) = 12.5, p < 0.01], ToM
performance [F(1, 48) = 34.6, p < 0.01], and Task [F(1, 48) =
8.06, p < 0.01]. No other interactions were significant [all Fs <

2.9, ps > 0.09]. This suggests that the VMA group performed sig-
nificantly better than the WS group, and that the members of the
ToM pass group performed significantly better than the mem-
bers of the ToM fail group. Moreover, SM task performance was
significantly greater than SMI task performance.

The results of the developmental trajectory analysis indi-
cated significant positive correlations between verbal mental age
and correct performance in the VMA group for both the SM
(r = 0.69, p < 0.01) and SMI (r = 0.62, p < 0.01) tasks. No
significant effects were observed in individuals with WS (SM task:
r = 0.26, p = 0.19; SMI task: r = 0.15, p = 0.46) (Figure 8).
With respect to egocentric-bias errors, we observed a significant
negative correlation with the SMI (r = −0.44, p < 0.01), but not

FIGURE 7 | Mean number of correct trials (max: 6) in the SM and SMI

tasks based on ToM task performance for two groups [blue: Williams

syndrome (WS) group; pink: verbal mental age-matched (VMA)

group]. Error bars indicate standard error. ∗∗p < 0.01.
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FIGURE 8 | Developmental trajectories for the number of correct

responses in (A) the SM task, and (B) the SMI task for two groups

[blue: Williams syndrome (WS) group; pink: verbal mental

age-matched (VMA) group].

the SM task in the VMA group (r = −0.31, r = 0.13). We did not
observe any significant correlations in the WS group (SM task:
r = −0.26, p = 0.19; SMI task: r = −0.27, p = 0.19) (Figure 9).

We found similar correct responses and egocentric-bias error
patterns between the MR and VPT2 tasks in Experiment 1, and
between the SM and SMI tasks in Experiment 2. Thus, it is pos-
sible that MR and SM tasks engage similar mental processes.
However, the results of the developmental trajectory analysis of
the WS group indicated that, while MR performance significantly
improved, SM performance did not. Therefore, we directly com-
pared MR and SM task performance and found that the SM task
performance was significantly worse than MR task performance
in the WS group (p < 0.001), but not in the VMA (p = 0.06) and
CA (p = 0.89) groups. We also directly compared VPT2 and SMI
task performance and found that performance on the SMI task
was significantly better than that on the VPT2 task in the VMA
group (p < 0.01). This was not the case for the WS (p = 0.20)
and the CA groups (p = 0.17). This data was affected by the fact
that performance in the CA group for both tasks reached a ceiling
level while performance in the WS group for both tasks was at
chance level.

FIGURE 9 | Developmental trajectories for the number of

egocentric-bias errors in (A) the SM task and (B) the SMI task for two

groups [blue: Williams syndrome (WS) group; pink: verbal mental

age-matched (VMA) group].

DISCUSSION
To the best of our knowledge, the current study is the first to inves-
tigate both MR and VPT2 task performance in individuals with
WS, while considering developmental changes and the potential
mechanisms that lead individuals with WS to exhibit impaired
performance on the VPT2 task.

In Experiment 1, we found that people with WS performed
poorly on MR and VPT2 tasks compared with normal con-
trols. In terms of developmental trajectory, we found that in
people with WS, MR task performance improved significantly
with development, while VPT2 task performance did not. In
Experiment 2, we manipulated the physical location of par-
ticipants to investigate the source of difficulties that people
with WS experience when completing VPT2 tasks. We intro-
duced two experimental conditions: a self-motion task and a
self-motion-imagery task. We found that both SM and SMI task
performance was lower in the WS group than in control individu-
als. Moreover, task performance in the WS group did not improve
with development, in contrast with the results of the control
group.

Frontiers in Human Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 856 | 9

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Hirai et al. Perspective-taking in Williams syndrome

Our findings can be summarized in three main points. First,
the mental processes involved in the MR and VPT2 tasks were
distinct, while the requirements of the VPT2 task were related to
performance on the ToM tasks, as previously reported. Second,
while processes related to MR tasks tend to develop slowly, pro-
cesses related to VPT2 tasks seem to be impaired in individuals
with WS (Experiment 1). Third, the poor VPT2 task performance
previously observed in people with WS appears to be due to dif-
ficulty transitioning between the participant’s perspective and a
third-person perspective, and may also involve defective mental
simulation of one’s own body motion (Experiment 2).

