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Seagrasses are marine flowering plants growing in soft-body sediments of intertidal and
shallow sub-tidal zones. They play an important role in coastal ecosystems by stabilizing
sediments, providing food and shelter for animals, and recycling nutrients. Like other
plants, seagrasses live intimately with both beneficial and unfavorable microorganisms.
Although much is known about the microbiomes of terrestrial plants, little is known about
the microbiomes of seagrasses. Here we present the results of a detailed study on the
rhizosphere microbiome of seagrass species across the North-eastern Atlantic Ocean:
Zostera marina, Zostera noltii, and Cymodocea nodosa. High-resolution amplicon
sequencing of 16S rRNA genes showed that the rhizobiomes were significantly different
from the bacterial communities of surrounding bulk sediment and seawater. Although we
found no significant differences between the rhizobiomes of different seagrass species
within the same region, those of seagrasses in different geographical locations differed
strongly. These results strongly suggest that the seagrass rhizobiomes are shaped by
plant metabolism, but not coevolved with their host. The core rhizobiome of seagrasses
includes mostly bacteria involved in the sulfur cycle, thereby highlighting the importance
of sulfur-related processes in seagrass ecosystems.

Keywords: 16S rRNA, amplicon sequencing, marine bacteria, rhizosphere, seagrass microbiome, sulfur bacteria,
sulfur cycle, plant–microbe interactions

INTRODUCTION

In recent years many studies have been conducted on the composition, activity, and interaction
of bacterial communities and terrestrial plants (e.g., Egamberdieva et al., 2008; Bulgarelli et al.,
2012; Philippot et al., 2013; Chaparro et al., 2014; Ofek-Lalzar et al., 2014). Most of this research
has been focused on the rhizosphere, a thin zone of soil under direct influence of root exudates,
also known as ‘rhizodeposits’ (Martens, 1990). The type and quantity of rhizodeposits shape the
composition of bacteria present in the rhizosphere, the ‘rhizobacteria’ (Kloepper and Schroth, 1979;
Lugtenberg and Kamilova, 2009). These rhizobacteria are a diverse mixture of microorganisms
that can actively interact with the plant in different ways and include both pathogenic and
pathogen-suppressing bacteria, as well as bacteria that can enhance the plant’s fitness for
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example by releasing growth-promoting factors (Mendes et al.,
2011, 2013; Berendsen et al., 2012; Bulgarelli et al., 2013) or by
fixing nitrogen (Spaink, 2000; Mehnaz et al., 2007; Miller et al.,
2007).

Although the rhizosphere microbiome of terrestrial plants
is well studied, little is known about the bacteria living
in close association with marine plants, such as seagrasses.
Seagrasses are a paraphyletic group of angiosperms, which
recolonized the marine environment. Their primary and
secondary metabolism is similar to that of terrestrial plants
due to their common evolutionary origin (Agostini et al.,
1998; Heglmeier and Zidorn, 2010). Four families within
the order Alismatales, the Cymodoceaceae, Hydrocharitaceae,
Posidoniaceae, and Zosteraceae, exclusively contain marine plant
species (den Hartog and Kuo, 2006), which are distributed mostly
in soft-bottom sediments of intertidal and shallow sub-tidal areas
from tropical to cold-temperate coastal zones (Fonseca et al.,
2000; Papenbrock, 2012). Seagrasses are important ecosystem
engineers that provide feeding grounds and habitats to a large
variety of marine organisms. Their canopies and dense meadows
are responsible for trapping substantial amounts of sediment
particles and organic matter (Gacia et al., 1999) enhancing water
clarity, and account for roughly 10% of the yearly global carbon
sequestration in marine sediments (Duarte et al., 2005b; Kennedy
et al., 2010; Fourqurean et al., 2012).

Sediments inhabited by seagrasses are typically anoxic and
highly reduced due to the presence of sulfide, which is a
strong phytotoxin (Koch and Erskine, 2001) responsible for
die-off events of seagrasses (Borum et al., 2005; Krause-Jensen
et al., 2011). Sulfide is a product from the activity of sulfate-
reducing bacteria that use sulfate as a terminal electron acceptor
for the mineralization of organic matter (Capone and Kiene,
1988). The availability of diverse terminal electron acceptors
and the exudates released by seagrass roots stimulate bacterial
growth and promote a series of microbial-mediated redox
processes in the rhizosphere, resulting in an extensive range
of microenvironments readily available for the establishment
of complex microbial communities (Isaksen and Finster, 1996;
Holmer and Nielsen, 1997; Blaabjerg and Finster, 1998; Hansen
et al., 2000; Devereux, 2005; Duarte et al., 2005a).

Some studies have investigated the belowground microbial
diversity associated with seagrass meadows including
rhizosphere, rhizoplane, and endosphere (e.g., Cifuentes
et al., 2000, 2003; James et al., 2006; Jensen et al., 2007; Crump
and Koch, 2008; Mejia et al., 2016), and these belowground
niches have been described to be dominated mostly by members
of the classes Alpha-, Gamma-, Delta-, Epsilonproteobacteria,
and/or Bacteroidetes (Cifuentes et al., 2000; Jensen et al., 2007;
Mejia et al., 2016). Nonetheless, the majority of these studies
have been performed on a small number of seagrass species, and
it is not always clear which structure was sampled.

