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Recent studies on virus discovery have focused mainly on

mammalian and avian viruses. Arbovirology with its long tradition

of ecologically oriented investigation is now catching up, with

important novel insights into the diversity of arthropod-

associated viruses. Recent discoveries include taxonomically

outlying viruses within the families Flaviviridae, Togaviridae, and

Bunyaviridae, and even novel virus families within the order

Nidovirales. However, the current focusing of studies on blood-

feeding arthropods has restricted the range of arthropod hosts

analyzed for viruses so far. Future investigations should include

species from other arthropod taxa than Ixodita, Culicidae and

Phlebotominae in order to shed light on the true diversity of

arthropod viruses.
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Introduction
In recent years, the systematic discovery of novel viruses has

undergone a renaissance as a field of research [1–3]. Virus

discovery has yielded important and in part spectacular new

insights into virus diversity. Starting from improved

approaches to clone and screen cDNA libraries, the avail-

ability of novel amplification-based and sequencing-based

techniques has enabled the characterization of viral isolates

and even uncultured viruses. Some of the milestones in this

field included the untargeted sequencing of the Severe

Acute Respiratory Syndrome (SARS) agent [4], discoveries

of relevant human respiratory viruses including human

metapneumovirus and human coronavirus NL63 [5–7], as

well as applications of technology for the clarification of

mysterious outbreaks, for instance, one caused by a novel

old world arenavirus involving haemorrhagic fever [8].

Out of the necessity to find diagnoses and etiologies in

medicine, the field has so far placed a lot of focus on
www.sciencedirect.com 
human viruses. Even in veterinary medicine, the para-

mount discovery of Schmallenberg virus as a novel

pathogen in livestock ungulates was driven by clinical

necessity, rather than pathogen surveillance [9]. Never-

theless, the growing interest in epidemic preparedness

and pathogen ecology has triggered an expansion of fields

of application for virus discovery. Efforts to investigate

viral animal reservoirs have begun to yield fundamental

insight into virus diversity and evolution, exemplified by

the clarification of the reservoir of Ebola virus [10], the

recent discovery of mammalian viruses co-ancestral with

influenza A virus [11], as well as the analysis of the roles of

different mammalian orders in paramyxovirus evolution

[12]. According to the orientation of pathogen surveil-

lance programmes, those investigations have focused on

mammalian and avian viruses. In terms of arthropod-

associated viruses, the harvest from virus discovery stu-

dies has been thinner [13] but there is now a number of

remarkable arthropod virus findings that deserve atten-

tion and discussion.

Virus discovery in vertebrates and arthropods —

comparison of approaches

It seems unlikely that technical approaches for the same

purpose, that is, the discovery of viruses, should differ

between fields. However, the huge new interest in virus

discovery has made researchers use opportunities within

reach. In mammalian and avian viruses, the incentive

coming from the medical field has triggered huge invest-

ments in technology. Paramount virus discoveries in

human medicine, starting from hepatitis B virus in the

1960s through human immunodeficiency virus, hepatitis

C virus, and human herpes virus 8 in the early 1990s, have

reassured us in our belief that undiscovered viruses would

be agents difficult to culture or entirely unculturable. On

the contrary, cell culture has been a key technology in the

arthropod virus field and it has been long known that

unclassified, unknown viruses are routinely cultured from

insects and victims of arbovirus infections alike. As a

matter of fact, the historical classification of arbovirues

in groups a (alphaviruses), b (mainly flaviviruses) and c

(other viruses) includes the presumption that a large part

of isolates will not be classifiable using traditional

methods such as serology. Out of this background, arbo-

virus researchers have covered continents in their field-

work and spent decades on collecting viruses.

Consequentially, while the investigation of original field

samples has come into focus in the mammal and bird virus

field, arbovirus researchers have gone back to their
Current Opinion in Microbiology 2013, 16:507–513
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Figure 1
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Geographic distribution of recent discoveries of novel arthropod-associated viruses. Countries where prototype viruses have been identified are

marked in red. Virus names are shown in bold and host species in italic. Numbers in parenthesis are references.
collected cultures, particularly those that remained

untypable [14,15]. The collection maintained at the

World Reference Center for Emerging Viruses and Arbo-

viruses (WRCEVA) at University of Texas Medical

Branch is probably the largest and surely the most pro-

minent of such collections. Other groups have followed

similar technical approaches in that they used cell culture

as a first-line tool to gain virus isolates, before applying

methods aimed at their further characterization [16–19].

There have been a number of important recent studies

based on RT-PCR, but these were mainly aimed at the

description of novel regions of distribution of known

viruses, or close relatives thereof [20–23]. On the contrary,

and in spite of demonstrated technical feasibility, there is

today not a single exemplary study applying undirected,

hypothesis-free deep sequencing on original field samples

of arthropods. All studies based on this promising meth-

odology used cell culture isolates as their primary entry

point (Figure 1).