Concordant with previous studies that investigated MR task
performance in individuals with WS (Farran et al., 2001; Stinton
et al., 2008), MR task performance was poor in people with WS
compared with control individuals. As in a previous study that
used a geometric figure with various orientations (Stinton et al.,
2008), we found that performance in the VMA group was bet-
ter than that in the WS group. However, contrary to the findings
of Stinton et al. (2008), our results indicated that MR task per-
formance in individuals with WS was significantly above chance.
This discrepancy may be due to the fact that Stinton et al. (2008)
used geometric shapes, which may have been less familiar to
participants, while we used more familiar objects, such as toy
animals, dolls, and cars. This discrepancy in familiarity may be
related to differences in the amount of attention that the partici-
pants gave to the objects. As Hamilton et al. (2009) pointed out,
the current task was relatively easy; that is, it consisted simply of
pointing to one of four pictures. This minimized the need for ver-
bal ability (Huttenlocher and Presson, 1973). Thus, the current
task might have required a cognitive load that was lower than that
of the task used by Stinton et al. (2008). This may have resulted
in more attention being directed at the target objects, leading to
better performance compared with the previous findings.

The correct responses in the VPT2 task were not significantly
better than chance for the WS group, but were significantly bet-
ter than chance in the VMA group. We adopted an experimental
paradigm used by Hamilton et al. (2009), and so it is not surpris-
ing that performance in the VPT2 task in the VMA group was
similar to their findings from children aged 6–10 years, whose
performance was significantly above chance (Hamilton et al.,
2009). Studies that have used a more complex VPT2 task or an
appearance-reality task have reported that children do not reliably
perform well until approximately 5–6 years of age (Flavell et al.,
1986). Thus, VPT2 task performance seems to be task-dependent.

As Hamilton et al. (2009) noted, “the relationship between
VPT2 and mentalizing supports the idea that the VPT2 should
be considered a mentalizing task.” Further analysis in our study
revealed that VPT2 task performance reflected ToM task perfor-
mance in the VMA group, but not in the WS group. Additionally,
VPT2 task performance in VMA children who passed the ToM
tasks was significantly better than that in VMA children who
failed the tasks. However, this difference was not observed for
the MR task. Contrary to the results from the VMA group, we
found a significant difference on the MR task, but not on the
VPT2 task, in the WS group. This may be due to the overall low
performance of WS participants on the VPT2 task. As a result,
no significant effects were observed, in contrast with the findings

from the MR task. Moreover, as we did not find a clear interaction
between ToM task performance and SM/SMI task performance in
Experiment 2, it appears that neither task is sensitive to ToM task
performance.

Therefore, our findings indicate that mentalizing ability might
be impaired among some individuals with WS. This interpreta-
tion supports the view that socio-cognitive impairments are a
component of WS (Tager-Flusberg and Sullivan, 2000). It should
be noted that we found only two participants in the WS group
who received a nearly perfect score (5 points) in the VPT2 task
(Figure 3) and successfully completed both the location change
and unexpected contents tasks. Concordant with this view, Porter
et al. (2008) reported a specific deficit in social understanding
within one of two WS subgroups using a non-verbal version of
the ToM task. This deficit was observed even when the effects of
mental or chronological age were controlled.

The developmental trajectory approach (Thomas et al., 2009)
revealed differential developmental differences between the MR
and VPT2 tasks in the VMA and WS groups. Whereas task success
in the VMA group significantly improved with development in
both tasks, in the WS group, development only improved MR task
performance. Because both tasks were closely matched in terms
of task difficulty (Hamilton et al., 2009), these findings suggest
distinct mental processes. In the WS group, the processes related
to the MR task appear to develop slowly while those related to the
VPT2 task remain impaired regardless of development.

Recent neuroimaging reports suggest that differential brain
regions are activated during MR and VPT2 tasks. For instance, the
right inferior parietal sulcus is involved in a MR task (Harris et al.,
2000; Podzebenko et al., 2002; Harris and Miniussi, 2003; Zacks
et al., 2003a; Zacks, 2008) and the TPJ region plays an important
role in completing a VPT2 task (Zacks et al., 2003b; Samson et al.,
2004, 2005; Aichhorn et al., 2006; Santiesteban et al., 2012).

