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The paraspecific neutralisation of snake venom
induced coagulopathy by antivenoms
Stuart Ainsworth1, Julien Slagboom1,2, Nessrin Alomran1, Davinia Pla3, Yasir Alhamdi4, Sarah I. King1,

Fiona M.S. Bolton1, José María Gutiérrez5, Freek J. Vonk6, Cheng-Hock Toh4,7, Juan J. Calvete 3, Jeroen Kool2,

Robert A. Harrison1,8 & Nicholas R. Casewell 1,8

Snake envenoming causes several potentially lethal pathologies. The specific pathology is

dictated by the toxin composition of venom, which varies by species, geography and

ontogeny. This variation severely restricts the paraspecific efficacy of antivenoms used to

treat snakebite victims. With a view to devising pathology-specific snakebite treatments, we

assessed the procoagulant activity of 57 snake venoms and investigated the efficacy of

various antivenoms. We find that procoagulant venoms act differentially on key steps of

the coagulation cascade, and that certain monospecific antivenoms work in a previously

unrecognised paraspecific manner to neutralise this activity, despite conventional

assumptions of congener-restricted efficacy. Moreover, we demonstrate that the metal

chelator EDTA is also capable of neutralising venom-induced lethality in vivo. This study

illustrates the exciting potential of developing new, broad-spectrum, toxin-targeting

antivenoms capable of treating key snakebite pathologies, and advocates a thorough

re-examination of enzyme inhibiting compounds as alternative therapies for treating

snakebite victims.
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Venomous snakes possess some of the most potent
biochemical weapons found in the animal kingdom1.
Their venom consists of mixtures of bioactive

proteinacious components (circa. 50–200 per species) that vary
inter- and intra-specifically and function to immobilise and/or
kill prey1–4. Snakes can also deploy their venom defensively, and
such bites result in 100,000 deaths each year, with 3–5 times
that number of people suffering from long-term morbidity.
Consequently, snakebite is one of the world’s most lethal
neglected tropical diseases5–7.

The only specific therapies currently available for the treatment
of snakebite are antivenoms, which consist of polyclonal
immunoglobulins purified from sera/plasma of horses or sheep
immunised with snake venom(s). Because of inter-specific venom
variation, antivenoms are fundamentally limited in their efficacy
to those species whose venom was used for immunisation
or, in some cases, relatively few closely related species that
possess highly similar venom components8–10. Consequently,
many different antivenom therapies exist across and within dif-
ferent continents, each with varying efficacies to different snake
species11,12.

Snake venoms cause a variety of different effects in human
victims, including neurotoxic, haemotoxic, cytotoxic, myotoxic
and/or coagulopathic pathologies7,13. Of these, venom-induced
consumption coagulopathy, caused by procoagulant snake
venoms, is said to be one of the most common medically
important snakebite pathologies14. This haemostatic alteration is
characterised clinically by the depletion of fibrinogen, and caused
by venom toxins continually activating and consuming various
clotting factors in the coagulation cascade14,15. Such severe coa-
gulopathy makes snakebite victims particularly vulnerable to
suffering life-threatening haemorrhage14.

To improve our understanding of the spectrum of snakes
causing venom-induced consumption coagulopathy, their
mechanisms of action and to expand therapeutic options, here we
characterise the procoagulant activity of venom sourced from a
wide range of diverse snake species and investigate the extent to
which antivenom and the metal chelator EDTA (ethylenediami-
netetraacetic acid) are capable of neutralising these effects across
species (paraspecificity). Our results provide support for the
development of new “pathology-specific” snakebite treatments
capable of neutralising key venom toxicities irrespective of the
snake species responsible for envenoming.

Results
Venom activity on plasma, Factor X, prothrombin and
fibrinogen. We first screened the procoagulant bioactivity of 57
venoms sourced from a variety of phylogenetically and geo-
graphically diverse snake species (Supplementary Table 1) in a
minimum coagulant dose plasma (MCD-P) assay16. Eighteen of
the 57 venoms exhibited procoagulant activities at the maximal
dose (100 μg), and without the addition of cofactors, such as
calcium. These procoagulant venoms included representatives
from all four snake families/subfamilies tested and they exhibited
considerable variation in potency (Fig. 1a, Supplementary
Table 2). Reconstructing the evolutionary history of procoagulant
venom activity demonstrated that this functional phenotype has
evolved convergently; originating on at least six independent
occasions in snakes, three times in vipers (including at least
two losses), once in elapids, once in colubrids and once in
natricines (Fig. 1a).

Various snake venoms have previously been described to
contain toxins that act on components of the blood clotting
cascade, including Factors V, VII, X, II (prothrombin) and I
(fibrinogen)17,18. The latter three are well-known targets for

procoagulant venom toxins and, consequently, their properties
have been exploited for use as diagnostic and therapeutic tools in
human medicine17,18. To determine the specific action of each of
the 18 procoagulant venoms on Factor X, prothrombin and
fibrinogen, we compared their activity in (i) chromogenic
enzymatic, (ii) degradation gel electrophoretic and (iii)
factor-deficient plasma coagulation assays.

None of the venoms tested exhibited a strong effect on Factor
X (Fig. 2, Supplementary Fig. 1), and all induced a clot in Factor
X-deficient plasma at the same dose as normal plasma (Fig. 2,
Supplementary Table 2). In contrast, degradation assay results
demonstrated that all 18 venoms enzymatically cleave prothrom-
bin and, for some, resulted in cleavage-products with comparable
masses to meizothrombin and/or thrombin, consistent with
activation (Supplementary Fig. 2). However, the chromogenic
enzyme assay demonstrated that only nine venoms (five
Echis spp., Dispholidus typus, Oxyuranus scutellatus, Pseudonaja
textilis and Rhabdophis subminiatus) were potent prothrombin
activators (Fig. 2), and all were incapable of coagulating
prothrombin-deficient plasma, even when using venom doses
tenfold higher than that required to coagulate normal plasma
(Supplementary Table 2).

We next measured the action of each venom on fibrinogen,
which is typically cleaved by thrombin to generate fibrin and
cross-linked stable clots. All 18 procoagulant venoms exhibited
some degree of thrombin-like enzyme activity and several venoms
with low prothrombin-activating potency had the highest
thrombin-like enzyme activity (e.g. Lachesis muta, Trimeresurus
albolabris) (Fig. 2). In contrast to venom thrombin-like enzymes
promoting fibrin clot formation, other venom enzymes
degrade fibrinogen chains resulting in non-functional clots.
Fibrinogen-degradation profiles of the 18 venoms revealed
variant fibrinogenolytic activity—while the majority cleaved
the α chain of fibrinogen, some also cleaved the β chain
(Supplementary Fig. 3).

