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Regenerative medicine, a multi-disciplinary approach that seeks to restore form and func-
tion to damaged or diseased tissues and organs, has evolved significantly during the past
decade. By adapting and integrating fundamental knowledge from cell biology, polymer sci-
ence, and engineering, coupled with an increasing understanding of the mechanisms which
underlie the pathogenesis of specific diseases, regenerative medicine has the potential for
innovative and transformative therapies for heretofore unmet medical needs. However, the
translation of novel technologies from the benchtop to animal models and clinical settings is
non-trivial and requires an understanding of the mechanisms by which the host will respond
to these novel therapeutic approaches. The role of the innate immune system, especially
the role of macrophages, in the host response to regenerative medicine based strategies
has recently received considerable attention. Macrophage phenotype and function have
been suggested as critical and determinant factors in downstream outcomes. The con-
structive and regulatory, and in fact essential, role of macrophages in positive outcomes
represents a significant departure from the classical paradigms of host–biomaterial interac-
tions, which typically consider activation of the host immune system as a detrimental event.
It appears desirable that emerging regenerative medicine approaches should not only
accommodate but also promote the involvement of the immune system to facilitate posi-
tive outcomes. Herein, we describe the current understanding of macrophage phenotype
as it pertains to regenerative medicine and suggest that improvement of our understand-
ing of context-dependent macrophage polarization will lead to concurrent improvement in
outcomes.

Keywords: regenerative medicine, biomaterials, host response, foreign-body reaction, stem cells, macrophages

INTRODUCTION
The macrophage has long been known to play an important role in
the tissue remodeling response which occurs following injury. In
brief, macrophages arrive at the site of tissue injury 24–48 h post-
injury, serve as phagocytes clearing the wound bed and initiating
the processes that lead to the default outcome of scar tissue for-
mation (1, 2). However, only recently it has been recognized that
macrophages can have positive impacts upon tissue remodeling
following injury (3–9). While the specific mechanisms by which
macrophages direct tissue remodeling responses remain a subject
of ongoing research, it has been suggested that a transition from a
pro-inflammatory (M1) phenotype to a more regulatory or anti-
inflammatory M2 phenotype is a key aspect of tissue remodeling
which promotes functional outcomes as opposed to scar tissue
formation.

A correlation of macrophage phenotype with functional
recovery in wound healing has been suggested for more than
two decades (9). With the introduction and general accep-
tance of the M1/M2 phenotypic dichotomy (10), correlation of
macrophage polarization states and functional recovery has now
been reported in several other tissues and organ systems and

represents an area of increasing interest for those in the area
of wound healing and regeneration. The central dogma of this
macrophage-centered approach is that treatments which facil-
itate an efficient and timely switch from a pro-inflammatory
to an anti-inflammatory and regulatory phenotype, will log-
ically promote functional tissue remodeling over scar tissue
formation.

The M1/M2 paradigm has been widely studied in the context
of disease pathogenesis, particularly cancer, for more than two
decades (11–13). The participation of M1 and M2 macrophages
in a diverse set of diseases including atherosclerosis, endometrio-
sis, and pulmonary fibrosis is also now recognized (2, 12, 14–18).
In addition, there is evidence for the importance of macrophages
in tissue and organ development and in processes such as limb
regeneration in the axolotl (19, 20). Loss of macrophages during
these processes leads to defects in development or retardation of
the regenerative process in the axolotl. Similar findings have been
reported in other regenerative species including zebrafish, where
ablation of macrophages results in defects in fin regeneration fol-
lowing injury (21). This ability to promote a regenerative response
is lost in higher order species with increasing complexity of the
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immune system, having been replaced with a default mechanism
of “rapid resolution” (i.e., scarring). While the mechanisms which
underlie the loss of regenerative potential remain largely unknown,
a better understanding of the role of the innate immune system in
the regenerative process of lower organisms may provide targets
for regeneration strategies in humans (22).

