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Abstract 

Epidemiological data on the spread of SARS-CoV-2 in the absence and presence of 
various non-pharmaceutical interventions indicate that the virus is not transmitted 
uniformly in the population. Transmission tends to be more effective in select settings that 
involve exposure to relatively high viral dose, such as in crowded indoor settings, assisted 
living facilities, prisons, or food processing plants. To explore the effect on infection 
dynamics, we describe a new mathematical model where transmission can occur (i) in the 
community at large, characterized by low dose exposure and mostly mild disease, and (ii) 
in so called transmission hot zones, characterized by high dose exposure that can be 
associated with more severe disease. Interestingly, we find that successful infection 
spread can hinge upon high-dose hot zone transmission, yet the majority of infections are 
predicted to occur in the community at large with mild disease. This gives rise to the 
prediction that targeted interventions that specifically reduce virus transmission in the hot 
zones (but not in the community at large) have the potential to suppress overall infection 
spread, including in the community at large. The model can further reconcile seemingly 
contradicting epidemiological observations. While in some locations like California, strict 
stay-home orders failed to significantly reduce infection prevalence, in other locations, 
such as New York and several European countries, stay-home orders lead to a 
pronounced fall in infection levels, which remained suppressed for some months after re-
opening of society. Differences in hot zone transmission levels during and after social 
distancing interventions can account for these diverging infection patterns. These 
modeling results warrant further epidemiological investigations into the role of high dose 
hot zone transmission for the maintenance of SARS-CoV-2 spread. 

 

  

 

  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 9, 2020. .https://doi.org/10.1101/2020.10.07.20208231doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.07.20208231
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

3 

 

Introduction 
 
As the United States and other countries around the world have witnessed the first wave 

of SARS-CoV-2 spread and the associated morbidity and mortality, it is clear that a 

balance between non-pharmaceutical interventions that limit the public health burden on 

the one hand, and a continued functioning of society that limits economic damage on the 

other, is required until other means to combat the pandemic are available (such as 

effective vaccines). Non-pharmacological management interventions appear to be the 

most appropriate approach in this context. Mathematical models have been used to 

characterize the dynamics of SARS CoV-2 and predict potential numbers of COVID-19 

cases [1-7], which has resulted in the estimation of the basic reproduction number [1, 8], 

a better understanding of expected transmission dynamics in the absence and presence 

of non-pharmaceutical interventions [9-16], and in the critical effect of age structure on 

disease dynamics [11, 17], among many other contributions. Some of these models have 

been extremely useful for predicting and quantifying the demands on health care 

resources. 

 

At the same time, it is becoming clear that the spread of SARS-CoV-2 is 

characterized by unique aspects that have so far not been taken into account by 

epidemiological models and that might be crucial for predicting how the virus and the 

disease may spread, depending on the degree to which the society and economy is open. 

The data on infection spread during various phases of lockdown and re-openings in the 

US indicate that the virus does not spread uniformly in the population, but that some 

settings contribute more to virus transmission that others[18]. In California, initial stay-

home orders in March prevented continued virus spread, but failed to drive the effective 

reproduction number significantly below one and to reduce the existing infection 

prevalence. After a significant surge occurred following a wide-spread re-opening of 

society and businesses, more targeted interventions were implmented, under which 

business activities that involved large indoor gatherings (such as bars, indoor seating in 

restaurants, or indoor hair salons) were restricted. This resulted in a significant reduction 

in virus prevalence to levels that are similar to those during the stay-home orders, despite 

the fact that many other aspects of society, such as outdoor business operations or 

activities in the community at large remained mostly unrestricted. An increased focus on 
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mask wearing, which minimizes viral shedding and thus environment load, might have 

also contributed. These trends indicate that similar levels of infection control can be 

achieved whether society as a whole is totally shut down, or more select aspects of society 

are preferentially restricted. Similar patterns have occureed in other states, or countries 

(e.g. most of Europe). While strict shut-downs of society have brought infection levels 

under control in New York and in countries such as Germany, the UK, or Denmark, the 

infection then remained controlled for several months following a reopening of society. 