In combination, these results illustrate that some snakes have
evolved multiple venom proteins with distinct specificities that
simultaneously target several key coagulation molecules to cause
continual activation, and hence consumption, of key components of
the clotting cascade. An example is Bothrops asper venom, which
acts moderately on Factor X, prothrombin and fibrinogen19,20

(Fig. 2). Other venoms only target specific components; thus,
R. subminiatus venom is a potent prothrombin-activator but exhibits
little/no activity on Factor X or fibrinogen (Fig. 2). We next wished
to assess the extent to which antivenom, the only specific therapy for
treating snakebite, might exhibit paraspecific neutralising capabilities
against the toxins causing procoagulant effects. If similar toxins in
different snake species are responsible for coagulopathy, we might
expect some degree of cross-reactivity and cross-neutralisation,
whereas distinct, taxon-specific, toxins would likely result in
preclinical antivenom failure, as typically reported8–10.

Antivenom cross-reactivity and neutralisation of coagulation.
We assessed venom neutralisation in the plasma assay using three
antivenoms designed to neutralise the lethal effects of highly
procoagulant venoms from three different snake families, speci-
fically: “EchiTAbG” (anti-Echis ocellatus, family Viperidae),
“SAIMR boomslang” (anti-D. typus, family Colubridae) and “CSL
polyvalent” (anti-Australian Elapidae snakes, including O. scu-
tellatus and P. textilis). In addition, to assess the paraspecific
immunological cross-reactivity of each antivenom, we performed
immunoblotting experiments with the various antivenoms and
each of the procoagulant venoms.

The CSL polyvalent antivenom was highly effective at
neutralising the in vitro procoagulant effects of the two elapid
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snakes tested (O. scutellatus and P. textilis), but ineffective against
all other venoms (Fig. 1b, Supplementary Table 3). Immunoblot-
ting the CSL antivenom against each venom demonstrated low
levels of toxin cross-reactivity, except to those two elapid venoms
used for immunisation (Fig. 3). These results are consistent with

our expectations of limited antivenom paraspecificity as a
consequence of venom variation21.

The anti-E. ocellatus antivenom, EchiTAbG, prevented
venom-induced coagulation by all five Echis-genus saw-scaled
vipers, which was unsurprising given prior reports of intra-
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generic cross-reactivity3,8,10 (although see ref. 22). Notably,
EchiTAbG also neutralised the procoagulant venom effects of
seven of the remaining nine viper species, the colubrid snake
D. typus and the natricine R. subminiatus, despite these latter two
species having diverged from vipers over 54 million years ago23

(Fig. 1b, Supplementary Table 3). These paraspecific neutralising
results are particularly surprising since the efficacy of mono-
specific antivenom (those made against a single snake species) is
typically restricted to congeners. The assay conditions of in vitro
pre-incubating venoms and antivenoms prior to assessment of
neutralisation, and the unusually extensive venom cross-reactivity
of the monospecific EchiTAbG antivenom (Fig. 3), likely
underpins the paraspecific neutralising capability of this
antivenom.

The SAIMR boomslang antivenom also provided a surprisingly
high degree of paraspecific neutralisation by preventing coagula-
tion caused by venoms of 10/14 vipers and R. subminiatus and D.
typus (Supplementary Table 3). The immunoblot illustrated that
cross-specific immunoreactivity of this antivenom was predomi-
nately restricted to venom proteins 50–65 kDa in size (Fig. 3).
These likely correspond to zinc-dependent snake venom
metalloproteinase (SVMP) toxins, several of which are known
to encode isoforms possessing procoagulant properties17,18.

To explore this further, we used antibodies previously raised24

by immunising rabbits with the prothrombin-activating ~56 kDa
SVMP ecarin (isolated from Echis carinatus venom25) in the same
assays. First, we confirmed that ecarin is a procoagulant venom
toxin by demonstrating that it activates and cleaves prothrombin
(Fig. 2, Supplementary Figs. 1–3). The anti-ecarin antibody cross-
reacted with viper venom proteins of diverse masses, all
presumably SVMPs, and notably, to some of the same masses
(~50–65 kDa) as those bound by the SAIMR boomslang
antivenom (Fig. 3). Notably, for such a protein-specific antibody,
we found that the anti-ecarin antibody neutralised the procoa-
gulant venom activity of venom from multiple Echis spp. and
D. typus in the plasma assay (Fig. 1b, Supplementary Table 3).

In vitro neutralisation of saw-scaled viper and boomslang
venom. We next investigated how antibodies raised separately
against venom from the saw-scaled viper (E. ocellatus), the
colubrid boomslang (D. typus) and the SVMP toxin ecarin are
capable of reciprocally neutralising the procoagulant function of
venom from these two highly divergent (split >54 million years
ago) snake species. The results of the plasma assay were some-
what unexpected because the toxin composition of snake venoms
are known to vary extensively at every taxonomic level due to a
variety of processes2–4,26–28, and these are well known to
undermine the paraspecific efficacy of antivenom8,9,29.

Envenoming by both E. ocellatus and D. typus cause similar
haemorrhage and consumption coagulopathy syndromes in
human victims14,30,31, and we previously demonstrated that both
these venoms are dominated by SVMP toxins3,32,33, some of
which are prothrombin activators25,34. We confirmed this here by

incubating both venoms with different concentrations of EDTA,
which chelates zinc (and other metals), to inhibit the bioactivity
of zinc-dependent SVMPs, before repeating our prothrombin
degradation gels. We demonstrate that 1 mM of EDTA was
sufficient to begin preventing degradation of prothrombin by
each venom and also by the calcium-independent prothrombin-
activating SVMP ecarin (Fig. 4). As both E. ocellatus and
D. typus venoms have little/no activity on Factor X and low/
moderate activity on fibrinogen, but potently activate prothrom-
bin (Fig. 2, Supplementary Figs. 1–3), these results strongly
suggest that SVMPs are predominately responsible for the
procoagulant activities caused by these two venoms.

Despite their divergence from one another over 50 million
years ago, 2D gel electrophoretic venom profiles demonstrated
many similarities between the venoms of E. ocellatus and D. typus
(Fig. 4). Probing these venom profiles with the two species-
specific antivenoms (EchiTAbG and SAIMR boomslang) revealed
extensive immunological recognition, including paraspecifically
(Fig. 4). Moreover, the SVMP-specific anti-ecarin antibody
demonstrated that both venoms are dominated by SVMP toxins
of varying molecular weights, and provided additional evidence35

of the extensive cross-specific reactivity of antibodies raised to
single SVMP toxins (Fig. 4).