Recent results in arthropod virus discovery — viral

diversity in arthropods

Flaviviridae (genus Flavivirus)

Viruses that seem to replicate only in mosquito but not in

vertebrate cells were first discovered within the genus
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Flavivirus, family Flaviviridae. Well-known members of

this so-called insect-specific group include cell fusing

agent virus, Kamiti River virus, and Culex flavivirus

(reviewed in [24]). These insect-specific viruses are

thought to be maintained in insects only, and to represent

ancestral or primordial forms of the vector-borne flavi-

viruses. Insect-specific flaviviruses have been divided

into Aedes-associated and Culex-associated viruses,

respectively. Recent findings of related flaviviruses in

mosquito species of other genera [25,26] suggest a much

higher diversity of yet-to-be discovered insect-specific

flaviviruses. Interestingly, a clade of potentially insect-

specific viruses that replicate in mosquito cells but not in

vertebrate cells or newborn mice was discovered within

the diversity of mosquito-borne viruses. This clade cur-

rently has now three members including Nounané virus

isolated from Uranotaenia mashonaensis mosquitoes

originating from the Taı̈ National Park in Côte d’Ivoire

[27], Lammi virus isolated from Aedes cinereus mosquitoes

collected in Finland [28], and Nanay virus, a virus

recently isolated from Culex ocossa collected in the Ama-

zonian rainforest near Iquitos, Peru [29]. The diversity of

mosquito-associated flaviviruses was further extended by

the detection of flavivirus-like sequences integrated

within the genomes of Aedes mosquitoes [30].
www.sciencedirect.com
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Figure 2
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Phylogenetic relationship of prototype arthropod-associated viruses and avian and mammalian viruses. Maximum likelihood analyses of the family

Bunyaviridae (a) and the order Nidovirales (b). Arthropod-viruses are shown in red. Associated hosts are indicated by silhouettes to the right.
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Togaviridae (genus Alphavirus)

In parallel to the findings within flaviviruses, the first

insect-specific alphavirus, named Eilat virus, was dis-

covered in Anopheles coustani mosquitoes collected in

the Negev desert, Israel [31��]. Phylogenetic analyses

placed Eilat virus on a long branch between the

Western equine encephalitis serocomplex and Trocara

virus, a virus isolated from Aedes serratus mosquitoes

from the Amazon Basin, the prototype of a new anti-

genic complex [32]. Alphaviruses are divided in two

groups, one large group infecting terrestrial mammals

and birds via mosquito bites and a second distant

related group with two members only infecting fish

[33]. The finding of further insect-specific alphaviruses

in the future, potentially placed between the aquatic

and terrestrial viruses, is very likely.

Bunyaviridae (putative novel genera)

Although the family Bunyaviridae is already one of the

largest virus families with about 350 members divided

into five genera of plant (genus Tospovirus) or vertebrate

(genus Orthobunya-, Phlebo-, Nairo-, and Hantavirus)
pathogenic viruses [34], still many new viruses are being

discovered, contributing further to the immense bunya-

virus diversity. The case of Schmallenberg virus is only

one example why we should continue studying the

diversity of arthropod-associated bunyaviruses [9,35].

More examples are provided by severe fever with throm-

bocytopenia syndrome virus (SFTSV), a novel tick-borne

phlebovirus from China isolated from Haemaphysalis long-
icornis ticks, as well as its cousin in North America, the

Heartland virus [36–39]. Interestingly, also for the

SFTSV and Heartland virus clade, closely related sister

taxa named Bhanja virus, Palma virus and Lone Star virus,

have now been described in Haemaphysalis intermadia, H.
puncatata, Rhipicephalus decoloratus, R. geiyn, R. pulchellus,
and Amblyomma americanum, respectively [40–42].

Moreover, a mosquito-associated phylogenetic outlier

virus, termed Gouléako virus, was isolated from different

mosquito species (mostly Culex nebulosus) collected in the

Taı̈ National Park in Côte d’Ivoire [43�]. Gouléako virus

did not grow in various primate, bat, bird, rodent, and

amphibian cell lines but grew to high titres in mosquito

cells suggesting this agent to constitute the first putative

insect-specific bunyavirus. Furthermore, a novel clade in

phylogenetic sister relationship to orthobunyaviruses and

almost equidistant to the established bunyavirus genera

has been discovered in mosquitoes originating from Côte

d’Ivoire and Uganda [44,45�]. These viruses termed

Herbert virus, Tai virus and Kibale virus did also not

infect vertebrate cells but replicated well in mosquito

cells. Gouléako virus, Herbert virus, Tai virus and Kibale

virus may represent clades of insect-specific viruses in co-

ancestral relationship to the vertebrate-infecting phlebo-

and orthobunyaviruses, respectively. The diversity of the

newly described bunyaviruses suggests the existence of
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further taxa in these clades, as well as the existence of

novel clades in basal phylogenetic relationship to other

bunyavirus genera (Figure 2).

Nidovirales (novel family Mesoniviridae)

Despite the detection of viruses with distant relationship to

established clades and genera, even a novel RNA virus

family, named Mesoniviridae, was discovered in mosquitoes

collected in Côte d’Ivoire and in Vietnam [46��,47��,48].