Here, we used high-resolution amplicon sequencing of 16S
rRNA genes to characterize, for the first time, the rhizosphere
microbiome (hereinafter referred to as rhizobiome) of seagrasses
from the North-eastern Atlantic Ocean: the common eelgrass
Zostera marina, the dwarf eelgrass Zostera noltii, and the little
Neptune grass Cymodocea nodosa. We studied the variation

between rhizobiomes of Z. marina and Z. noltii from the South
of Portugal and the North of France, and characterized the core
rhizobiome of North-eastern Atlantic seagrasses. In addition, we
discussed the possible niche occupation of sulfur bacteria in these
rhizobiomes, due to the importance of the sulfur cycle on the
fitness and survival of seagrasses.

MATERIALS AND METHODS

Description of Sampling Sites
Rhizospheres from Zostera marina (Zm/ZmPt), Z. noltii
(Zn/ZnPt) and Cymodocea nodosa (Cn/CnPt), as well as bulk
sediment (Sed/SedPt) and seawater (SW/SwPt) were sampled
from the intertidal regions of Culatra Island (Faro, Portugal,
36◦59′56.0′′ N 7◦49′31.7′′ W) in July 2013. The three seagrass
species collected in Portugal were located in adjacent meadows;
therefore bulk sediment and seawater samples were obtained
from one single site on their surroundings. Culatra Island is one
of five islands in the Ria Formosa lagoon, a meso-tidal system
with a surface area of 84 km2 (Cabaço and Santos, 2010). This
island is one of the few locations in the Ria Formosa where these
three seagrasses coexist. They inhabit mostly sandy sediments
(Asmus et al., 2000), although there is a high variability in
sediment characteristics at a very small scale (Falcão and Vale,
1990). The salinity is typically 36 PSU although it can sporadically
decrease to 27 PSU, and seawater temperature ranges between
12◦C in winter and 27◦C in summer (Newton and Mudge, 2003).

In order to compare rhizobiomes across regions, rhizospheres
of Z. marina were collected from Pointe de Cléguer (Zm/ZmFr,
Roscoff, France, 48◦43′37.1′′ N 3◦58′35.9′′ W) and Z. noltii
from Penar Vil (Zn/ZnFr, Roscoff, France, 48◦41′27.4′′ N
3◦57′24.9′′ W), in September 2013. Two sets of bulk sediments
were collected, one in the surroundings of Z. marina (SedM,
SedMFr) and another one in the surroundings of the Z. noltii
meadow (SedN, SedNFr). Cymodocea nodosa was not sampled
from Roscoff, due to its Mediterranean-Atlantic geographical
distribution. Roscoff, which is located in northern Brittany,
France, has a mega-tidal system with a patchy coverage of Z. noltii
and Z. marina beds growing in sandy sediments (median grain
size: 252± 10 and 302± 11 µm, respectively; Ouisse et al., 2010)
with low organic matter content (1.12 ± 0.19 and 1.86 ± 0.51 %,
respectively; Ouisse et al., 2012). Salinity varies between 21 and
35 PSU, and seawater temperature between 7 and 23◦C (Bachelet
et al., 1992; Li et al., 2009).

Sampling Strategy
Five 15 cm diameter cores of each seagrass species were randomly
collected during low tide. In addition, bulk sediments were
collected from a depth of 1–11 cm representing the root zones
of the seagrasses, using 50 mL syringes (n = 5), and seawater
(1 L, n = 5). To obtain the rhizosphere from the seagrasses we
adapted a method that is commonly used for the retrieval of
rhizospheres from terrestrial plants (e.g., Shieh and Yang, 1997;
Costa et al., 2006; Lundberg et al., 2012). Briefly, each seagrass
core was slowly emptied in a tray, maintaining the structure of
the sectioned sediment intact.
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Sandy sediments, such as those present in the sampling
areas (Ouisse et al., 2012), are strongly trapped within the root
structure of the seagrasses, in particular by Z. noltii. Therefore,
the complex network of roots was carefully separated by gently
shaking the tray sideways, and 4–6 shoots from each core were
selected for rhizosphere recovery. Thereafter, roots from the
selected seagrasses were manually shaken in order to remove
loose sediment (which was excluded from the collection), and
the sediment that remained attached to the roots (rhizosphere)
was collected for further analysis by washing the roots with
0.2 µm-filtered seawater. Additionally, 5 cm diameter cores were
collected in triplicate from each seagrass and bulk sediment,
for sediment characterization. Samples were transported to the
laboratory in a cool-box and immediately processed on arrival.

DNA Extraction and 16S Amplicon
Sequencing
For each of the five seawater replicates, 600 mL of seawater
was filtered through a 0.2 µm-pore size nitrocellulose filter
to collect microbial biomass. Rhizosphere and bulk sediment
samples were checked for meiofauna and plant detritus, which
were removed if present. Thereafter they were processed in
a Stomacher 80 Laboratory Blender (Seward Medical) for
3 cycles of 1 min at normal speed, in order to release
microbial cells from the mineral particles (Buesing and Gessner,
2002). The supernatant was centrifuged for 30 min at high
speed (10,000 g) (Costa et al., 2006), after which the pellet
containing the microbial biomass was processed immediately.
The DNA from filters and microbial pellets from rhizosphere
and bulk sediments was extracted using the PowerSoil DNA
Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA,
USA), following the manufacturer’s instructions. The isolated
DNA was quantified using a dsDNA HS Assay Kit on
a Qubit 2.0 Fluorometer (Life Technologies, Grand Island,
NY, USA).