During those times, although most restrictions were lifted for the community at large, 

certain restrictions remained in place. Those included infection control measures in critical 

places such as hospitals and long-term assisted living facilities (which minimize infection 

of the elderly), as well as avoiding large indoor gatherings. Indeed, it appears that local 

outbreaks during this time may have been driven by infection spread in select settings. 

Examples include food processing plants [19], assisted living facilities [20], or hospitals 

[21]. 

 

These observations indicate that overall viral transmission appears to occur mostly 

in the context of select settings, in which people are exposed to relatively high doses of 

the virus, and less so in the community at large, where viral doses tend to be lower. Viral 

dose upon exposure can influences the chances of developing a productive infection and 

can impact the severity of disease. Viral infectious dose has drastic consequences for 

SARS and MERS infections [22, 23], and for pathogenesis of SARS COV-2 in animal 

models [24, 25]. Recent evidence strongly suggests that reducing viral infection load by 

using facemasks has a pronounced effect on the outcome of human infections [26]. 

Considering this evidence, one can presume that situations that lead to exposure to higher 

viral doses may well drive a substantial portion of SARS CoV-2 spread. These situations 

can be collectively referred to as “transmission hot zones”, and comprise physical 

locations such as long term assisted living facilities (which also tend to house older, more 

susceptible, people), prisons, food processing plants, and bars, among others, or transient 

situations of large or periodic recurrent gatherings [27]. Understanding the principles of 

hot zone-driven infection spread requires the incorporation of these assumptions into 

mathematical models, in particular the assumption that the rate of disease transmission, 

as well as disease severity, depend on exposure dose. Hot zone transmission is defined 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 9, 2020. .https://doi.org/10.1101/2020.10.07.20208231doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.07.20208231
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

5 

 

by settings in which people are exposed to a higher virus dose than in the community at 

large. 

 

Here, such a mathematical model is constructed and analyzed with special focus 

on the basic reproduction number. We find that, somewhat counterintuitively, successful 

infection spread can hinge upon hot zone transmissions that promote severe infections, 

yet at the same time the majority of the SARS-CoV-2 infections are mild and occur in the 

community at large. The model further predicts that in such cases, targeted interventions 

that limit virus spread in hot zones can result in the long-term suppression of infection 

levels in the community at large, even if non-pharmaceutical interventions in the 

community are relaxed to some extent. According to our mathematical model, these 

dynamics are a direct consequence of the assumed viral dose-dependency, which might 

thus warrant further attention from a clinical and epidemiological perspective.   
 
 
 
Results 
 

The mathematical modeling framework 
We consider a mathematical model that distinguishes between patients with mild or 

asymptomatic infection and those with severe SARS CoV-2 infection, including 

symptomatic but ambulatory COVID-19 patients. We further assume that a higher 

infectious dose promotes development of more severe outcomes, as has been 

documented with SARS, MERS, and even SARS CoV-2 [22-24, 28]. In particular, the 

model couples viral load to the setting in which transmission takes place. Hence, we 

distinguish between two basic types of transmission varying in the viral load to which 

susceptible individuals are exposed (Fig 1). The first type of transmission occurs in the 

“community-at-large”. A characteristic of this environment is that people are exposed to 

relatively low viral loads for short times, and that disease tends to be mild. This can include 

streets and other outdoor areas, as well as indoor locations where it is unlikely that several 

infected individuals converge periodically for long periods, and where human density is 

low and contacts between individuals are short and occasional. The second type of 

transmission is in what we call “hot zones”. These are characterized by exposure to high 

viral loads and by a higher chance of severe disease. This can result from exposure to 
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multiple infected individuals, exposure to individuals shedding high viral levels in locations 

with poor ventilation, or from an increase in viral load over time through silent amplification 

rounds of infection[29].  The model is based on the general SIR framework [30, 31]. The 

corresponding ordinary differential equations are given as follows: 

 
where x denotes the population of susceptible individuals, y1 and y2 denote the populations 

of mildly and severely infected individuals, respectively, and z represents the population 

of removed infecteds (recovered and dead). Further, C and H represent environmental 

viral load in the community at large and in the hot zones, respectively. The processes 

underlying the model are further explained in Fig 1, where all the parameters are defined. 