The monogeneric family now contains at least four virus

species that seem only to be able to infect insect cells, but

not vertebrate cells [49]. The order Nidovirales heretofore

comprised three families of fish-, bird-, and mammal-

infecting viruses, namely the Coronaviridae (subfamilies

Coronavirinae and Torovirinae) and the Arteriviridae. A third

family included crustacean-infecting viruses, the Ronivir-
idae. The now expanded nidovirus phylogeny with roni-

viruses and mesoniviruses branching from deepest tree

nodes suggests an origin in arthropods for the whole order

Nidoviales [46��,49] (Figure 2).

Others (new families, taxa)

Novel insect-specific viruses, collectively termed Nege-
virus, have been detected in mosquitoes and sandflies

captured in Brazil, Peru, the United States, Ivory Coast,

Israel, and Indonesia [50�]. These are distantly related to

viruses of the genus Cilevirus and may represent a novel

genus within the same family as cileviruses [50�]. The

recently characterized and classified Citrus leprosis virus,

a plant virus transmitted by Brevipalpus mites, is the type

species of the genus Cilevirus of an as yet unclassified

novel virus family [51]. The wide geographic distribution

and the detection in mosquitoes of different genera and

sandflies suggest negeviruses to be widely distributed and

to potentially infect nonbiting dipteran species widely.

The family Reoviridae is the only family of vertebrate-

infecting viruses known to occur in a number of non-

blood-feeding arthropod species. Two novel viruses were

discovered in the three cornered alfalfa hopper (Spissis-
tilus festinus) and in the angulate leafhopper (Acinopterus
angulatus) collected in CA, USA, respectively [52�]. Both

viruses were proposed to belong to a new genus of the

subfamily Spinareovirinae within the family Reoviridae.
Other distantly related reoviruses have been isolated from

a grass carp (Ctenopharyngodon idella) in China [53], from a

mud crab (Scylla serrata) in China [54], as well as from the

winter moth Operophtera brumata [55].

Conclusions
Recent efforts to discover arthropod viruses have yielded

widely divergent taxa that sometimes even define novel

families. While much more effort is currently invested in

mammal and bird virus detection, the results there seem

to have been restricted to the discovery of variants of

virus species, sister species to known viruses, and rarely

genera.
www.sciencedirect.com
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Reasons for a seemingly wider genetic range of novel

arthropod viruses may be technical. Virus culture as

employed in most studies should amplify diverse novel

viruses — in contrast to molecular biology techniques

with their inherent sequence bias. However, studies

combining cell culture and next generation sequencing

on mammalian and bird viruses still yield a rather limited

diversity of novel viruses. Moreover, while a large range of

vertebrate cell lines is available, most arthropod-based

virus isolation studies relied on only one cell line, namely

C6/36 cells from Aedes albopictus. These cells have

recently been shown to be deficient in elemental RNA

interference (RNAi) components suggesting the cells to

be much more susceptible for virus infections [56]. But

again, also for mammal and bird viruses there are several

cell lines available with defects in their interferon system

facilitating virus infection and replication. It is therefore

unlikely that differences in our ability to culture viruses

could suffice as an explanation for the higher genetic

diversity in novel virus discoveries in insects, as opposed

to vertebrates. Notably, while undirected studies based

on next generation sequencing are not available for

arthropods, they have indeed been conducted intensely

for mammals and birds. Even if some of those studies

mentioned sequence reads that could neither be ascribed

to the host genome or transcriptome, nor to known viral

families, the absence of discoveries of highly divergent

novel taxa including novel families in mammals and birds

is striking. The obvious and most likely explanation is

sampling bias. Our current coverage of host diversity is

highly limited. In mammalian and bird virus discovery,

huge efforts have been spent historically on human hosts,

as well as companion and livestock animals [12]. Trig-

gered by findings of important zoonotic agents such as

SARS-CoV, Hanta-, and influenza viruses, the array of

mammal and bird species of interest has been extended to

wild rodents, bats, and migratory birds [1,2]. Many of the

more important recent findings of novel vertebrate

viruses have been made there, confirming conjectures

that taxa with huge social group sizes, population turn-

over, and migratory behaviour favour the emergence and

maintenance of viruses.

On the contrary, no such considerations have been

made so far in the design of sampling for arthropod

virus discovery. Sampling has been determined (and

limited) by our interest in blood-feeding arthropods,

such as mosquitoes, sandflies, and ticks. These are not

closely related, with an evolutionary distance of ca. 706

million years [57], in contrast to birds and mammals

that separated ca. 160 mya [58]. If we accept virus and

host diversity to be roughly correlated, we have to

admit that we are probably overlooking the largest part

of existing arthropod virus diversity. Arthropods are

the largest animal phylum including the class of

insects which comprises more than half of all

described species [59].
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Critically, it has to be considered that viruses may not

only be acquired from insects via the blood-borne route

but also by the ingestion of infectious diet. Arthropods are

a major dietary component for a large range of small

vertebrates, and we would be well advised to conduct

virus discovery studies on those taxa that are an attractive

prey for small mammals and birds — such as moths,

butterflies, caterpillars, bugs, or spiders.
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