Regenerative medicine approaches to tissue reconstruction or
organ replacement seek to restore the form and function of lost,
damaged, or diseased tissues. These approaches logically rely upon
our understanding of wound healing, development, and regen-
eration as guideposts for design. These approaches may incor-
porate one or more biomaterials, biologically active molecules,
and/or cell sources. Recent advances in these areas have enabled
highly innovative and promising therapies, but translation of such
strategies, without exception, requires in depth investigation and
understanding of the host response following delivery.

The purpose of the present review is (1) to provide rationale
for a macrophage centric approach to tissue reconstruction; and
(2) to give an overview of the current state-of-the-understanding
of the implications associated with host macrophage responses in
regenerative medicine.

It should be noted that the description of macrophages as hav-
ing either an M1 or M2 phenotype is a simplification of the in vivo
reality. Though it is now clear that M1 and M2 macrophages
each play distinct roles in tissue remodeling following injury, the
inflammatory process which occurs following injury is dynamic
both spatially and temporally and macrophages may express tran-
sitional phenotypes. Logically, these cells will also express func-
tions such as phagocytosis, antigen presentation, and effector
molecule production to differing degrees during the inflammation
and remodeling process. For the purposes of simplicity and general
discussion, and as the M1/M2 terminology are used ubiquitously
throughout the literature, we describe macrophage phenotype as
M1 and M2 in the below examples with further discussion of
the spectrum of possible phenotypes and their potential roles in
regenerative medicine thereafter.

A MACROPHAGE CENTRIC APPROACH
There is evidence for both pathogenic and protective roles of
macrophages in many biologic processes (12, 23). It is well under-
stood that uncontrolled inflammation can be a detrimental process
(e.g., inflammatory bowel disease, rheumatoid arthritis). How-
ever, an organized and well regulated macrophage response has
been shown to be a determinant of tissue remodeling following
injury, with the potential for positive outcomes and functional
recovery. The key role of macrophages in functional recovery
following injury suggests that methods which are capable of mod-
ulating the macrophage response in a controlled, reproducible,
and well-defined manner, may also meet with improved out-
comes in regenerative medicine applications. Below, we review
the role of macrophages in the response to tissue injury and the
subsequent remodeling process in three different tissue environ-
ments as a baseline from which to understand the potential role of
macrophages in regenerative medicine approaches to tissue recon-
struction and to provide the rationale for a macrophage centric
approach.

THE M1/M2 PARADIGM DURING THE SKELETAL MUSCLE INJURY
RESPONSE
The role of the M1/M2 paradigm during the skeletal muscle injury
response is relatively well characterized. Skeletal muscle tissue pos-
sesses inherent regenerative capacity following acute injury such as
exercise-induced trauma. The capacity of muscle tissue to regener-
ate relies heavily upon a population of normally quiescent muscle
specific progenitor cells, referred to as “satellite cells,” and their
interactions with inflammatory cells that infiltrate the injured
muscle microenvironment (24, 25). An efficient skeletal muscle
injury response which successfully restores the injured muscle tis-
sue requires satellite cell progression through a structured process
of activation including proliferation and subsequent maturation
into committed myoblasts, myoblast alignment, and finally, fusion
and differentiation into new contractile skeletal muscle myotubes
(26–29). This carefully regulated process of satellite cell differenti-
ation is controlled, in large part, by the activity of an orchestrated
heterogeneous inflammatory response consisting predominantly
of M1 and M2 polarized macrophages (30, 31).

Following acute skeletal muscle injury, one of the earliest events
is the infiltration of the damaged tissue by inflammatory cells.
Neutrophils comprise the initial wave of cells to enter the damaged
muscle tissue and reach elevated levels as soon as 2 h post-injury
and maximum numbers after 6–24 h (30, 32, 33). Neutrophils
phagocytose host necrotic cellular or bacterial debris and prop-
agate a pro-inflammatory response through the release of reactive
oxygen species and T-helper (Th)1 associated pro-inflammatory
cytokines, which recruit monocytes and macrophages. However,
neutrophil numbers decline through apoptosis and the neu-
trophil response is generally resolved by 3–4 days post-injury (30).
Monocyte-derived macrophages recruited to the damaged tissue
shortly after neutrophil infiltration represent the predominant
immunologic participant in the skeletal muscle injury response
thereafter.