Considering the possibility of an abnormal dorsal stream in
individuals with WS (Atkinson et al., 1997) in addition to the
neuroimaging findings outlined above, it is plausible that the
delayed development in MR task performance observed in our
WS group may be associated with an atypical brain structure or
atypical activation in dorsal brain regions. In line with this possi-
bility, several studies have shown the existence of several atypical
cortical structures in people with WS, such as reduced gray mat-
ter density in the superior parietal regions (Reiss et al., 2004;
Eckert et al., 2005), including the intraparietal sulcus (Meyer-
Lindenberg et al., 2004), bilateral reductions in sulcus depth in the
intraparietal/occipitotemporal sulcus (Kippenhan et al., 2005),
and prominent folding abnormalities in the dorsal parietal cor-
tex (Van Essen et al., 2006). Atypical fractional anisotropy in the
right superior longitudinal fasciculus, which is associated with
deficits in visuospatial construction, has also been reported in WS
individuals (Hoeft et al., 2007).

Although reduced activation has been reported in the infe-
rior parietal cortices (Mobbs et al., 2007), there is little evidence
of cortical abnormalities in the TPJ region in individuals with
WS (Eckert et al., 2005). Therefore, the observed impaired VPT2
task performance of individuals with WS may be due to corti-
cal abnormalities in other regions. A recent study showed that
differential cortical regions, such as the right inferior frontal
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gyrus and the dorsomedial prefrontal cortex, are involved in spa-
tial tasks concerning the location of the self (Mazzarella et al.,
2013). Furthermore, as several studies suggest that spatial per-
spective taking is an embodied cognitive process (May, 2004;
Zacks and Michelon, 2005; Keehner et al., 2006; Kessler and
Thomson, 2010), it is possible that impaired VPT2 task perfor-
mance is related to the defective mental simulation of one’s own
body motion. Supporting this view, the results of Experiment 2
clearly indicate that SMI task performance in people with WS
is significantly worse than that of normal controls. This sug-
gests that people with WS experience difficulty updating the
mental representation of their own perspective as it relates to
the imagery of their bodily motion. Furthermore, our direct
comparison between performance in the MR and SM tasks
revealed that individuals with WS also have difficulty updating
the mental representation of their own perspective as it relates
to their physical bodily motion. Concordant with our findings,
Nardini et al. (2008) investigated developmental changes for
both body- and environmental-based reference frames in indi-
viduals with WS. They found no developmental improvement
in the participant-move (body-based frame of reference) con-
dition, but did find developmental changes in the array-move
(environment-based frame of reference) condition. Considering
these findings, the difficulty in VPT2 task performance observed
in people with WS might be due to impaired simulation of the
motion of one’s own body. As outlined above, neuroimaging lit-
erature has indicated that the left posterior parietal cortex (Creem
et al., 2001) or supplementary motor areas (Wraga et al., 2005),
insula, and hippocampus (Lambrey et al., 2012) are involved
in imagined rotations of one’s self. Further studies are required
to address these points and explore the cognitive and neural
mechanisms underlying the task of adopting the viewpoint of
another person, as well as the simulation of movement of one’s
own body.

In addition to correct responses (Hamilton et al., 2009), we
analyzed patterns of error responses and found that egocentric-
bias errors were significant in both the VPT2 and SMI tasks
compared with the MR and SM. We observed significant reduc-
tions in egocentric-bias errors with subsequent development in
the VMA group, but not in the WS group. This finding seems to
be concordant with initial observations in the literature, which
suggest that children aged 4–6 years typically report their own
perspective (Piaget and Inhelder, 1956). We speculate that the
consistent egocentric-bias error found in the WS group might
reflect executive dysfunction (Jawaid et al., 2012) because previ-
ous behavioral studies have reported a close relationship between
executive function ability and the theory of mind (Frye et al.,
1995; Hughes, 1998; Perner and Lang, 2000; Carlson and Moses,
2001; Perner et al., 2002; Kloo and Perner, 2003; Carlson et al.,
2004; Sabbagh et al., 2006).

In conclusion, our findings can be summarized in three points.
First, we found that VPT2 task performance was lower than
MR task performance in individuals with WS, and both per-
formance scores were lower than those of the control groups.
Second, we observed delayed developmental improvement in
MR task performance and consistently impaired VPT2 task per-
formance, irrespective of development, in individuals with WS.

Third, the findings of our second experiment indicate that dif-
ficulties faced by people with WS in terms of VPT2 task perfor-
mance (Experiment 1) may be due to defective mental simulation
of the motion of one’s own body.
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