We further explored these venom protein−antibody interac-
tions by using an “antivenomics” approach36 to identify the
venom proteins that bind to each antivenom. The three antibody
preparations were separately immobilised on sepharose columns,
venom added, and bound and unbound venom toxins identified
by comparing the resulting reverse-phase liquid chromatographic
profiles with whole venom previously characterised by mass
spectrometry-based venomic analyses32,33. As anticipated, the
homologous venom−antivenom combinations (e.g. E. ocellatus/
EchiTAbG and D. typus/SAIMR boomslang) effectively bind the
vast majority of venom proteins, whereas the heterologous
combinations recognise and bind to SVMP toxins to a much
greater extent than to other toxin types (Fig. 4, Supplementary
Figs. 4 and 5). This suggests that it is the SVMP-specific
antibodies in the EchiTAbG and SAIMR boomslang antivenoms
(and the anti-ecarin antibody) that neutralise the procoagu-
lant venom effects of E. ocellatus and D. typus (Figs. 1b, 4,
Supplementary Table 3). Supporting this assertion is evidence
that each antivenom significantly reduces the prothrombin
activating activity of E. ocellatus and D. typus venom in the
chromogenic assay (all P < 0.001 compared to venom-only and
CSL antivenom controls) (Fig. 5).

In vivo neutralisation of saw-scaled viper and boomslang
venom. Given these promising in vitro levels of antivenom
cross-reactivity and neutralisation, we next tested whether the
heterologous venom−antivenom combinations were capable of
neutralising venom lethality in vivo, while acknowledging the
potential for toxicity conferred by other non-coagulopathic
venom toxins. We challenged groups of five mice intravenously

Fig. 1 Convergent evolution of procoagulant venom activity and in vitro neutralisation by antivenoms. a The convergent evolution of procoagulant venom
function and the potency of the snake venoms used in this study overlaid onto a species phylogeny (cladogram). Procoagulant venom activity has evolved
independently on at least six occasions (red arrows) in the advanced snakes. Black arrows indicate loss events. Colouring of branches indicates the
procoagulant potency as defined in the key. Numbers at key nodes represent the proportional likelihoods of procoagulant venom function being the
ancestral state at that node. b The neutralisation of procoagulant venom activity in the plasma assay by various antivenoms overlaid onto species trees
pruned to include only those venoms found to be procoagulant. Red shading highlights neutralisation of coagulation. The species used to raise the various
antivenom antibodies are highlighted in white boxes. Divergence times (millions of years) are indicated at key blue coloured nodes on the tree: 54.3, base
of the advanced snake radiation; 47.4, base of viper radiation; 31.2, 30.3, 22.1, 22.0 and 19.4, key internal nodes within vipers; 46.3, split of elapids from
colubrids and natricines; 39.8, split of colubrids from natricines; 6.5, split of Psuedonaja and Oxyuranus. For both sets of trees, the species relationships and
divergence times were reconstructed from previous studies23, 55–58. See also Supplementary Tables 1–3
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with 2.5 × the 50% lethal dose (LD50) of each venom (E. ocellatus
—17.85 μg [95% confidence intervals 12.46–28.53]; D. typus—
22.29 μg [9.12–47.96]) pre-incubated with 7.5 mg (375 μg/g) of
each antivenom. Venom-only controls succumbed to the lethal
venom effects within 20 min, whereas antivenom-only controls
survived until the experiment end (360 min) (Fig. 6). As antici-
pated, the homologous venom and antivenom combinations (E.

ocellatus/EchiTAbG and D. typus/SAIMR boomslang) also
resulted in complete survival, while the CSL polyvalent anti-
venom, used as a non-specific antivenom control, provided no
protection against either venom (Fig. 6).

Notably, the heterologous antivenoms provided some in vivo
protection against the lethal effects of each venom, supporting the
results of our earlier in vitro coagulation-specific assays. Thus,
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Fig. 2 The bioactivity of procoagulant snake venoms on key components of the coagulation cascade. The coagulation cascade schematic highlights the end
of this pathway and the coagulation factors tested in our chromogenic enzyme assay. Bar charts display the functional activity of each procoagulant venom,
the snake venom metalloproteinase toxin ecarin, and a thrombin control against Factor X (purple), prothrombin (red) and fibrinogen (orange). Bars
represent areas under the curve of optical density (405 nm) plotted against time. Error bars represent SEM of triplicate measurements. Below each bar
chart are blocks that indicate whether each venom induced clot formation in: (i) plasma deficient in Factor X (purple), (ii) plasma deficient in prothrombin
(red) and normal plasma (orange) at the MCD-P dose. Coloured blocks indicate clot formation and white blocks indicate no clot formation at ten times the
MCD-P dose. Grey blocks (for ecarin and thrombin) indicate not tested. See Supplementary Figs. 7 and 8 for the plotted data used for area under the curve
calculations
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while mice subjected to the E. ocellatus venom and SAIMR
boomslang antivenom combination ultimately succumbed to the
lethal venom effects during the 6 h experimental period, we found
a significant delay in the onset of lethality, from 10.6 min

(venom-only) to 180.0 min (P= 0.039) (Fig. 6). Similarly, mice
treated with the D. typus venom and EchiTAbG antivenom
combination also exhibited significantly prolonged survival (17.4
min, venom-only; 222.0 min, venom and EchiTAbG;
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P= 0.002), and three of the five experimental animals survived
the duration of the experiment (Fig. 6). The anti-ecarin antibodies
failed to protect mice envenomed with D. typus venom, but
showed some neutralising capability against E. ocellatus venom,
with two animals surviving the duration of the experiment
(Fig. 6), although no significant difference in mean survival times
were observed (P= 0.134). It is, however, notable that antibodies
generated against a single venom toxin were capable of offering
some protection against the lethal effects of snake venom in vivo,
and these results are therefore encouraging for the future design
of highly specific, monoclonal antibody-based therapies for
snakebite. Furthermore, in agreement with recent microarray
studies that mapped toxin epitope and antivenom interac-
tions37,38, these results provide additional, in vivo evidence that
mixtures of different recombinant monoclonal or oligoclonal
antibodies, targeting different toxin types/isoforms, will almost
certainly be required to effect cure39.