Monocytes originate in the bone marrow and express
chemokine receptors and adhesion molecules which facilitate their
extravasation and migration from the blood to the injured skele-
tal muscle tissue site where they differentiate into macrophages
(34, 35). Tissue resident macrophages normally found within
the skeletal muscle microenvironment are also likely to play
a role. However, the relative contributions of tissue resident
macrophages as compared to circulating macrophages to the
tissue remodeling process remain unknown. Immediately after
injury, infiltrating macrophages become polarized toward a pro-
inflammatory or M1 phenotype. The mechanisms behind this
M1 activation remain only partially understood and include
macrophage exposure to pro-inflammatory cytokines (i.e., IFN-
γ, TNF-α) and/or necrotic cellular or bacterial debris (30, 35–37).
M1 macrophages within the injured muscle microenvironment
phagocytose necrotic muscle debris and participate in a tran-
sient pro-inflammatory response, reaching elevated levels at 24 h
post-injury and maximum numbers after 2 days (30, 35). In addi-
tion to producing large amounts of pro-inflammatory cytokines
(i.e., TNF-α, IL-1β, IL-12), M1 macrophages process and present
antigen and express high levels of iNOS which facilitates NO
production (38, 39).
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After 2 days, macrophages participating in the remodel-
ing of injured skeletal muscle show a transition from the
pro-inflammatory M1 to the immunoregulatory and anti-
inflammatory M2 phenotype. The mechanisms behind this M1
to M2 phenotypic switch remain only partially understood but
include exposure of M1 macrophages to increased IL-10 con-
centrations from skeletal muscle at 48 h post-injury (40, 41);
M1 macrophage mediated phagocytosis of apoptotic, as opposed
to necrotic, cells (40, 42); and exposure of M1 macrophages to
degradation products from extracellular matrix (ECM) (43). M2
macrophages reach peak numbers within areas of injured mus-
cle at 4 days post-injury and remain a predominant cell-type
present in the remodeling muscle microenvironment for several
days (44, 45). M2 macrophages facilitate resolution of inflam-
mation through the release of anti-inflammatory cytokines (i.e.,
IL-10, IL-13), which deactivate pro-inflammatory cell phenotypes
and promote tissue remodeling and repair (35, 44, 45).

This transition of the initial response dominated by M1
macrophages to a more M2 dominated population following acute
muscle injury facilitates skeletal muscle remodeling and is required
for efficient and compete functional restoration. Specifically, the
pro-inflammatory products of M1 macrophages promote the acti-
vation and expansion of quiescent muscle satellite cells within the
tissue injury site (35, 38, 46, 47). For example, TNF-α produced
in large quantities by M1 macrophages represents a well-accepted
mitogen for satellite cell-derived skeletal muscle myoblasts (31,
48). Following satellite cell and myoblast expansion, paracrine
signals from M2 macrophages facilitate the alignment, fusion,
and differentiation, of these skeletal muscle progenitor cells. For
example, IL-10, an immunomodulatory cytokine produced by M2
macrophages, is myogenic for skeletal muscle progenitor cells (4,
31).

The participation of a heterogeneous population macrophages
following muscle injury is highly regulated. For example, the per-
turbation or prolongation of either the M1 or M2 macrophage
population during the skeletal muscle injury response results
in impaired skeletal muscle regeneration. Depletion of phago-
cytic leukocytes, including macrophages, prior to toxin induced
skeletal muscle injury blocks the removal of cellular debris and
impairs regeneration (31). Depletion of macrophages at the time
of injury prevents the participation of M1 macrophages in the
early response and therefore shows their importance to muscle
regeneration (31, 49). Furthermore, immediately following injury,
skeletal muscle shows decreased activity of muscle specific tran-
scription factors in TNF-α knockout animals when compared to
their wild-type counterparts (50, 51), suggesting that TNF-α from
M1 macrophages promotes the early or proliferative stage of myo-
genesis. However, prolonging TNF-α activity beyond the early
proliferative stage of myogenesis has deleterious effects. While
TNF-α promotes skeletal muscle precursor cell mitogenesis, it also
inhibits myogenesis (52–54).