Sequencing was performed on an Illumina MiSeq system
by the company Research and Testing Laboratory (Lubbock,
TX, USA). The 16S rRNA gene libraries were prepared
according to a modified protocol from Kozich et al. (2013).
Briefly, amplification was performed using a forward and
reverse fusion primer. The primer pair S-D-Bact-0341-b-S-17,
5′-CCTACGGGNGGCWGCAG-3′ and S-D-Bact-0785-a-A-21,
5′-GACTACHVGGGTATCTAATCC-3′ (Herlemann et al., 2011)
was used to generate 464 bp paired-end reads, covering the
V3-V4 16S rRNA region. The forward primer S-D-Bact-0341-b
-S-17 was complemented with an Illumina i5 adapter (5′- AA
TGATACGGCGACCACCGAGATCTACAC-3′), and the reverse
primer with an i7 adapter (5′-CAAGCAGAAGACGGCATAC
GAGAT-3′). Furthermore, an 8–10 bp barcode and a primer pad
sequence were added to each primer. The pad sequences were
designed in order to guarantee a melting temperature between 63
and 66◦C for each primer/pad combination. Amplifications were
performed using the Qiagen HotStar Taq master mix (Qiagen
Inc, Valencia, CA, USA), 1 µl of each primer (5 µM) and
1 µl of template, in a total volume of 25 µl per reaction. PCR
amplification started with an initial denaturation step at 95◦C

for 5 min, followed by 35 cycles at 94◦C for 30 s, 54◦C for
40 s and 72◦C for 1 min. The reaction was stopped after a final
extension step at 72◦C for 10 min. Subsequently, the amplicons
were visualized on an eGel, pooled and quantified before they
were loaded on an Illumina MiSeq system (Illumina, Inc. San
Diego, CA, USA). A total of 2,566,312 reads were generated from
the 45 samples, with an average sequence length of 427 bp. After
quality filtering, a total of 1,065,217 sequences remained, with
an overall average of 23,671 ± 7,561 sequences per sample and
6,950± 1,856 unique sequences per sample.

Post-sequencing Analysis
Post-sequencing analyses were performed on each biological
replicate (Prosser, 2010). Sequencing data was analyzed using
QIIME (version 1.7.0, Caporaso et al., 2010b). Briefly, raw
sequences with merged paired-ends were demultiplexed and
quality filtered. Primer detection was disabled in QIIME, because
MiSeq sequencing does not sequence the primers. Subsequently,
the sequences were clustered in operational taxonomic units
(OTUs) using UCLUST (Edgar, 2010) with a sequence similarity
threshold of 97%. A representative set of OTUs was selected and
aligned using the PyNAST algorithm (Caporaso et al., 2010a).
All sequences that failed the alignment and singleton OTUs
were not included in the analyses. Taxonomy assignment was
performed with RDP classifier using the May 2013 release of
Greengenes as a reference dataset (http://greengenes.lbl.gov/). An
OTU table was built excluding sequences with no hit or matching
chloroplast DNA. Core OTUs were defined as those present in
100% of the seagrass samples, including all 5 replicates of each
species/location.

The sequencing method and data analysis applied in this
work resulted in high quality reads; however we acknowledge
the biases associated with amplicon-based sequencing methods,
and the presence of multiple sequence copies. Nevertheless, the
results here described were identical and comparable to those
obtained through the analysis of 16S rDNA reads obtained by
Illumina shotgun sequencing of pooled replicates from four of the
samples here analyzed. Moreover, the quality check and singleton
removal abovementioned enabled us to provide a reproducible
and reliable description (quantitatively and qualitatively) of the
seagrass rhizobiome. Alpha diversity measures (Shannon Index
of diversity and observed OTUs) were calculated based on
rarefied OTUs, with 8055 sequences per sample, the maximum
number of sequences common to all samples.

Differences between samples (beta diversity) were calculated
in STAMP v2.0.8 (Parks et al., 2014), using the data generated by
QIIME’s taxonomy assignment and corresponding mapping file.
STAMP calculated diversity differences between samples based
on the analysis of variances (ANOVA) with a significant level of
P < 0.05, and significant differences between groups of samples
were investigated using Scheffé’s post hoc test. Benjamini–
Hochberg’s False Discovery Rate (FDR) was applied to correct for
multiple comparisons.

Permutational Multivariate Analysis of Variance (PERMA
NOVA) was applied to identify compositional differences
between regions and seagrass species with a significance level of
P < 0.01, based on a Bray–Curtis distance matrix calculated in
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FIGURE 1 | Abiotic characterization of sediments from the study areas in Portugal and France. Mean percentages of water content, loss on ignition (LOI),
as well as median grain size are shown for bulk sediments (BS) and sediments of Z. noltii (Zn), Z. marina (Zm), and C. nodosa (Cn) sampled in Portugal (A).
Comparison of LOI and grain size Zostera spp. sediments between Portugal and France. The data of ZnFr and ZmFr were obtained from Ouisse et al. (2010, 2012)
(B). Bars indicate standard deviations, and letters reveal presence/absence of significant relationships between samples on each analysis with a significance level of
0.05, as determined by Tukey’s HSD post hoc test.

PAST software version 2.17c (Hammer et al., 2001). Similarity
Percentage method (SIMPER, Clarke, 1993) was used to assess
which taxa were responsible for differences observed between two
groups of samples (pairwise SIMPER) or between all the samples
pooled (multi-group SIMPER), using a Bray-Curtis dissimilarity
matrix, calculated, as abovementioned, in PAST software.

The amplicon sequences have been deposited as dataset
SRP057630 in the Sequence Read Archive (SRA, EMBL).