The following sections discuss results arising from this model, and further mathematical 

details are provided in the Supplementary Materials.    
 
 
 
 
The basic reproduction number and maintenance of infection spread 

We use this model to calculate the basic reproduction number of the infection, R0, as well 

as the effective reproduction number, R. We start by defining two matrices, a virus 

deposition matrix, Qdep, and a virus acquisition matrix, Qacq. The former matrix is given by 

 and depends on the rates at which mildly and severely infected individuals deposit the 

virus both in hot zones and the community, and also on the virus life-span in each 

environment. The latter matrix is defined as  
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and depends on the infectivity coefficients for mildly and severely infected individuals in 

both environments, as well as the expected disease duration for mild and severely infected 

patients. To determine the reproductive number (including the basic reproductive number) 

of the infection, we form a product of the acquisition and deposition matrices,  

A=     QacqQdep.                                      (1) 

The elements of this matrix, Aij, are combinations of all of the rates, see Fig 1 and the 

Supplement. These four quantities have a clear meaning, as they express the intensity of 

infection spread via four pathways: A11 is the probability to become mildly infected as a 

result of another mildly infected individual depositing virus in a C or an H location; A12 is 

the probability to become mildly infected as a result of a severely infected individual 

depositing virus in a C or an H location, etc.  

Using the matrix A, the basic reproductive number of the infection can be expressed 

concisely as  

R0=x0r,  

where x is the initial number of susceptible individuals and r is the larger of the two 

eigenvalues of the matrix A. Similarly, the effective reproductive number, R, is calculated 

as R=xr, where x is the current number of susceptible individuals. The quantity r depends 

on the model coefficients, and will be affected e.g. by social distancing measures.  

 

Depending on the parameters, the virus may spread faster through some pathways 

than others. For example, if A11 in equation (1) is significantly larger than the other matrix 

elements, then we simply have R»xA11, that is, infection spread mostly occurs from mildly 

SARS CoV-2 infected individuals to result in more mildly infected individuals, and the 

kinetic parameters associated with mild infection define the R value of the whole system: 

R»x 
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On the other hand, if the element A22 is significantly larger than the rest of the matrix 

elements, we have R»xA22, and it is COVID-19 severely infected individuals that maintain 

the epidemic: 

 R»x 

The off-diagonal elements A12 and A21 define the contribution of one group of infected to 

the expansion of the other group. The relative size of these pathways influences the 

population sizes of y1 and y2. For example, A12>A21 tends to increase the population of the 

mildly infected. The opposite inequality results in the boosting of the y2 population, see 

Supplement for a more precise statement. 

Depending on the relative values of the matrix elements Aij, this model can give rise to a 

variety of different dynamics and outcomes. To understand this better, it is instructive to 

first consider extreme cases that bracket all possible outcomes. 

• (Ia): Maintenance of the epidemic depends on the mildly infected individuals, y1, 

transmitting virus through the C (or H) compartment and giving rise to mostly more 

mildly infected individuals. Most infected individuals have mild disease, whereas 

given subsets develop serious COVID-19. 

• (Ib): Maintenance of the epidemic again relies on transmission by y1 individuals 

creating more y1-infected people, but most infected individuals are y2 and have 

severe disease. 

• (IIa): Maintenance of the infection depends on severely infected individuals, y2, 

transmitting the infection (through C or H). The majority of the infected individuals, 

however, are y1 and have mild disease, whereas given subsets develop serious 

COVID-19. 