The participation of M2 macrophages is also required for
the skeletal muscle injury response. As stated above, these
immunomodulatory cells drive the late or differentiation stage
of myogenesis. For example, when macrophages were deleted
after 2 days post-injury, a time point consistent with the transi-
tion to an M2 macrophage response, myoblast differentiation, and

subsequent regeneration was impaired (55). Furthermore, trans-
genic animals unable to mount a M2 macrophage response show
an accumulation of proliferative myoblasts and a lack of myogenic
differentiation following injury (7). These studies show the impor-
tance of a present, yet regulated, M1 to M2 phenotypic transition
of macrophages for efficient skeletal muscle regeneration.

THE M1/M2 PARADIGM DURING CUTANEOUS WOUND HEALING
Adult mammalian cutaneous wound healing is another highly
regulated process that follows a sequence of events comprising
the following three interdependent and overlapping phases: (1)
the inflammatory phase; (2) the granulation tissue formation
and wound contraction phase; and (3) the matrix deposition
and tissue remodeling phase (56, 57). Multiple studies have now
demonstrated distinct macrophage phenotypes associated with
each of these phases and with remodeling outcomes following
injury.

The onset of wound healing, designated the inflammatory
phase, can be further sub-divided into an early and late inflamma-
tory phase. Immediately following injury, hemostasis provides a
provisional matrix for cell migration. During the early inflamma-
tory phase, which occurs at 1–4 days post-injury, neutrophils and
monocyte-derived macrophages respond to pro-inflammatory
signals released from the wound microenvironment including
growth factors, cytokines, damage associated molecular patterns
(DAMPS), and pathogen associated molecular patterns (PAMPS)
(58). These pro-inflammatory effector molecules along with the
presence of necrotic cellular and bacterial debris facilitate the
polarization of infiltrating macrophages toward the M1 pheno-
type (59). M1 macrophages associated with the early inflammatory
phase are highly phagocytic and participate in the inflamma-
tory phase by producing large quantities of pro-inflammatory
cytokines (i.e., TNF-α), proteases, and ROS with the ultimate
goal of pathogen control and removal of necrotic cell and tissue
debris (57, 59).

The late inflammatory phase, which occurs at 5–7 days post-
injury, is marked by an accumulation of apoptotic as opposed to
necrotic cells, which upon phagocytosis facilitate the polarization
of macrophages toward the immunomodulatory M2 phenotype
(59). During the granulation tissue formation and wound contrac-
tion phase of cutaneous wound healing at 7–10 days post-injury,
paracrine effector molecules, including cytokines such as IL-10
and growth factors such as VEGF, PDGF-β, and TGF-β, produced
by M2 macrophages recruit fibroblasts into the wound site and
promote myofibroblast differentiation (6, 60). M2 macrophages
continue to release anti-inflammatory and pro-angiogenic fac-
tors, which facilitate the resolution of inflammation, recruitment
of endothelial cells, and deposition of new ECM (61, 62). Activated
myofibroblasts bridge the wound gap and develop contractile
forces to facilitate wound contraction. Growth factors produced by
M2 macrophages and myofibroblasts synergistically promote the
proliferation and migration of keratinocytes to facilitate wound
re-epithelialization (60, 61).

The matrix deposition and tissue remodeling phase, which
occurs after 10 days post-injury, is marked by a decrease in
macrophage numbers populating the wound site, along with an
overall decrease in total cellularity. Granulation tissue formation
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reaches a plateau and tissue present within the wound site is
partially remodeled into fibrotic scar tissue at this time (56, 57).