Abiotic Characterization of Sediments
from Portugal
Grain size determination was performed by standard sieve
fractionation of the top 5 cm of small sediment cores, as described
by Holme and McIntyre (1984). Due to the agglomeration
of very fine particles (<43 µm) and blockage of the sieve
during dry sieving, wet sieving was manually performed on
pre-weighed, oven-dried sediments (105◦C overnight), through
a 63 µm mesh size (Krause-Jensen et al., 2011). Wet-sieved
sediments were again dried at 105◦C and sieved in a throw-
action sieve shaker (10 min, amplitude 30 mm; AS Basic,
Retsch GmbH Haan), through 6 different mesh sieves (0.063,
0.125, 0.25 0.5, 1, and 2 mm). Each size fraction was weighed,
and the curve of cumulative percentages of each fraction was
used to calculate median grain size. Sediment classification was
subsequently performed according to Wentworth’s grain size
classes (Wentworth, 1922).

Water content was calculated after drying the top 1 cm
of sediment at 105◦C overnight, and loss on ignition (LOI)
followed by overnight combustion at 375◦C (Sutherland, 1998).
The majority of studies determine LOI through combustion at
520 or 550◦C, however it has been reported that loss of structural
water from metal oxides and clay minerals can take place at
temperatures as low as 400◦C (Dean, 1974; Sutherland, 1998).
Due to a high percentage of small particles in some of the
samples (<63 µm), we considered that combustion at 375◦C
would provide more accurate results.

Differences between water content, LOI and grain size of
sediments from Portugal, as well as grain size from France were
analyzed using a one-way ANOVA, and differences between pairs
of samples were assessed with Tukey’s HSD post hoc test with a
significance level of P < 0.05. In order to investigate differences
in organic content between Portugal and France, a two-sample
t-test was performed on the online tool http://in-silico.net.

RESULTS

Sediment Characteristics
Standard sieve fractionation revealed that the grain size of
sediments sampled in Portugal significantly differed between
distinct sources of samples (ANOVA, P = 0.0002e-01). Based
on Wentworth’s size classes, sediments of Z. noltii (mean ± SD,
311 ± 11 µm), C. nodosa (284 ± 26 µm) and bulk sediments
(396± 26 µm) were classified as medium sand, whereas sediment
of Z. marina was classified as very fine sand (111 ± 47 µm).
Nevertheless, significant sediment composition differences were
detected among all samples except between Z. noltii and
C. nodosa (P = 0.6704, Figure 1A). Regarding grain size
distribution of Zostera sp. sediments in Portugal and France,
the only significant difference detected was between Z. marina
sampled in Portugal, and all other samples (P < 0.001,
Figure 1B).

Water content was significantly lower in bulk sediments and
Z. noltii than in Z. marina and C. nodosa (P < 0.01), and did not
differ between the latter two species (P= 0.9000, Figure 1A).

The organic content inferred from LOI at 375◦C was
significantly higher in sediments of Z. marina and C. nodosa
than in bulk sediments (P = 0.0010 and P = 0.0031, respectively,
Figure 1A), however, pairwise comparison of the latter with
sediments from Z. noltii revealed no significant differences
between them (P = 0.1148, Figure 1A). Following the same
trend observed in the comparison of grain size distribution
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between Portugal and France, only Z. marina sediments from the
former location were significantly different from all other samples
(P= 0.0032, Figure 1B).

Microbial Community Composition of
Rhizospheres and Surrounding
Environment
Comparative analysis of the amplicon sequences showed in both
regions strong differentiation in bacterial communities between
the seagrass rhizobiomes and those present in bulk sediments and
seawater (Portugal: PERMANOVA, P = 0.0006; Figures 2A,B;
France: PERMANOVA, P = 0.0001; Figures 2C,D). The
rhizobiomes were dominated by members of the classes Gamma-
(Figure 3A), Delta- (especially in Portugal; Figure 3B), and
Epsilonproteobacteria (especially in France; Figure 3C), and
Bacteroidia (Figure 3D), while the seawater was dominated
by members of the Alpha- (Figure 3E), Gammaproteobacteria
and Flavobacteriia (Figure 3F). Communities from the bulk
sediments were predominantly composed of members from the
Alpha-, Gamma-, and Deltaproteobacteria classes.

Rarefaction analysis showed that seawater accounted for the
lowest diversity (Shannon index = 7.1, and 1803 observed
OTUs on rarefied samples). Furthermore, in general, the
diversity of bulk sediments did not differ from the rhizosphere
(Shannon index of 10.33 and 10.32, respectively; PERMANOVA,
P = 0.8749). On the other hand, although not statistically
significant, the OTU richness was higher in bulk sediments than
in rhizospheres (3522.5 and 3471.5 observed OTUs, respectively;
PERMANOVA, P = 0.6944).

Rhizobiomes of Different Seagrasses
Within and Across Regions
Principal component analysis showed that the rhizobiomes of
Z. marina and Z. noltii within regions were highly similar, but
strongly different from the rhizobiomes of the same species
between regions (Figure 4).