We next used plasma from euthanised experimental animals to
assess markers of coagulopathy. Specifically, we quantified the
concentration of thrombin−antithrombin complexes (TAT),
which is a sensitive marker for in vivo thrombin generation40,
and we probed plasma profiles (Supplementary Fig. 6) with anti-
prothrombin and anti-fibrinogen antibodies in immunoblotting
experiments. Venom-only controls resulted in profiles of
extensively degraded fibrinogen and prothrombin, and extremely
high levels of TAT (>750 ng/ml), compared with normal mouse
and antivenom-only controls (~60 ng/ml) (Fig. 6, Supplementary
Fig. 6). Animals receiving homologous venom/antivenom com-
binations exhibited significantly lower TAT levels (45–55 ng/ml;
P < 0.001 for both) and recovery of intact fibrinogen and
prothrombin. Moreover, administration of the heterologous
SAIMR boomslang and anti-ecarin antivenoms against E.
ocellatus venom also resulted in significant reductions in TAT
levels (P < 0.001 and P= 0.014 respectively), while EchiTAbG
antivenom significantly reduced TAT levels when compared to
mice receiving D. typus venom (P < 0.001) (Fig. 6). TAT levels
therefore exhibit a strong inverse relationship with the survival
times (R2= 0.9374) of experimental mice (Fig. 6). While none of
the non-homologous venom−antivenom combinations recovered
prothrombin profiles comparable to normal mouse controls
(Supplementary Fig. 6), we observed some recovery of fibrinogen
in mice recipient to E. ocellatus venom/SAIMR boomslang and

D. typus venom/EchiTAbG combinations, and specifically a
protein that corresponds with the mass of the β chain of
fibrinogen (~54 kDa) (Fig. 6). In combination, these experiments
provide evidence that the heterologous antivenom antibodies
likely prolong survival via the neutralisation of coagulopathic
toxins, thereby preventing the complete depletion of fibrinogen
and retaining some degree of coagulation.

Neutralisation of saw-scaled viper and boomslang venom by
EDTA. Following our demonstration that EDTA effectively
prevented complete degradation of prothrombin by E. ocellatus
and D. typus venoms (Fig. 4), we repeated the prothrombin
chromogenic assay with each venom preincubated with various
concentrations of EDTA instead of antivenom. We found that
100 μM of EDTA significantly reduced the procoagulant activity
of each venom when compared to results using the two species-
appropriate antivenoms (both P < 0.001) (Fig. 5).

Although EDTA has long been used as an experimental tool to
inhibit zinc-dependent SVMPs in vitro, along with a handful of
reports of EDTA inhibiting the intradermal haemorrhagic and
necrotic activity of E. ocellatus and B. asper venoms41–43, its
potential utility at preventing lethality has never been demon-
strated. Encouraged by our in vitro results, we tested whether
EDTA was capable of preventing in vivo lethality caused by
E. ocellatus venom. This venom was selected because it represents
a more severe model of murine envenoming than D. typus, its
venom composition is more diverse (including containing many
more non-SVMP toxins)3,32,33, and this genus arguably causes
more snakebite deaths each year than any other group of
snakes30.

As described above for the antibody study, we pre-incubated
EDTA (100 μg (1.71 mM); 5 μg/g) with 2.5 × LD50 doses of E.
ocellatus venom before intravenously injecting five mice, along-
side an EDTA-only control group. All animals in the control
group survived until the experiment end (360 min) and exhibited
normal TAT levels and prothrombin and fibrinogen profiles
(Fig. 6, Supplementary Fig. 6), confirming that this dose of EDTA
is non-toxic in mice44. All mice in the experimental group
receiving the venom−EDTA combination also survived until the
end of the experiment, demonstrating, for the first time to our
knowledge, that EDTA effectively protects against the lethal
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Fig. 6 In vivo neutralisation of Echis ocellatus and Dispholidus typus venoms by homologous and heterologous antivenoms and EDTA. a The survival and
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treatment group (n= 5). See Supplementary Fig. 6 for details of the same immunoblotting experiments using anti-prothrombin antibodies
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effects of E. ocellatus venom (mean survival, 360 min; venom-
only control, 10.6 min; P < 0.001) (Fig. 6). Furthermore, plasma
TAT levels in venom/EDTA-treated mice were significantly lower
than those from venom-only controls (P < 0.001), and we also
observed increased plasma fibrinogen levels, including the
recovery of the ~54 kDa band that corresponds to the fibrinogen
β chain (Fig. 6). EDTA therefore outperforms the heterologous
antivenom combinations tested in terms of survival and survival
times (vs. SAIMR boomslang, P= 0.002; vs. anti-ecarin, P=
0.005) and exhibits equivalence with the gold-standard species-
specific antivenom EchiTAbG (Fig. 6). These observations
underscore the key role of SVMPs in the overall toxicity of E.
ocellatus venom.

Discussion
Snake venoms consist of variable mixtures of bioactive proteins
with distinct antigenic signatures, which undermine the genera-
tion of a single “universal” therapy to treat all snakebite victims.
While certain pathologies, such as coagulopathy, can be under-
pinned by few toxins targeting specific physiological targets (e.g.
R. subminiatus venom potently activating prothrombin), other
snake venoms are more complex and their protein constituents
act in a synergistic manner to perturb various host systems45, as
evidenced by many of the procoagulant venoms in this study
acting on multiple clotting factors (Fig. 2). Furthermore, many
venoms also cause other pathologies in conjunction with coagu-
lopathy, notably haemorrhage and/or myotoxicity14,18,31, and this
combined action can greatly increase the risk of fatality.

Despite the therapeutic challenges associated with inter-specific
variation in venom composition (i.e. the limited paraspecific
efficacy of antivenom), we have demonstrated here that mono-
specific antivenoms and toxin-specific antibodies are capable of
recognising various toxins found in the venom of geographically
and phylogenetically distinct species (see EchiTAbG panel in
Fig. 3) and neutralising certain clinically relevant venom activities
in vitro (Figs. 1b, 5). Furthermore, this unexpected level of para-
specificity can also result in the neutralisation of phylogenetically
distinct snake venoms in vivo (Fig. 6). In this study, we observed
extensive similarities in the venom composition of the saw-scaled
viper (E. ocellatus) and the boomslang (D. typus); two advanced
snakes that separated over 54 million years ago and appear to have
converged upon similar venom phenotypes3,32,33. We have
demonstrated that both venoms contain abundant amounts of
SVMPs that can be recognised and neutralised by heterologous
antivenoms, resulting in increased survival times and parameters
of coagulation in pre-clinical models of envenoming (Figs. 4–6).

These data suggest that while “universal antivenoms” might be
very challenging at this time, “pathology-specific” (e.g. anti-coa-
gulopathy, anti-haemorrhage) antivenoms, which target related
toxin families found in diverse taxa that are responsible for
causing life-threatening haemotoxic pathologies, seem technically
achievable. Thus, despite extensive toxin variation, haemotoxic
snake venoms predominately rely on the presence of relatively
few toxin families (e.g. SVMPs, serine proteases, phospholipases
A2, C-type lectins and/or disintegrins)17,18, which although
expressed in multiple isoforms, typically share structural simila-
rities. We therefore believe that informed choices of immunogens,
whether via the selection of the most appropriate venoms or via
purification or synthetic preparation of key pathogenically proven
toxins (or chimeric fragments thereof)46–48 conserved across
species, are likely to yield antibodies with far superior paraspecific
neutralising capabilities than the highly promising results
observed here with conventional antivenoms.