The above stages of cutaneous wound healing are carefully
regulated by the activity of responding macrophages. Similar to
the M1/M2 macrophage paradigm associated with the skeletal
muscle injury response, cutaneous wound healing is dependent
upon a heterogeneous macrophage population and an M1 to
M2 phenotypic transition. The pro-inflammatory activity of M1
macrophages during the early inflammatory phase is required for
efficient pathogen control. Conversely, M2 macrophage activity
during the late inflammatory phase is required for the resolu-
tion of inflammation and the recruitment of cells, which facilitate
granulation tissue formation and wound re-epithelialization. Per-
turbation of the M1 macrophage phenotype during the early
inflammatory phase, either by conditional depletion or due to
impaired recruitment, results in delayed granulation tissue for-
mation and wound closure (63, 64). Similarly, prolonging the M1
macrophage phenotype (i.e., preventing the phenotypic transi-
tion to M2) through the exogenous addition of TNF-α during
the late inflammatory phase also resulted in poor wound remod-
eling outcomes (65). Depletion of M2 macrophages during the
late inflammatory phase results in prolonged inflammation and
impaired wound repair (63, 66). These M2 macrophage depleted
cutaneous wounds resemble chronic wounds typically associated
with the pathogenesis of chronic venous ulcers (CVU) and dia-
betes. In fact, studies have shown that failure of cutaneous wound
macrophages to undergo the M1 to M2 phenotypic transition rep-
resents a hallmark of these chronic inflammatory diseases (65,
67, 68). Taken together, these studies show the importance of
functional macrophage heterogeneity and the extent to which
immunomodulatory effects of M2 macrophages are critical for
efficient wound healing and tissue remodeling.

THE M1/M2 PARADIGM DURING THE CNS INJURY RESPONSE
The role of M1 and M2 macrophages following injury in the cen-
tral nervous system (CNS) is more ambiguous when compared to
other tissues, and is made more complex by the presence of the
blood–brain barrier. However, similarities to the macrophage het-
erogeneity associated with the injury response in other tissues are
increasingly being reported.

Central nervous system resident macrophages, referred to as
microglia, have long been considered the primary responders
to injury in the CNS with little to no role having been recog-
nized for circulating cells until recently. Generally, microglia are
recruited to, and form a dense barrier around, the lesion site
immediately following spinal cord injury (69, 70). These activated
microglia produce large quantities of cytotoxic factors and pro-
inflammatory cytokines including IL-1β, IL-6, and TNF-α. This
pro-inflammatory response facilitates pathogen control and debris
clearance, and also the recruitment of neutrophils and blood-
derived monocytes and macrophages (5, 71–73); however, this
response is also commonly cited as a driver of poor remodel-
ing outcomes following injury in the CNS. As with other tissue
injury responses, functional remodeling following CNS injury
involves a transition from a pro-inflammatory to an immunoregu-
latory and homeostatic response. It remains unknown if microglia
show M1 to M2 phenotypic plasticity similar to that observed to

monocyte-derived macrophages. However, recent studies suggest
that CNS microglia drive an early pro-inflammatory response, but
infiltrating macrophages from the circulation may facilitate the
M2-like tissue remodeling response (74). Specifically, recruited
blood-derived macrophages, showing an anti-inflammatory phe-
notype consistent with M2 polarization, do not directly enter the
lesion center, but are found around the lesion site at 3 days post-
injury (74, 75). These immunoregulatory macrophages have been
shown to arrive at the site of injury by specifically trafficking
through a remote blood–cerebrospinal-fluid (CSF) barrier, the
brain ventricular choroid plexus (CP) (8). Once at the injury
site, these M2 macrophages produce IL-10 for mitigation of the
pro-inflammatory response and contribute to repair mechanisms
including remyelination (8, 75, 76).

The participation of M2 polarized macrophages in the CNS
injury response is essential to the repair process. For example,
the endogenous partial recovery which can be observed follow-
ing spinal cord injury is abrogated when M2-like macrophages are
depleted using antibodies or conditional ablation (74, 75). Con-
sistent with this notion, blockage of CP mediated macrophage
trafficking inhibits M2 macrophage recruitment and subsequently
impaired recovery following injury (76). These studies show
the importance of a heterogeneous macrophage response to
CNS injury and, specifically, that M2 macrophages contribute to
processes beyond inflammation.

The above studies support an emerging dogma of effective
recovery from tissue injury in which initial responses consist-
ing predominantly of M1 macrophages and secondary or later
stages consisting predominantly of M2 macrophages drive func-
tional remodeling outcomes. Furthermore, it is appears that M2
macrophages contribute to more than immunomodulation dur-
ing the response which follows tissue injury. Several organ systems,
in addition to the above examples of muscle, skin, and CNS tis-
sue have now been shown to undergo similar responses following
injury and are also characterized by heterogeneous and temporally
shifting macrophage phenotypes.