• (IIb): Maintenance of the infection again depends on severely infected individuals, 

y2, but most of the infected individuals have severe disease. 

While not all of these cases are realistic, an important and novel point emerges from this 

analysis: It is possible that the group of infected individuals that is responsible for 
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maintaining the epidemic (i.e. for keeping R0>1) comprises only a small subset of the 

infected people. For example, in case (IIa), severely infected individuals that transmit the 

virus to generate new patients with severe infection, including serious COVID-19 (via hot-

zone transmission) is critical for keeping R0>1. At the same time, however, the majority of 

the individuals is mildly infected, y1, see Fig 2(b). This gives rise to the possibility that the 

targeting of a relatively small fraction of infected individuals in hot zones through specific 

interventions could curb overall SARS CoV-2 prevalence in the community at large.   

 

Simulating non-pharmaceutical interventions and re-openings 
Some valuable insights can be gained by simulating the implementation of non-

pharmaceutical interventions and their relaxation. At time t1, social distancing is initiated 

by parameter changes that promote a reduction in the reproduction number, e.g. by 

reducing virus deposition rates (bC, bH, BC, and BH) and infection rates (b1C, b2H, b1H and 

b2C), or by increasing virus removal rates (aC,aH) and patient removal rates through 

quarantining (g1,g2) (Fig 1). At time t2, re-opening is simulated by reverting most 

parameters back to their original values, with the exception of select parameters 

connected to either C or H transmission.  

 

We focus on realistic cases, where mild infections predominate. For non-

pharmaceutical interventions, we simulate the stay home orders that were implemented 

around March-April 2020, where it is assumed that virus transmission in the community at 

large is significantly suppressed, but that hot zone transmission may or may not continue 

to operate. When simulating the opening of society, different assumptions are made about 

the extent to which virus transmission resumes in the community at large and in the hot 

zones.  

  

  

Community at large transmission alone maintains infection spread 

First, we assume that maintenance of the epidemic depends only on community spread 

and that hot zone transmission contributes little (case (Ia) above). This corresponds to a 

scenario in many previously published COVID-19 models, e.g. [13]. Under this 

assumption, we observe that the suppression of virus transmission in the community at 
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large leads to a marked reduction in infection prevalence. Upon re-opening, a pronounced 

second wave of infection ensues until a vast majority of individuals in the population have 

been affected (Fig 2a). 

 

 

 

Hot zone transmission alone maintains infection spread 

Next, we assume that maintenance of the epidemic relies on hot zone transmission and 

that community transmission contributes little (case (IIa) above). We distinguish between 

two scenarios. First we assume that during stay-home orders, hot-zone transmission 

continues to occur. We then assume that hot-zone transmission is also suppressed. 

(i) Assume that high viral load hot zone transmission remains elevated in certain pockets 

during the interventions, such that the overall reproduction number is slightly larger than 

one. In this case, the infection continues to spread slowly during social distancing, and the 

majority of the infections are predicted to be mild. Under this scenario, infection prevalence 

is predicted to not decline during the lockdown, similar to the dynamics observed in 

California. Upon reopening, a renewed and accelerated spread is always predicted to 

occur. Because the reproduction number continues to be larger than one during the 

intervention period, it can only increase further during relaxation of the interventions (Fig 

2c).  

(ii) If hot zone transmission is suppressed during the stay-home interventions, virus 

prevalence markedly declines during the intervention period (Fig 2d). If re-opening only 

leads to resumption of virus transmission in the community at large, and hot zone 

transmission remains suppressed, no second wave is predicted to occur because the 

reproduction number remains below one (Fig 2d). If, however, hot zone transmission 

increases after reopening (due to re-activation of previous hot zones or generation of new 

ones), the reproduction number can increase beyond one, and a second wave happens 

in the model (not shown). This scenario might correspond to dynamics observed in New 

York and several European countries: Stay-home interventions resulted in significant 

suppression of the infection, and this level of suppression was maintained for 2-3 months 

even after the initial re-opening of society, presumably because of the continued 

suppression of hot zones. As the infection levels started to rebound e.g. in Germany, this 

was associated with outbreaks in hot zones, such as food processing plants[19]. 
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Both hot zones and the community at large can maintain virus spread 

Here, we assume a more balanced contribution of hot zones and the community at large: 

either pathway alone can lead to sufficient transmission such that R>1, but both 

transmission pathways are needed for the virus to achieve its full spread potential. 