While providing important information strengthening the
argument for the production of new types of antivenom for

treating snakebite, our results also have direct implications for the
current treatment of snakebite, as we demonstrated that anti-
Echis antibodies (EchiTAbG antivenom) provide significant
protection against the toxic effects of boomslang venom in vivo.
Both saw-scaled vipers (Echis spp.) and boomslangs (D. typus)
cause life-threatening venom-induced consumption coagulopathy
in envenomed victims14. However, while saw-scaled vipers likely
account for more snakebite deaths worldwide than any other
group of snakes30, bites and deaths by boomslangs are far less
common due to the arboreal nature of this species31. Nonetheless,
South Africa Vaccine Producers manufacture the SAIMR
boomslang antivenom to treat such envenomings, but the avail-
ability of this product is extremely limited and it is very expensive
outside of southern Africa (in late 2016 we were quoted US$6050
per vial), making it completely unobtainable to most impover-
ished African snakebite victims. Our preclinical results here
suggest that in the absence of the SAIMR boomslang antivenom
(whether due to unavailability or affordability), an anti-saw-
scaled viper antivenom could potentially be a useful clinical tool
capable of neutralising some boomslang venom toxins and, per-
haps, delaying the onset of severe signs of envenoming. While
clinical observations will be required to validate the potential
benefit of using saw-scaled viper antivenom to treat boomslang
bites, the absence of alternative treatment strategies in rural
tropical Africa strongly advocate for its trial in cases of severe,
life-threatening, envenoming.

Enzyme inhibitors potentially offer an alternative (or adjunct),
non-antibody based, future treatment for snakebite49. For
example, recent studies have demonstrated that Batimastat, a
peptidomimetic hydroxamate metalloproteinase inhibitor, abro-
gates the main local and systemic effects induced by E. ocellatus
venom in vivo, even in conditions where the inhibitor is admi-
nistered after envenoming50. Similarly, varespladib, a phospho-
lipase A2 inhibitor, offered varying degrees of in vivo protection
and rescue against venom-induced lethality when co-
administered with, and following administration of, venom
from Micrurus fulvius and Vipera berus51. Herein we demon-
strated that pre-incubation of venom with EDTA protected mice
from lethality caused by one of the world’s most medically
important snake species, E. ocellatus. These data represent the
first evidence to our knowledge of metal chelators preventing
venom-induced murine lethality in vivo. In combination with
prior reports of EDTA neutralising specific markers of haema-
topathology caused by snake venoms41–43, these results suggest
that metal chelation could be an effective means to inhibit zinc-
dependant SVMP toxins in vivo. Although EDTA’s potential
chelation of circulating calcium may impact upon its clinical
utility, some EDTA salts, such as CaNa2EDTA, have previously
been used in humans for the treatment of heavy metal poisoning,
though more recently they have been substituted by other che-
lating agents52. Nonetheless, this pilot study advocates that
enzyme inhibitors and metal chelating agents warrant extensive
re-exploration for their potential to deliver inexpensive, enzyme
family-specific, and thus snake paraspecific, inhibitory actions of
benefit for neutralising snake venom toxins in clinical settings.
Consequently, future work in our laboratory will focus on
assessing the paraspecific venom neutralising capability of various
inhibitory agents, following the promising findings obtained
here. In addition, we will seek to address the inherent limitation
of pre-incubating venom and inhibitors/antivenoms in preclinical
studies. While this approach is in line with World Health
Organization and International Pharmacopoeia guidelines53,
and is undoubtedly an important first step for the characterisa-
tion of venom neutralisation in vivo, this approach does not
reflect the clinical scenario where envenoming precedes treat-
ment. Thus, in the future we will also seek to undertake
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preclinical efficacy studies where treatment follows the adminis-
tration of venom.

In summary, our study emphasises that snake venoms are
mixtures of various toxins that can work synergistically to perturb
physiological systems, such as the coagulation cascade. Identify-
ing the toxins likely responsible for causing pathologies like
venom-induced consumption coagulopathy and the physiological
targets that they interact with, provides a sound basis for
rationally testing the paraspecific neutralising capability of
existing antivenoms. Here, we have demonstrated that anti-
venoms can work in a previously unrecognised paraspecific
manner. It is therefore apparent that obtaining knowledge sur-
rounding venom composition has the potential to identify
unexpected therapeutic benefits of existing antivenoms. These
results also offer much hope to the future design of more para-
specifically effective, toxin-targeted antivenoms, whereby cross-
neutralisation of different snake venoms might be achieved eco-
nomically and without greatly increasing therapeutic doses, and
therefore compromising the affordability and safety of these
products to impoverished snakebite victims. While antibody-
based therapies will undoubtedly remain the mainstay of snake-
bite treatment for the foreseeable future, our results also strongly
justify a thorough re-assessment of the potential generic utility of
enzyme inhibitors and metal chelators as adjunct therapies for
snake envenoming.

Methods
Biological samples. A total of 57 snake venoms were used in this study (Sup-
plementary Table 1). These venoms were sourced from: (i) animals currently
housed in the herpetarium of, and (ii) historical lyophilised venom samples stored
long term at 4 °C in, the Alistair Reid Venom Research Unit, Liverpool School of
Tropical Medicine and (iii) Latoxan (France). The venoms used here represent
snakes from every continent and from four advanced snake families and sub-
families; the front-fanged, medically important Viperidae and Elapidae and the
non-front fanged Colubrinae and Natricinae (Supplementary Table 1). All venoms
were lyophilised and stored 4 °C before reconstitution in PBS buffer (pH 7.4) and
short-term storage at −80 °C until use.

The commercial antivenoms used in this study were: (i) the monospecific anti-E.
ocellatus antivenom “EchiTAbG®” (25mg/ml) that is an ovine antivenom
containing intact IgG immunoglobulins manufactured by MicroPharm Limited,
UK, (ii) the monospecific anti-D. typus “SAIMR boomslang” antivenom (75mg/ml)
that is an equine antivenom containing F(ab′)2 immunoglobulin fragments
manufactured by South African Vaccine Producers (SAVP), South Africa and (iii)
the polyspecific anti-Australian elapid (anti-O. scutellatus, -Pseudechis australis,
-Notechis scutatus, -Pseudonaja textilis and -Acanthophis antarcticus) “CSL
polyvalent” antivenom (87.5 mg/ml) which is also equine F(ab′)2 and manufactured
by Seqirus Pty Ltd (formally Commonwealth Serum Laboratories), Australia.
Antivenom concentrations were determined using a NanoDrop (Thermo Scientific)
with the protein A280 method using the in-built IgG mass extinction coefficient.

Anti-ecarin IgG antibodies were generated from serum previously collected
from rabbits immunised with ecarin (Pentapharm, Basel, Switzerland)24. To purify
IgG, we used the caprylic acid precipitation method previously described8, which
involved the addition of caprylic acid (5% volume), vigorous stirring for 2 h, before
centrifugation, dialysis overnight in PBS and formulation of antibodies to a
concentration of 25 mg/ml. We repeated this process to generate control IgG
immunoglobulins from normal non-immunised sheep, horse (both sourced from
Sigma-Aldrich, Gillingham, UK) and rabbit54 serum.