A DEPARTURE FROM THE “CLASSICAL PARADIGM”
The observation of dichotomies in macrophage phenotype in dis-
ease pathogenesis as well as tissue remodeling following injury
represents a departure from the classical understanding of the
macrophage as a primarily phagocytic and pro-inflammatory cell.
The foreign-body reaction (FBR) has been well studied over the
last three decades (77). Logically, this response is an extension
of normal wound healing as the implantation of a biomaterial
necessarily requires the creation of a surgical injury. The semi-
nal works in this area by Anderson (77, 78) and others describe
the host response to implanted materials as occurring in stages
including injury (implantation), protein adsorption, acute inflam-
mation, chronic inflammation, FBR, granulation tissue formation,
and encapsulation. These processes are well recognized to be
dominated by mononuclear cells, and macrophages in particular.

During a FBR persistent inflammatory stimuli, such as the
presence of a non-degradable biomaterial, lead to chronic inflam-
mation and the formation of multinucleated foreign-body giant
cells (79). Multinucleate giant cells are formed by the fusion of per-
sistent pro-inflammatory macrophages, consistent with the M1
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phenotype, located at the surface of the biomaterial and fur-
ther exacerbate the deleterious inflammatory response through
a process known as “frustrated phagocytosis” (80, 81). Failure to
resolve the inflammatory response results in a FBR, leading to
the deposition of disorganized fibrous tissue consistent with scar-
ing and encapsulation of the implant (82, 83). This dense fibrous
scar isolates the implant and prevents its integration with the
surrounding host tissue.

The interpretation of the FBR as a negative occurrence in this
context led to the development of materials with a focus on “inert-
ness” and “biocompatibility” (84–86). This focus upon the host
response to biomaterials resulted in an associated emphasis upon
the material characteristics which determine the host response and
downstream outcomes. However, these same characteristics may
not be ideal in the setting of regenerative medicine where the focus
is upon the restoration of function through the development of
new host tissues rather than through the provision of a simple
mechanical substitute. These concepts do not imply that medical
devices such as hip implants and surgical mesh are not effective
for their intended functions, but rather that the intended use, and
therefore, the design characteristics and functional requirements,
of these materials are incompatible with the goals of regenerative
medicine.

The emergence of regenerative medicine and the need and
desire for therapies which restore endogenous tissue function has
led to a significant increase in our understanding of the role of stem
cells in tissue repair as well as innovation and development of new
biomaterials as stand alone therapies and/or delivery systems for
cells or biologic factors. These materials are most often degrad-
able in nature, and include engineered biologic cues or inherent
bioactivity when derived from natural or tissue based sources. As
such, the host response to these materials will be significantly dif-
ferent and more complex than the response to mono-component,
synthetic or metallic implants. Further complexity is seen when
materials are used in combination with cells or other factors.

It is now recognized that certain materials when used alone
or in concert with a cellular component can provide an inductive
template for constructive and functional tissue remodeling. That
is, the provision of a bioactive material and/or cells leads to the
formation of new, site-appropriate tissue. One example of such
materials is biologic scaffolds composed of ECM (87, 88). These
materials are derived through the decellularization of source tis-
sues and organs and are widely utilized in regenerative medicine
approaches to tissue reconstruction (89, 90). By the nature of the
source (i.e., intact tissue), the materials that result from efficient
decellularization can be thought of as degradable reservoirs of tis-
sue specific structural and functional components. These materials
have been shown to be effective templates for constructive remod-
eling in both pre-clinical and clinical applications, and in several
body systems (87, 88). However, it should be noted that reports of
the effectiveness of ECM based scaffold materials are variable and
highly dependent on the methods of scaffold production.

Despite the distinct differences in long-term outcomes which
have been observed with various ECM based scaffold materials,
all ECM implants have been shown to elicit a histologically simi-
lar cellular response in the first week to month post-implantation
(3, 91). This response is characterized by an early infiltrate of

neutrophils followed by a dense infiltrate of mononuclear cells.
Under the classical paradigm, such a response would commonly
be associated with progression to a FBR with negative implications
for functional tissue remodeling outcomes. However, the response
typically proceeds down one of three distinct pathways: (1) a classic
FBR with encapsulation and no signs of constructive remodeling;
(2) chronic inflammation and degradation or integration of the
material with little to no constructive remodeling; or (3) reduc-
tion of the inflammatory infiltrate with subsequent constructive
remodeling (3, 91).