The rhizosphere community composition of Z. marina,
Z. noltii, and C. nodosa from Portugal was highly similar both
at the phylum and class level (PERMANOVA, P = 0.1067
and P = 0.0706, respectively). Proteobacteria was the most
abundant phylum among all three species, representing 65–68%
of all OTUs. Other dominant phyla were Bacteroidetes, which
accounted for 10–12%, Chloroflexi (4–5%), Planctomycetes (2–
3.5%), Actinobacteria (2.5–3%), and Acidobacteria (2.2–2.6%).
The most abundant classes detected were Gammaproteobacteria
(32–38%) and Deltaproteobacteria (23–26%) from the phylum
Proteobacteria, followed by Bacteroidia (Bacteroidetes, 6–7%),
Epsilonproteobacteria (Proteobacteria, 2.7–4.4%), Anaerolineae
(Chloroflexi, 4%), Acidimicrobiia (Actinobacteria, 2–2.6%), and
Alphaproteobacteria (Proteobacteria, 1.5–2.7%).

The rhizobiomes of Z. marina and Z. noltii from France did
not differ at the phylum level (PERMANOVA, P = 0.0166).
Proteobacteria were dominant in the rhizobiomes of both
seagrass species (46.6 and 41%, respectively) followed
by Bacteroidetes (27.4 and 22.8%), Firmicutes (6.7 and
9%) and Actinobacteria (5 and 6.9%). At the class level,

however, there were some differences in relative abundances
(PERMANOVA, P = 0.0077). SIMPER analysis revealed that
the Epsilonproteobacteria was the main taxon responsible
for the differences observed between these two seagrasses
in France, contributing 21.9% to the observed variation,
followed by Flavobacteriia (8.6%), Gammaproteobacteria (7.5%),
Deltaproteobacteria (7.3%), Alphaproteobacteria (7.3%), and
Clostridia (7.2%). For a complete overview of the relative
abundance of individual taxa at the phylum and class levels,
see Supplementary Tables S1 and S2, respectively. Furthermore,
the classes contributing the most for the differences observed
between Portugal and France were dominated by families
typically involved in the sulfur cycle (Supplementary Table S2).

Core Seagrass Rhizobiome
The bacterial communities of the different seagrass species
were compared in order to reveal a core rhizobiome
comprehending the OTUs present in all the rhizospheres
(Figure 5, Supplementary Table S3). Only 0.2% of the OTUs
and 15% of sequences present in all the samples were identified
as core rhizobiome, and included members from the phyla
Proteobacteria, Bacteroidetes, Actinobacteria, Acidobacteria,
Firmicutes, WS3, Chloroflexi, Caldithrix, and Gemmatimonadetes
(Supplementary Table S3). Sixty-four percent of the core taxa
belonged to the Proteobacteria, with representatives of the
classes Alpha-, Gamma-, Delta-, and Epsilonproteobacteria
(Supplementary Table S3).

DISCUSSION

In this study, we evaluated differences between the microbial
community structure of the rhizosphere of three seagrass
species and their surrounding environment, as well as between
two distant geographic locations. Rhizosphere, rhizoplane and
endophytic compartments are different niches that host distinct
microbial communities around, on and inside root surfaces,
respectively. Here, we document the lack of significant differences
between the rhizosphere microbiome of different seagrass species
from one location. However it is noteworthy that further
investigation into the composition of rhizoplane and endophytic
compartments can possibly result in differences between seagrass
species (Bulgarelli et al., 2012; Lundberg et al., 2012). The
intimacy of the association between plant and microbe is
expected to rise with increased proximity to the roots, due to
direct contact with the plant and stronger exposure to its exudates
(Bulgarelli et al., 2012; Lundberg et al., 2012).

Rhizobiomes of Different Seagrasses
Within and across Regions
Microbial assemblages in the rhizosphere of terrestrial plants
have been shown to be shaped, for instance, by plant species
(Berg and Smalla, 2009) and host genotype (Lundberg et al.,
2012), and to vary according to the developmental stage of the
plant (Chaparro et al., 2014) and type of soil/sediment (e.g., Berg
and Smalla, 2009; Lundberg et al., 2012; Tkacz et al., 2015). It
has also been demonstrated that microbial activity is sensitive
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FIGURE 2 | Continued

Comparison of bacterial communities of the seagrass rhizosphere (Z. marina, Zm; Z. noltii, ZN; C. nodosa, CN) and the surrounding environment
(bulk sediment, Sed; and seawater (SW) from Portugal and France. Bulk sediments from the surroundings of Z. marina and Z. noltii are distinguished (SedM
and SedN, respectively). Shown are the bacterial community compositions (average of five independent samples) from (A) Portugal and (C) France, and principal
component analysis (PCA) of the bacterial communities from (B) Portugal and (D) France. Both PCAs show a clear separation between the bacterial communities of
the rhizosphere and those from the surrounding environment. Only classes represented by an average abundance above 0.5 % are shown on the legend of the bar
graphs (A,C), and the percentage of community variance explained by each axis is indicated in parentheses (B,D).

to seasonal changes in seagrass beds (Smith et al., 2004). The
type of soil and its particular physico-chemical characteristics
have been repeatedly named as determinant for the community
structure in the rhizosphere of terrestrial plants, while at the same
time plants also influence soil properties (Philippot et al., 2013).
Recently, Tkacz et al. (2015) concluded that the rhizobiome
is controlled by soil composition along with plant type. Even
though there is a vast amount of information that attributes
differences in rhizobiomes to the type of soil/sediment, to our
knowledge there is no information regarding the identity of
their particular properties. Because grain size, organic matter and
water content directly affect sediment’s microbial communities
and plant morphology (Wicks et al., 2009), they were used in
this study as indicators of different types of sediment. Our results
highlight that the grain size of Z. marina sediments in Portugal
was significantly smaller than that of sediments inhabited by
the other two seagrasses (very fine sand vs. medium sand,
respectively), which corresponded with the higher organic matter
and water contents observed in the sediments of this species.
Fine sediments tend to have a higher water retention capacity,
which in turn allows organic matter to be more strongly trapped
(Langston and Ridgway, 2006). Given our results, we consider
that for the study area at Culatra island, sediment type, plant
species, or even a shared effect of both, are not determinant for
the identity of the rhizobiomes.