Plasma assays. MCD-P screening: To determine which venoms exhibited pro-
coagulant activity without the addition of cofactors (e.g. calcium), each venom was
screened in a modified version of the MCD-P assay16. We added 100 μg (2 mg/ml)
of each venom to 200 μl of human citrated plasma (4% trisodium citrate, Sigma-
Aldrich) in a glass test tube in triplicate, and then incubated the samples in a water
bath at 37 °C for 5 min. Those that produced a well-defined fibrin clot were selected
for further analysis.

MCD-P: Each of the 18 venoms exhibiting procoagulant activity (defined by clot
formation) were subjected to traditional MCD-P assays16 to determine the quantity
of each venom required to clot 200 μl of human plasma in 60 s. Varying doses of
each venom (made to 50 μl in PBS) were added to 200 μl of human plasma,
incubated at 37 °C and time-monitored for clot formation. The mean coagulation
time of triplicate results for each venom dose were plotted against dose, and the dose
resulting in a clot at 60 s was calculated using the equation of the line of best fit.

To reconstruct the evolutionary history of procoagulant venom function we
manually constructed a species tree from previously published phylogenies55–58 for

the procoagulant species determined in this study. We then assigned binary
character states to each species based on whether the venom coagulated human
plasma in the MCD-P screening assay. We reconstructed ancestral character states
by tracing the character history using the likelihood ancestral states analysis in
Mesquite59, and overlaid this information, including proportional likelihoods for
the “procoagulant character state” at ancestral nodes, onto the species phylogeny.

Neutralising MCD-P: We tested the neutralising capability of the various
antivenoms (EchiTAbG, SAIMR boomslang, CSL polyvalent) and antibodies (anti-
ecarin and normal horse, sheep and rabbit IgG) in a modified version of the assay
described above. The MCD dose of each venom was incubated at 37 °C for 30 min
with varying doses of each antivenom/antibody preparation (0.1, 1, 10 and 30 μl) in
a total incubation volume of 50 μl. After incubation, the venom/antibody mixture
was added to 200 μl of human plasma, incubated at 37 °C and monitored for clot
formation, as described above. If the plasma did not clot within 120 s (a robust
endpoint representing two times the MCD-P coagulation time), the antivenom was
deemed to neutralise procoagulant venom activity.

MCD-P with factor-deficient plasma: We tested the capability of each of the 18
procoagulant venoms to clot human plasma deficient in Factor X or prothrombin
in modified MCD-P assays. For each venom we used 50 μl doses consisting of one
and ten times the MCD dose determined above, and added these to 200 μl of
human plasma deficient in either Factor X or prothrombin (Haematological
Technologies, Inc.). We then incubated the samples at 37 °C for 5 min and
monitored clot formation, as described above.

Degradation SDS-PAGE gel electrophoresis. We used SDS-PAGE gel electro-
phoresis to determine whether Factor X, prothrombin or fibrinogen were cleaved
(activated/degraded) by the 18 procoagulant snake venoms. For each venom we
performed the following experiment with lanes containing: 5 µg of the relevant
clotting factor, 10 µg of the relevant clotting factor; 5 µg of venom; 5 µg of clotting
factor and 5 µg venom, and 10 µg of clotting factor and 5 µg venom. All samples
were prepared and incubated for 60 min at 37 °C before the addition of a reduced
protein loading buffer at a ratio of 1:1. Samples were loaded onto ten-well Mini-
PROTEAN TGX precast AnykD gels (Bio-Rad) alongside a protein marker (Broad
Range Molecular Marker, Promega) and run at 100 V for 60 min using a Mini-
PROTEAN Tetra System (Bio-Rad). Resulting gels were stained with coomassie
brilliant blue overnight and then destained (4.5:1:4.5 methanol:acetic acid:H2O) for
visualisation.

We repeated these assays using E. ocellatus and D. typus venom, and the SVMP
toxin ecarin, with prothrombin, but in the presence of the metal chelator EDTA
(E6758, Sigma-Aldrich). The gel lanes contained: 5 µg of clotting factor, 10 µg
venom, 5 µg of clotting factor and 10 µg venom, and then 5 µg of clotting factor and
10 µg venom in the presence of ten-fold molar dilutions of EDTA, starting at 10
mM and finishing at 1 µM. Gel electrophoresis was performed as described above,
with the exception that venom and EDTA were mixed and incubated
at 37 °C for 30 min prior to the addition of prothrombin.

Chromogenic enzyme assay. Venom activity: We developed a chromogenic assay
using the thrombin-specific chromogenic substrate S-2238 (Cambridge Bios-
ciences) to measure the thrombin-like enzyme activity, prothrombin activating
activity and Factor X activating activity of each of the 18 procoagulant snake
venoms. To measure thrombin-like enzyme activity, we plated the following
reaction for each venom in triplicate onto 96-well plates and measured changes in
absorbance at 405 nm every 3 min for 21 min using an LT-4500 microplate reader
(LabTech): 93 µl Tris buffer (50 mM Tris, 175 mM NaCl, pH 7.4), 1 µl of venom (1
µg), 5 µl PBS and 1 µl of 3 mM S-2238 chromogenic substrate. A negative control,
consisting of no venom (93 µl Tris buffer, 1 µl substrate, 6 µl PBS), was used in
every experiment. A positive control, consisting of 1 µl of 0.1 units/µl of thrombin
(Sigma-Aldrich) instead of venom, was used to validate the assay. To measure the
prothrombin activating activity, we repeated the experiment above using 1 µl of
prothrombin (200 ng; Haematological Technologies, Inc.) and 4 µl PBS. To mea-
sure Factor X activating activity, we repeated the prothrombin experiment with the
addition of 1 µl of Factor X (Haematological Technologies, Inc.) and 3 µl PBS.
Mean measures of absorbance were plotted against time to compare venom activity
with baseline (negative controls) and positive control readings. We then subtracted
the mean of the relevant negative control readings from the venom readings and
re-plotted the triplicate readings. To calculate prothrombin activation we sub-
tracted these readings from those obtained in the presence of prothrombin, and for
Factor X activation, we subtracted the prothrombin readings from those obtained
when using Factor X and prothrombin. For all data sets we then calculated the
areas under the curve and the standard error of the mean (of total peak areas) using
default parameters in GraphPad Prism5.