Based upon these disparate outcomes, it was hypothesized
that, though the early host response to the materials was his-
tologically similar (i.e., characterized by a dense infiltration of
mononuclear cells in the site of implantation), differences in the
early macrophage phenotype to certain ECM scaffold materials
might exist and that these differences may be related to down-
stream remodeling outcomes. Indeed, this hypothesis was shown
to be correct with those ECM scaffolds which elicited constructive
remodeling outcomes being associated with a timely transition
from an M1 to an M2 macrophage phenotype (3, 92, 93). These
studies have provided the impetus for investigation of macrophage
phenotype in a number of regenerative medicine applications
using biomaterials and cell-based therapies. The results of these
investigations now clearly show a correlation between macrophage
phenotype and successful outcomes associated with multiple
regenerative medicine strategies. A review of selected studies which
demonstrate this phenomenon are described below with a focus
upon multiple strategies (materials, cells, and bioactive factors)
which show associations between macrophage phenotype and
remodeling outcomes.

THE M1/M2 PARADIGM IN TISSUE ENGINEERING AND REGENERATIVE
MEDICINE
An endogenous host injury response, consisting of immunomod-
ulation, including the participation of M2 type macrophages rep-
resents a necessary component of efficient and functional tissue
repair. It is therefore logical that regenerative medicine strategies
aimed at activating or augmenting endogenous repair mechanisms
should utilize a similar strategy. Regenerative medicine strategies
aimed at promoting M2 macrophage activation have included cell-
therapy and the implementation of synthetic and biologic scaffold
materials, among others.

CELLULAR THERAPY
Cellular therapy is generically defined as the transplantation or
delivery of exogenous cells to sites of injured or missing tis-
sues. Stem and/or progenitor cells are often used in regenera-
tive medicine applications because of their multi-lineage differ-
entiation potential and well-recognized resistance to oxidative
stress (94, 95).

The cell source is most commonly autologous due to immune
rejection considerations, although many studies are investigat-
ing the use of allogeneic sources. Cellular therapy based strate-
gies aimed at promoting tissue remodeling have been used to
treat injured tissues including the myocardium, the spinal cord,
and skeletal muscle, among others. Despite moderate pre-clinical
and clinical success, cell-therapy is associated with limitations
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including failure of the exogenous cells to engraft within host
tissue (96–101). It is now increasingly recognized that thera-
peutic outcomes associated with cellular therapy are largely a
result of paracrine effects exerted by the transplanted or deliv-
ered cells upon the injured host tissue microenvironment rather
than direct differentiation of the transplanted cells into new
tissues (102–107). These paracrine effects include modulation
of macrophage polarization and beneficial remodeling events
facilitated by a transition to the M2 macrophage phenotype
(108–110).

Co-culture experiments have shown that the secreted prod-
ucts of different stem/progenitor cells directly promote an M2
macrophage phenotype (111–113). A large number of pre-clinical
studies also support these results. For example, following spinal
cord injury, transplanted bone marrow-derived mesenchymal
stem cells (MSC) modulate the host inflammatory microenvi-
ronment by promoting an M1 to M2 transition, which ulti-
mately leads to a permissive environment for axonal extension
and functional recovery (114). Furthermore, following traumatic
brain injury, intravenous (IV) delivery of multipotent progeni-
tor cells promotes the polarization of microglia to an M2-like
phenotype (115). Several studies, using cells of multiple ori-
gins (i.e., autologous and allogeneic bone marrow-derived MSCs,
adipose derived MSCs, and umbilical derived MSCs, among oth-
ers), suggest that the therapeutic effects associated with exoge-
nous cell delivery for the treatment of myocardial infarction are
a result of enhanced macrophage polarization switching (116–
118). Cellular therapy mediated M2 macrophage polarization has
been used to promote tissue remodeling and repair in several
anatomic locations and disease states including kidney ischemia-
reperfusion injury and asthma associated alveolar inflammation,
among others (119–121).