The rhizobiome class composition of seagrasses in France
described in this study corresponds well with that previously
reported for a Zostera noltii-colonized sediment from Bassin
d’Arcachon, Southwestern France, which was dominated by
Deltaproteobacteria (36%) and Gammaproteobacteria (27%)
based on 16S rRNA gene cloning (Cifuentes et al., 2000).
When comparing the rhizobiomes of Zostera spp. between
Portugal and France, we observed significant differences
between both locations. According to the hologenome
theory of evolution, the diverse and abundant consortium
of microorganisms evolves in association with their host
as one single entity, but is susceptible to (fast) variations
if a change is brought into the system via host genome
or microbiome (Rosenberg et al., 2007; Zilber-Rosenberg
and Rosenberg, 2008). On sight of our results, we consider
that the rhizobiome is a part of the seagrass holobiont,
and that at a local scale its selection is driven by the host,
whereas at large scale/long distance, the selection is more
strongly shaped by the environment. This is supported by the
presence of similar rhizobiomes within Portugal, although
their sediment characteristics significantly differ, concomitantly
with the presence of differences between the rhizobiomes of
Portugal and France, despite the similarities in their sediment
characteristics.

Core Seagrass Rhizobiome
The top five most abundant core OTUs (abundance between
5 and 10% of the core rhizobiome) were classified as
members of five different classes, Epsilonproteobacteria
(family Helicobacteraceae), Acidimicrobiia (family koll13),
Gammaproteobacteria (order Chromatiales), Deltaproteobacteria
(genus Desulfococcus), and Clostridia (order Clostridiales).
Likewise, Gamma- and Deltaproteobacteria have previously
been found to be among the most abundant members of the
core microbiome of belowground structures in the seagrass
Halophila stipulacea (Mejia et al., 2016). The Clostridiales and
other core taxa belonging to the alphaproteobacterial family
Rhodobacteraceae (Meyer and Kuever, 2007), the Delta- (Muyzer
and Stams, 2008) and Epsilonproteobacteria (Campbell et al.,
2006) classes, as well as the gammaproteobacterial orders
Thiotrichales (Garrity et al., 2005) and Alteromonadales (Fuchs
et al., 2007) are likely to be involved in sulfur processes, such
as sulfate reduction and sulfur oxidation. Members of the
order Clostridiales (Firmicutes), for instance, can be involved
in sulfate reduction (Desulfotomaculum sp.; Widdel, 2006), as
well as in processes such as nitrogen fixation (e.g., Clostridium
pasteurianum; Chen, 2004) and fermentation (e.g., Clostridium
acetobutylicum; Cato et al., 1986). One of the fermentation
products of solventogenic Clostridia is acetone (Han et al., 2011),
which can be completely oxidized by other bacteria, such as the
sulfate-reducing Desulfococcus biacutus (Platen et al., 1990). In
the present work, the genus Desulfococcus was one of the most
abundant genera (specifically 7%, Supplementary Table S3). This
genus was represented by 5 different OTUs and although the
taxonomic resolution of some of the core OTUs was very low,
the data indicated this as the most diverse genus in the core.
Members of Desulfococcus are important hydrocarbon degraders
(Miralles et al., 2007; Apostolopoulou et al., 2014). Their high
abundance and diversity in the core rhizobiome of seagrasses
might function as a buffer between contaminated sediments
and the plants, thereby detoxifying the root area from these
phytotoxic compounds (Saxe, 1996).

Comprising 21 OTUs and ranking as the second most
diverse and abundant phylum (14.7%) in the core seagrass
rhizobiome are the Bacteroidetes that are known to be widespread
across marine environments, including sediments (e.g., Khan
et al., 2007). Within this phylum, the cluster Cytophaga-
Flavobacteria is highly abundant and one of the most represented
groups in aquatic ecosystems (Kirchman, 2002). They are
important decomposers of high molecular weight organic matter
(Kirchman, 2002), such as cellulose and chitin (Fenchel, 2012).

Actinobacteria are common inhabitants of roots of terrestrial
plants, where they might function as biocontrol agents against
pathogens (e.g., Ting et al., 2009). However, little is known about
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FIGURE 3 | Continued
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FIGURE 3 | Continued

Box plots showing the relative abundance of sequences of the most abundant groups in the rhizobiome of seagrasses from Portugal and France,
and the bacterial communities from the surrounding environment. Indicated are bulk sediments from Portugal (sedPT) and France (sedFR); seagrasses from
Portugal (sgPT) and France (sgFR); seawater from Portugal (swPT). The top of the box indicates the third quartile, the bottom the first quartile, and the line in the
middle is the median. The star indicates the mean of the data, crosses are outliers, and the whiskers represent error bars. (A) Gammaproteobacteria,
(B) Deltaproteobacteria, (C) Epsilonproteobacteria, (D) Bacteroidia, (E) Alphaproteobacteria, and (F) Flavobacteriia.