Different outcomes are possible depending on the particulars. For stay-home interventions 

to lead to a marked reduction of infection levels, transmission reduction has to occur both 

in the community at large and in the hot zones. If hot zone transmission is not significantly 

affected by the intervention, infection spread will be slowed, but no decline will occur (not 

shown). In any case, reopening is likely to lead to a second wave, even if virus 

transmission only resumes in the community at large. The magnitude and timing of the 

second wave depends on social distancing and reopening parameters. For example, if hot 

zone transmission is suppressed to a larger degree, the second wave will be characterized 

by a slower growth rate and a lower size (Fig 2(f) compared to 2(e), note the different 

range of the horizontal axes and the lower final epidemic size).  

 
 
Further Complexities 

Additional insights can be obtained by incorporating further complexities that might better 

characterize the SARS CoV-2/COVID-19 pandemic. A mathematical model that includes 

these assumptions is presented in the Supplementary Materials. In the example of Fig 3 

we assume that once the virus load in the hot zones rises to high levels, it is likely that the 

rate of virus transmission saturates rather than increases in an unlimited way. Further, we 

assume that severity of infection is not only transmission zone-dependent, but that a 

higher viral load in both C and H locations results in a higher chance of severe infection. 

The model now predicts that the fraction of severe infections rises as total infection levels 

increase, but that it then declines post-peak (Fig 3(b)). This might correspond to the 

observations of increased disease severity as the epidemic expands, and then reduced 

disease severity as the outbreak declines, which has been observed in Italy [32] and 

Sweden [33], among other locations. Importantly, the simulations in Figure 3 show that 

during the initial stages of spread, mild SARS CoV-2 infections predominate, but once the 
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infection has spread beyond a certain threshold, the total viral load in both hot zones and 

the community at large increases to the point that severe COVID-19 cases predominate. 

This would translate into a health crisis with overload of the health systems and into high 

levels of mortality even if health care resources did not become limiting. According to this 

model, it is critical to implement interventions sufficiently early rather than only once 

increased mortality becomes apparent (which occurs with an additional delay). 

 

Discussion 

We have presented and analyzed a new epidemiological model in which infection severity 

depends on the virus dose received during transmission, assuming that exposure to higher 

virus loads is more likely to occur under certain conditions, which we refer to as 

transmission hot zones. These high viral loads can be reached by silent, undetected 

amplification cycles before the first clinical cases are detected [29]. One important insight 

was that a relatively small population of severely infected patients can be responsible for 

driving infection through hot zone transmission, even though the majority of infections are 

mild and acquired in the community at large. A logical consequence of this is that even 

though the majority of infections are found in the community at large, interventions that 

specifically target the hot zones can be very effective. They can reduce the viral 

reproduction number, inducing a decline of the overall infection prevalence, including that 

in the community at large. Hence, effective virus suppression in hot zones might allow to 

maintain a relatively strong degree of overall infection control with fewer restrictions in the 

community at large, although critical interventions in the community at large will most likely 

also be required.   