Neutralisation of in vitro prothrombin activation by antivenom: Due to the high
level of prothrombin activation caused by E. ocellatus and D. typus venoms, we
repeated the prothrombin chromogenic assays for these two venoms in the
presence of antivenoms/antibodies and EDTA. Using the method described above,
we used the EchiTAbG, SAIMR boomslang and CSL antivenoms, and anti-ecarin
antibodies, at standardised doses of 150 µg and varying concentrations of EDTA
(tenfold molar dilutions of 10 mM to 1 µM) in place of PBS. We used the method
described above with the exception of pre-incubating the venom (1 µg) and
antibody or EDTA samples with the Tris buffer at 37 °C for 30 min, prior to the
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addition of prothrombin (200 ng) and the S-2238 chromogenic substrate (1 µl of 3
mM). As above, we repeated all experiments in the absence of venom to generate
baseline negative controls, which were subtracted from venom readings. For
statistical analysis, we used mean endpoint absorbances in a one-way ANOVA with
Bonferroni adjustment followed by Tukey’s post hoc test, in programming
language R (version 3.3.3, R Foundation for Statistical Computing, 2017), with a
95% family-wise confidence level.

Immunological analyses. 1D SDS-PAGE and western blotting: One-dimensional
(1D) SDS-PAGE gel electrophoresis was performed for the 18 venoms as described
earlier. We used 10 µg of each venom with a 1:1 ratio of reduced protein loading
buffer, incubated the samples at 100 °C for 10min and loaded them onto ten-well
Mini-PROTEAN TGX precast AnykD gels (Bio-Rad), before running them at 100 V
for 60min using a Mini-PROTEAN Tetra System (Bio-Rad). We used a Trans-Blot
Turbo Transfer System (Bio-Rad) to transfer proteins on to 0.45 µm nitrocellulose
membranes. Following confirmation of successful protein transfer by reversible
Ponceau S staining, the membranes were incubated overnight in 5% non-fat milk in
TBST buffer (0.01M Tris-HCl, pH 8.5; 0.15M NaCl; 1% Tween 20) and then
washed six times in TBST over 90 min before incubation overnight at 4 °C with the
different primary antibodies (EchiTAbG, SAIMR boomslang and CSL antivenoms
and anti-ecarin antibodies) diluted 1:5000 in 5% non-fat milk in TBST. Blots were
washed again and incubated for 2 h at room temperature with horseradish
peroxidase-conjugated secondary antibodies (donkey anti-sheep for EchiTAbG;
rabbit anti-horse for SAIMR boomslang and CSL polyvalent; goat anti-rabbit for
anti-ecarin; all Sigma-Aldrich) diluted 1:2000 in PBS. After a final TBST wash,
immunoblots were visualised with the addition of DAB substrate (50mg 3,3-dia-
minobenzidine, 100ml PBS and 0.024% hydrogen peroxide; Sigma, UK) for 10 s.

2D SDS-PAGE and western blotting: We performed two dimensional (2D) SDS-
PAGE gel electrophoresis experiments using E. ocellatus and D. typus venoms and
used western blotting to visualise venom protein−antibody interactions with the
EchiTAbG and SAIMR boomslang antivenoms and anti-ecarin antibodies. For
each gel, 0.5 mg of venom was prepared for 2D gel electrophoresis using the
ReadyPrep™ 2-D Cleanup Kit for isoelectric focusing (IEF) (Bio-Rad) as per the
manufacturer’s instructions. Cleaned-up venom samples were then applied to 7 cm,
pH 3–10, non-linear IPG strips (Bio-Rad) using the ReadyPrep™ 2-D starter kit
(BioRad), as per the manufacturer’s instructions, and re-hydrated overnight at
room temperature. After re-hydration, IEF was performed using a PROTEAN® IEF
Cell (Bio-Rad) with the manufacturer’s standard electrophoresis protocol for 7 cm
IPG strips (default cell temperature= 20 °C; maximum current 50 Ua/strip;
voltage= 250 V with linear ramp for 20 min; 4000 V with linear ramp for 2 h; 4000
V with rapid ramp for 10,000 V-hr). After IEF, IPG strips were equilibrated (as per
the ReadyPrep™ 2-D starter kit) and loaded onto Mini-PROTEAN TGX AnyKd
precast gels (Bio-Rad) and run at 200 V for 30 min. Gels were then either stained
with coomassie brilliant blue or used in western blots. We undertook western
blotting as described above, with the exception that we standardised the primary
antibodies to 5 µg/ml in 5% non-fat milk in TBST and added the secondary
antibodies at 1:5000 dilutions in TBST.

Antivenomics: A second-generation antivenomics approach36 was applied to
examine the immunoreactivity of EchiTabG, SAIMR boomslang and anti-ecarin
antivenom/antibodies against E. ocellatus and D. typus venoms. To prepare the
antivenom affinity columns, 350 μl of CNBr-activated Sepharose™ 4B matrix (GE
Healthcare) was packed in a Pierce centrifuge column and washed with 10× matrix
volume of cold 1 mM HCl, followed by 2× matrix volume of 0.2 M NaHCO3, 0.5 M
NaCl, pH 8.3 (coupling buffer) to adjust the pH of the column to 7.0–8.0.
Antivenoms were dialysed against MilliQ water, lyophilised and reconstituted in
coupling buffer. The concentrations of the antivenom stock solutions were
determined spectrophotometrically using a 1 cm light path length cuvette and an
extinction coefficient at 280 nm of 1.36 for a 1 mg/ml concentration of antivenom.
Four milligrams of EchiTabG, SAIMR boomslang and anti-ecarin antivenoms/
antibodies were dissolved in a half matrix volume of coupling buffer and incubated
with the matrix for 4 h at room temperature. Antivenom coupling yields, estimated
measuring A280 before and after coupling of the antivenom, were 100% for all
antibody preparations. After coupling, remaining reactive matrix groups were
blocked at room temperature for 4 h with 350 μl of 0.1 M Tris-HCl, pH 8.5. Affinity
columns were then alternately washed with 3× 350 μl volumes of 0.1 M acetate
containing 0.5 M NaCl, pH 4.0–5.0, and 3× 350 μl volumes of 0.1 M Tris-HCl, pH
8.5. This procedure was repeated six times. The columns were then equilibrated
with five volumes of working buffer solution (PBS: 20 mM sodium phosphate, 135
mM NaCl, pH 7.4).