FIGURE 4 | Principal component analysis (PCA) plot comparing
bacterial communities of the rhizosphere of the seagrasses Z. marina
(Zm) and Z. noltii (Zn), from Portugal (PT) and France (FR). Percentage
of community variance explained by each axis is indicated in parentheses.

their presence and function in the rhizosphere of seagrasses
(Ravikumar et al., 2012; Wu et al., 2012; Jose et al., 2014). Here
we found that 7 OTUs (9% of the core taxa present in the
studied seagrasses) belonged to this phylum, possibly specifically

recruited by the plant in order to provide protection against
pathogens, therefore facilitating its immune responses (Cook
et al., 1995; Mendes et al., 2011).

Although many functions of the abovementioned taxa
have already been described, the ecological role of members
of some of these phyla, such as Acidobacteria, Caldithrix,
Chloroflexi, and Gemmatimonadetes to the seagrass rhizobiome
is unclear. This is mainly due to the small number of
strains that have been isolated and characterized. In some
cases, their role is completely unknown, because cultured
representatives are lacking, which is the case for members
of the phylum WS3. Nevertheless, it is possible to infer
putative roles of some members of these taxa. Members
of WS3 for instance, have been consistently detected in
sediments (e.g., Ikenaga et al., 2010; Zeng et al., 2010),
and the genus KSB4, in particular, was previously identified
in sulfide-rich sediments of coastal environments (Tanner
et al., 2000), which might indicate a possible role in the
sulfur cycle. The first cultured representative of the phylum
Gemmatimonadetes, Gemmatimonas aurantiaca, was isolated
from an anaerobic-aerobic sequential batch reactor used for
enhanced biological phosphorus removal from wastewater.
The strain could accumulate polyphosphate and so might
be involved in the phosphorus cycle. DeBruyn et al. (2011)
studied the ecology of the Gemmatimonadetes and found that
it was ubiquitously present in soil. Acidobacteria are frequently

FIGURE 5 | Venn diagram showing the core rhizobiome of all seagrasses studied. (A) Zostera marina (Zm-), Z. noltii (Zn-), both from Portugal (-PT) and
France (-FR), and C. nodosa from Portugal (CnPT). The total number of OTUs clustered at a similarity level of 97% is represented under the label of each sample.
The number of unique OTUs and OTUs shared between each combination of two samples is also shown. (B) Summarized taxonomic composition of the core
rhizobiome, and respective number of OTUs present in each phylum. The relative number of the OTUs present in each phylum is also shown, indicated as percentage
of sequences. A complete overview of the identity of the 101 OTUs that comprise the core rhizobiome of seagrasses is presented in Supplementary Table S3.
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FIGURE 6 | Continued
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FIGURE 6 | Continued

Box plots showing the relative abundance of sequences of the most abundant bacterial groups involved in sulfur processes. (A) Desulfobacteraceae,
(B) Desulfobulbaceae, (C) Chromatiaceae, (D) Thiotrichaceae, (E) Campylobacteraceae, and (F) Helicobacteraceae. Indicated are bulk sediments from Portugal
(sedPT) and France (sedFR); seagrasses from Portugal (sgPT) and France (sgFR); seawater from Portugal (swPT). The top of the box indicates the third quartile, the
bottom the first quartile, and the line in the middle is the median. The star indicates the mean of the data, crosses are outliers, and the whiskers represent error bars.

abundant in sediments and soils, and although they have very
few isolated members, the genome analysis of three strains from
this phylum performed by Ward et al. (2009) suggests that these
bacteria might be involved in the production of antimicrobial
compounds, stabilization of the soil structure, and also in the
degradation of complex sugars such as chitin, which highlights
the possible importance of these bacteria in the carbon cycling in
marine biomes.

The identification of the core rhizobiome provides insights
into key host-microbe interactions, by detecting which bacteria
consistently inhabit the rhizosphere, thereby stressing their
potential importance in the maintenance of a healthy seagrass
holobiont. Even though the percentage of some of the individual
core OTUs was low (Supplementary Table S3), their activity is
likely to be higher than more abundant OTUs, as previously
reported in comparisons between rare biosphere and common
OTUs from different environments (reviewed by Lynch and
Neufeld, 2015). Identifying these taxa provides important cues
for the understanding of the phylogenetic (and potentially
functional) identity of the consortium of bacteria inhabiting
the seagrass rhizosphere. By identifying the core microbiome
among three seagrass species in two different locations, we
covered the spatial dynamism regardless of differences caused by
different “hosts” in a biogeographical framework. Moreover, the
detection of genera like Desulfococcus, which harbored 5 different
OTUs (clustered at 97% similarity) whereas only 2 species
have been described in the literature (Kuever et al., 2005b),
together with all the unclassified OTUs widespread among the
remaining taxa, indicates that the rhizosphere recruits a widely
unknown variety of microorganisms potentially essential for the
plants.

The role of the core taxa identified in this study is likely
to go beyond its importance for the seagrasses. Bacteria like
Clostridium sp. (Wagner and Stadtman, 1962) and Desulfovibrio
sp. (van der Maarel et al., 1996), both present in the core, are
able to degrade the osmoprotectant dimethylsulfoniopropionate
(DMSP) into dimethylsulfide (DMS; reviewed in Yoch, 2002).
DMSP is produced by micro- and macroalgae, as well as by
seagrasses, and is highly abundant in marine sediments (Jonkers
et al., 2000). One of the end products of this cleavage process
is DMS, which is a volatile organic sulfur compound that has
the ability to control global climate by enhancing the albedo and
formation of clouds in the atmosphere (Shaw, 1983; Charlson
et al., 1987). Therefore, the core seagrass rhizobiome might play
a pivotal role in climate change by harboring bacteria directly
involved in DMS formation.