The model can further explain some seemingly contradictory observations. For 

example, in California, stay-home orders halted further infection spread, but a significant 

decline of infection levels was not observed during this phase. According to our model, an 

effective reproduction number that is larger than one can be obtained during interventions 

by continued viral transmission in yet unidientified hot zones, even though infection spread 

in the community at large is strongly inhibited due to the stay home orders. In agreement 

with this hypothesis, a large fraction of the recorded infections and deaths occurred in 
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nursing homes and assisted living facilities in California during the time period when the 

stay-home order was in place [34]. On the other hand, in other locations, such as New 

York and several European countries, lockdowns were more effective at driving infection 

numbers down, and when society subsequently opened up to a certain extent, infection 

levels appeared to remain controlled for several months. According to our model, this 

would be explained by more efficient suppression of viral transmission in the hot zones 

during lockdown, and continued hot zone suppression after the initial reopening phase 

(e.g. by protecting assisted living facilities and hospitals, and by avoiding larger indoor 

gatherings in bars etc.). The model further makes the prediction that renewed hot zone 

transmissions would be able to trigger a second wave. This is again consistent with 

observations. For example, in Europe, the initial growth in case numbers during the 

emerging second waves seemed to be associated with hot zones, such as food 

processing plants [19]. 

  This epidemiological model also provides a motivation to act early and decisively 

to prevent the amplification of the viral loads and to prevent potential transmission hot 

zones with severe disease from forming. Facemasks might be crucial in this respect, 

because they reduce exposure dose. Facemasks can thus turn a potential hot zone that 

drives infection spread into a lower dose transmission environment, which does not have 

the same ability to maintain overall infection spread.  

 

 Past coronavirus outbreaks have been characterized by large numbers of 

infections resulting from superspreading events; the corollary to this finding is that most 

individuals infected with these viruses did not transmit the virus efficiently [18, 35, 36]. The 

“hot zone” transmission framework proposed here is broadly consistent with these 

findings: hot zones are characterized by the exposure of susceptible individuals to a 

relatively high virus dose, which may lead to more severe disease. Large gatherings, 

including several infected individuals shedding virus at the same time, can provide the 

high dose exposures, as could amplifications of the viral load by the repeated visits to a 

location by the same people. While early virus exposure from one infected person would 

likely constitute a low dose exposure and result in mild infection in several individuals, 

these individuals would then all shed virus, thus increasing the viral dose with which others 

are infected. Hence, amplification through asymptomatic or mild cases will eventually 
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result in exposure to a higher virus dose and in a higher chance of severe disease in the 

newly infected people, thus generating a hot zone environment. Such characteristics could 

exist in crowded/ poorly ventilated office work spaces, schools, prisons, places of worship, 

long term care/assisted living communities, and health care/hospital settings, as well as 

in multigenerational households, which have all been identified as transmission clusters 

in various countries [18]. Long term care facilities and hospitals might be especially prone 

to this effect, which is consistent with the large percentage of deaths in long term care 

facilities. People with pre-existing health conditions regularly visit hospitals, which could 

start such an amplification cycle anywhere in a hospital before the presence of the virus 

in the location is known. 

 

 These notions are consistent with data from Italy, where at least some hospitals 

were identified as a major contributor to early COVID-19 spread, like in Bergamo [37]. 

Similarly, in the United States, an infection cluster has been recently identified in a hospital 

in Boston [38]. These notions are further consistent with the many analyses of the 

disproportionately high mortality of elderly people residing in long term care living facilities 

[39, 40] rather than at individual homes across the world [41], and with the disproportionate 

impact on minority communities in America [42],  who may have been required to 

physically go to work during the outbreak due to their employment in “essential services” 

like transportation and food preparation. A number of Asian countries implemented strong 

protection measures in the health care system before the first COVID-19 cases were 

identified, due to previous experiences with SARS and MERS. Countries such as South 

Korea performed intensive testing, resulting in early identification of infected individuals, 

which were thus removed from both transmission chains and any potential amplification 

circles [43]. Such strategies limit the seeding of transmission hot zones and prevent the 

initial rounds of viral load amplification, which might have contributed to the relatively 

lighter disease burdens documented there, despite somewhat less strict social distancing 

[44]. 