For the immunoaffinity assay, increasing amounts (50, 75, 100 and 125 μg) of E.
ocellatus and D. typus venoms were dissolved in half matrix volumes of PBS and
incubated with the affinity matrix for 1 h at room temperature using an orbital
shaker. As specificity controls, 350 μl of CNBr-activated Sepharose™ 4B matrix
alone (mock matrix) or with 4 mg of control IgG isolated from the plasma of non-
immunised horses (gifted by Instituto Clodomiro Picado, Costa Rica) were
incubated with venom and the control columns developed in parallel to the
immunoaffinity experiment. Non-retained fractions were collected with 5× matrix
volumes of PBS, and the immunocaptured proteins eluted with 5× matrix volumes
of elution buffer (0.1 M glycine-HCl, pH 2.0) and neutralised with 175 μl of 1 M
Tris-HCl, pH 9.0. The flow-through and the immunocaptured venom fractions
were lyophilised, reconstituted in 40 μl MilliQ water, and fractionated by reverse-

phase HPLC using a Discovery® BIO Wide Pore C18 (15 cm × 2.1 mm, 3 μm
particle size, 300 Å pore size) column and an Agilent LC 1100 High Pressure
Gradient System equipped with a DAD detector. The RP-HPLC column was run at
flow rate of 0.4 ml/min and proteins eluted with a linear gradient of 0.1% TFA in
MilliQ water (solution A) and 0.1% TFA in acetonitrile (solution B), isocratically
with 5% solution B for 1 min, followed by linear gradients of 5–25% B for 5 min,
25–45% B for 35 min, and 45–70% B for 5 min. Proteins were detected at 215 nm
with a reference wavelength of 400 nm.

The fraction of non-immunocaptured protein “i” was estimated as the relative
ratio of the chromatographic areas of same protein recovered in the non-retained
(NRi) and retained (Ri) affinity chromatography fractions using the equation
%NRi= 100−[(Ri/(Ri+NRi)) × 100]36. For SVMPs, owing to their high affinity of
binding, the percentage of non-immunocaptured SVMP“i” (% NRSVMP“i”) was
calculated as the ratio between the chromatographic areas of the same SVMP peak
recovered in the non-retained fraction (NRSVMP“i”) and in the injected venom
(VSVMP“i”), using the equation %NRSVMP“i”= (NRSVMP“i”/VSVMP“i”) × 100.
Identification of the immunocaptured and the non-immunoretained venom
components was inferred by comparing the reverse-phase chromatographic
separations to our previously characterised proteomic profiles of E. ocellatus32 and
D. typus venoms33.

In vivo venom neutralisation. Venom lethality: All in vivo animal experimenta-
tion was conducted using protocols approved by the Animal Welfare and Ethical
Review Boards of the Liverpool School of Tropical Medicine and the University of
Liverpool, and performed in specific pathogen-free conditions under licenced
approval of the UK Home Office, in accordance with the Animal [Scientific Pro-
cedures] Act 1986 and institutional guidance on animal care. Experimental design
was based upon refined WHO-recommended protocols8,11,16,53. We first deter-
mined the median lethal dose (venom LD50) of E. ocellatus and D. typus venom, as
previously described8. Groups of five male 18–22g CD-1 mice (Charles River, UK)
received varying doses of each venom in 100 μl PBS via intravenous (tail vein)
injection, and after 6 h surviving animals were recorded. Animals were monitored
for the duration of the experiment and euthanised upon observation of humane
endpoints (external signs of haemorrhage, seizure, pulmonary distress, paralysis).
The amount of venom that causes lethality in 50% of the injected mice (the LD50)
and the 95% confidence intervals were calculated using probit analysis60.

Venom neutralisation: Next we used 2.5 × LD50 doses of each venom (E.
ocellatus 17.85 μg; D. typus 22.29 μg) in modified versions of antivenom effective
dose (ED50) neutralisation experiments61. As above, groups of five male CD1 mice
(18–22g) received experimental doses, which consisted of either: (i) venom only,
(ii) venom and antibodies (7.5 mg (375 μg/g) of EchiTAbG, SAIMR boomslang,
CSL polyvalent or anti-ecarin antibodies), (iii) venom and EDTA (100 μg (5 μg/g)
of EDTA, pH 7.1), (iv) antibodies only (7.5 mg), (v) EDTA only (100 μg) or (vi)
PBS only (normal mouse control). Where required (for EchiTAbG and anti-
ecarin), antibodies were first concentrated using 50,000 molecular weight cutoff
Amicon Ultra Centrifugal filters (Sigma-Aldrich), as per the manufacturer’s
instructions. The EDTA dose was conservatively selected based on prior reports
demonstrating that daily doses of 15–60 μg/g for 14 days were non-toxic in mice44.
All experimental doses were prepared to a volume of 200 μl in PBS and incubated
at 37 °C for 30 min prior to their intravenous injection. Animals were monitored
for 6 h as described for the LD50 experiments and deaths, time of death and
survivors recorded, where “deaths/time of death” actually represents the
implementation of euthanasia based on defined humane endpoints.

Murine plasma assays: Immediately following euthanasia, blood was collected
via cardiac puncture and added to citrated tubes containing 3.2% buffered sodium
citrate to prevent coagulation. Blood samples were then spun at 2000 × g for 20 min
to generate plasma samples which were stored immediately at −80 °C until further
use. The concentrations of circulating TAT in murine plasma were measured as
described previously62 using the Mouse Thrombin-Antithrombin Complexes
ELISA Kit (ab137994; Abcam), per the manufacturer’s instructions. We used
plasma sourced from three individuals from each experimental group and
statistically analysed the data as described earlier (one-way ANOVA with Tukey’s
HSD post hoc test in R).

We next used 1D SDS-PAGE and western blotting to analyse the collected
plasma samples. For each treatment group we used pooled plasma (10 µl per
individual; n= 5). For 1D SDS-PAGE, pooled plasma were diluted 1:50 in PBS
before the addition of reduced protein loading buffer (1:1 ratio) and boiled for 10
min. Control samples consisted of 1 µg of either Factor X, fibrinogen, prothrombin
or thrombin and were prepared 1:1 with protein loading buffer as above. Samples
were loaded onto 15-well Mini-PROTEAN TGX precast AnykD gels (Bio-Rad) and
electrophoresis and protein staining carried out as described above. For
immunoblotting, 1D SDS-PAGE gels were run in an identical manner, except that
pooled plasma was diluted 1:20 in PBS. The protein samples were transferred to
nitrocellulose membranes, with blocking and washing performed as described
earlier. Membranes were incubated in either 1:1000 dilution of polyclonal rabbit
anti-prothrombin primary antibody or 1:2000 dilution of polyclonal rabbit anti-
fibrinogen primary antibody (both Abcam, UK) in 5% non-fat milk TBST, and
incubated for 1 h at room temperature with gentle shaking. Secondary antibody
incubations were performed using horseradish peroxidase-conjugated goat
anti-rabbit (Sigma-Aldrich) diluted 1:1000 (anti-prothrombin blots) or 1:2000
(anti-fibrinogen blots) in PBS and incubated as above for 1 h. Immunoblots were
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visualised as described earlier. We were unable to use plasma sourced from mice
receiving anti-ecarin antibodies in these experiments, as these antibodies were
generated in rabbits and thus cross-reacted extensively in a non-specific manner
with the anti-rabbit secondary antibody.

Data availability. The data sets generated and analysed during the current study
are available from the corresponding author on request.
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