Niche Differentiation of Sulfur Bacteria
Sulfate reduction is one of the main processes in marine
sediments (Jørgensen, 1982), but in particular in seagrass

meadows where it is fuelled by exudates from the plant roots
(Isaksen and Finster, 1996; Holmer and Nielsen, 1997; Hansen
et al., 2000). The class Deltaproteobacteria was represented
predominantly by members of the family Desulfobacteraceae in
the rhizobiomes of seagrasses collected from Portugal, and by
Desulfobulbaceae in both France and Portugal (Figures 6A,B).
The most dominant members of the Desulfobacteraceae in the
rhizobiomes of seagrasses from Portugal were affiliated to the
genus Desulfococcus and to a lesser extent to Desulfosarcina.
Members of these genera use sulfate, sulfite, and thiosulfate
as electron acceptors to oxidize different fatty acids and
alcohols completely to CO2 (Brysch et al., 1987). The dominant
members within the Desulfobulbaceae were uncultured lineages
and Desulfocapsa. In general, members belonging to the
Desulfobulbaceae use sulfate, sulfite, and thiosulfate as electron
acceptors to oxidize different fatty acids incompletely to
acetate (Kuever et al., 2005c). In addition, Desulfocapsa can
also disproportionate thiosulfate and elemental sulfur to H2S
and sulfate (Finster et al., 1998). Like genera belonging to
the Desulfobacteraceae family, Desulfocapsa are also able to
oxidize alcohols. During the night cycle, the lack of oxygen
around the roots leads seagrass root tissues to switch to
fermentation, which causes the release of ethanol to the
rhizosphere (Smith et al., 1988). This association might
represent a fair trade between host and microbe, in which
during the night bacteria use ethanol as electron donor
to remove this alcohol from the surrounding of the roots
(Kuever et al., 2005a) although during light conditions they
release hydrogen sulfide. The versatility of bacteria able to
perform both sulfate reduction and elemental sulfur and
thiosulfate disproportionation can be a very advantageous
feature to the seagrass-microbe interactions occurring in the
rhizosphere.

Sulfide, which is highly toxic to seagrasses, can be neutralized
by the activity of sulfur-oxidizing bacteria. Joshi and Hollis
(1977) described the protection of rice seedlings from H2S by
the colorless sulfur-oxidizing gammaproteobacterium Beggiatoa.
Recently, van der Heide et al. (2012) nicely demonstrated that
sulfide-oxidizing bacteria in the gills of the lucinid bivalve Loripes
lacteus could reduce sulfide stress for the seagrass Zostera noltii.
However, they also found that Z. noltii without bivalves could
to some extent also reduce the sulfide concentration, which
might be the result of the seagrass (Hasler-Sheetal and Holmer,
2015) and indigenous sulfur-oxidizing bacteria in the rhizosphere
of the seagrass. In our sediments, Loripes or related lucinid
bivalves were absent, and so sulfur-oxidizing bacteria of the
Gamma- and/or Epsilonproteobacteria probably contributed to
detoxification of sulfide. These bacteria were represented by
Chromatiaceae and Thiotrichaceae of the Gammaproteobacteria
in the rhizobiomes of seagrasses from Portugal (Figures 6C,D),

Frontiers in Microbiology | www.frontiersin.org 11 March 2016 | Volume 7 | Article 440

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-00440 March 31, 2016 Time: 13:50 # 12

Cúcio et al. Rhizobiomes of European Seagrasses

while members of the Campylobacteraceae and Helicobacteraceae
both belonging to the Epsilonproteobacteria were mainly found in
the rhizobiomes of seagrasses collected in France (Figures 6E,F).
Although Chromatiaceae are predominantly phototrophic, some
of them might be able to colonize the rhizosphere by switching
their growth strategy to chemo-, organo-, and/or mixotrophy,
according to the environmental conditions (e.g., Madigan and
Gest, 1979; Kämpf and Pfennig, 1980). The most dominant genus
within the Helicobacteraceae was Sulfurimonas, while members
of the genera Arcobacter and Sulfurospirillum, both belonging
to the Campylobacteraceae, were present at lower numbers.
Similar results were obtained by Jensen et al. (2007), who
found a dominance of sulfur-oxidizing bacteria affiliated to the
Epsilonproteobacteria, such as Arcobacter and Sulfurimonas in
the rhizosphere of Z. marina in Denmark. Thomas et al. (2014),
who studied the abundance and activity of sulfur-oxidizing
bacteria in salt marsh sediments colonized by the plant Spartina
alterniflora, found a predominance of sulfur-oxidizing bacteria of
the Gammaproteobacteria (Chromatiales and Thiotrichales) and
to a lesser extend Alpha- and Epsilonproteobacteria.

This study shows that the seagrass rhizosphere is dominated
by bacteria involved in the sulfur cycle, and it strongly suggests
that, regardless their phylogenetic affiliation, the functionality of
bacteria related to sulfur processes is maintained across different
regions. At a small scale/short distance, seagrass rhizobiomes are
shaped by the plant (although not at a host species level), and at a
large scale/long distance level, they are shaped by environmental
differences, extrinsic to plant phylogeny. Furthermore, our results
suggest that sediment grain size and percentage of organic matter
are not determinant for the microbial structure of the seagrass
rhizobiomes at Culatra island, therefore further (experimental)
research is required in order to reveal the parameters exerting the
environmental pressure observed across regions.
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