 

This model can be refined by including risk factors, social networks and other 

complexities, which all are likely to be critical for any practical predictive use. For example, 

we assumed in our model that disease severity was associated with the dose of virus 

exposure. Risk factors (importantly age and comorbidities), however, are another 
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important determinant of disease severity, and incorporation of these additional details will 

refine the accuracy of the model. Moreover, model predictions depend on assumptions, 

which need to be tested with epidemiological, clinical, and virology data. The strength of 

modeling, however, is to identify potential key drivers of the pandemic, which we would 

not be aware of otherwise, thus directing the required epidemiological, clinical, and 

virology investigations. The finding that severe infection transmission through high viral 

load exposure in hot zones might be an important driver of SARS CoV-2 spread, even as 

mild disease cases predominate, could allow us to improve the outcome of reopening 

society through targeted interventions.  
 
 

Materials and Methods 
We have modeled the spread of infection by using ordinary differential equations (ODEs) 

of SIR type, where we distinguished between patients with mild or almost asymptomatic 

infection and those with severe SARS CoV-2 infection. Transmission happened through 

two different “channels”. Several extensions of the model are also considered including a 

model with saturation in the infection term. The precise formulations and complete 

analysis of the ODEs are presented in the Supplementary Materials. 
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Figures: 

 
Figure 1. A schematic showing the model structure and its parameters. Infection deposition and 
acquisition matrices, Qdep and Qacq are defined, see Supplement for details. In the model, 
transmission can result in two types of infected populations: asymptomatic/mild SARS CoV-2 
infection (denoted by y1) and severely SARS CoV-2 infected, including ambulatory symptomatic 
COVID-19 patients (denoted by y2). It is assumed that severe COVID-19 is promoted by exposure 
to a higher viral load. Hence, exposure of susceptible individuals to virus in the community at large 
compartment (C) results mostly in mild infection with a probability b1C,	and less frequently in 
severe infection with a probability b2C, where b1C> b2C because local viral load is assumed to be 
relatively low in the C compartment. Exposure in the hot zone compartment (H) results in mild 
infection with a probability b1H, and in more frequent severe COVID-19 with a rate b2H, where 
b1H<b2H, because virus load is assumed to be higher in the hot zone. Mildly infected individuals 
are assumed to deposit virus in the C and H compartments with rates bC and bH, respectively. 
Severely SARS CoV-2 infected, including symptomatic but ambulatory, individuals are assumed to 
deposit virus in those compartments at rates BC and BH, respectively. Finally, virus decays in the 
two locations at rates aC and aH, and mildly and severely infected individuals cease to be 
infectious (because of recovery or death) with rates g1 and g2. 
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Figure 2. Simulated epidemic dynamics in different cases. Four populations are shown as functions 
of time: susceptible (green), mildly SARS CoV-2 infected (orange), severely COVID-19 infected 
(red), and recovered/dead (blue). Insets show detail in the dynamics of infecteds, and the matrix 
elements Aij. Intervention is shown by dashed lines. It is assumed that during intervention, both H 
and C channels are suppressed, and afterwards channel C is restored to its full capacity. (a) Case 
(Ia) (see text), where the spread of infection is mostly through mildly infected who comprise the 
majority; opening up leads to a second wave of infection. (b-d) Case (IIa), where the spread of 
infection is mostly through severely infected although the majority are still mildly infected. In (b) no 
intervention is implemented; the effects of social distancing are shown in (c) (insufficient H 
suppression, a second wave is predicted) and (d) (significant H suppression, no second wave). 
(e,f) Both C and H channels contribute about equally to infection spread; opening up the C channel 
results in a second wave, but a higher degree of H suppression leads to a smaller and more delayed 
second wave. In all simulations, R0=2.4. Other parameters are given in Fig S2 and S4. 
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Figure 3. More realistic scenarios of infection spread: included is a saturation term in the C and H 
channels, and the probability of becoming severely infected through channels C and H depends on 
the infection level, resulting in a change in the proportion of severely infected. The epidemic 
dynamics are shown in (a) and the fraction y2/(y1+y2) in the inset in (b). For all parameter values, 
see figure S4. 
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