SCAFFOLD MATERIALS
Regenerative medicine strategies aimed at promoting tissue recon-
struction or replacement often employ the use of surgically
implantable synthetic or biologic materials designed to serve as cel-
lular support scaffolds. As described above, implantation of these
materials following injury alters the default injury response. For
example, following surgical placement, synthetic and/or biologic
scaffold materials are able to affect the phenotype of infiltrating
inflammatory cells, host progenitor cell activity, as well as fibrosis
and fibrous capsule development (78, 122). These effects depend
on the scaffold composition, degradability, cellularity, porosity,
and implantation site among others (78).

SYNTHETIC SCAFFOLD MATERIALS
As stated above, the surgical placement of non-degradable syn-
thetic scaffold materials is commonly associated with a FBR con-
sisting of persistent M1 macrophage activity and an increased
deposition of scar tissue (3, 78, 91, 123–125). Recently, strate-
gies aimed at modulating material properties to reduce the per-
sistent pro-inflammatory M1 macrophage response to synthetic
biomaterials have been examined. These strategies have included
alterations in scaffold surface chemistry and structural character-
istics. However, some of the studies examining these strategies
are associated with conflicting results. For example, one study

suggests that synthetic scaffold materials composed of fibers with
smaller diameters are associated with more M2-like macrophage
activation when compared to their larger diameter counterparts
(126). In contrast, another study showed that larger fiber diameter
enhanced M2 macrophage polarization (127).

A recent series of studies has demonstrated the effects of mater-
ial pore size upon integration of the material as well as macrophage
phenotype (13, 128–131). In these studies, materials were pro-
duced with tight distributions of pore sizes. Results showed that
materials possessing pores of roughly 30–40 µm were shown to
integrate with reduced encapsulation and higher vascularity when
implanted into dermis or cardiac tissues (13, 131). These changes
in outcome were also associated with shifts in macrophage phe-
notype (128, 131). However, interestingly, the shifts in phenotype
were observed to be spatially distinct with cells outside of the pore
templated implants having an increased M2 phenotype as com-
pared to non-porous implants, and the cells within the implant
having a predominantly M1 phenotype (128). These studies sug-
gest that manipulation of the structural and surface characteristics
of synthetic scaffold materials can affect macrophage pheno-
type. Specifically, some of these manipulations appear to alter
the macrophage response and are also associated with improved
outcomes.

Another manner in which biomaterials can be tailored to pro-
mote shifts in macrophage phenotype is through the use of bio-
logically active molecules such as growth factors and cytokines.
Examples of these approaches are numerous and are commonly
employed in regenerative medicine with resulting improvements
in remodeling outcomes. A recent study investigated the effects
of incorporation of either M1 (IFN-γ) or an M2 (IL-4) pro-
moting cytokines within a polysulfone tube upon nerve growth
across a gap defect when the tubes were used as guidance conduits
(132). The results of the study demonstrated that polarization of
macrophages toward a more M2 phenotype was associated with
increased Schwann cell infiltration and neurite outgrowth. These
effects were further examined in vitro, with results suggesting that
macrophage derived factors were at least in part the cause of the
observed chemotaxis of Schwann cells.

BIOLOGIC SCAFFOLD MATERIALS
The biologically derived scaffold materials used in regenerative
medicine applications are sourced from a variety of natural sources
including mammalian tissues as well as plant, insect, and bacterial
sources. These materials offer the inherent advantage of the native
ligand landscape and bioactivity resulting from their source mate-
rial. This inherent bioactivity also leads to added complexity in the
host response to these materials. Among these materials, scaffolds
derived from mammalian tissues represent the most commonly
used materials in pre-clinical and clinical regenerative medicine
applications (133–135).

Biologic scaffold materials composed of mammalian ECM have
been used to promote constructive tissue remodeling in a variety
of clinical applications including hernia repair, rotator cuff recon-
struction, esophageal preservation, and skeletal muscle replace-
ment, among others (88, 136, 137). ECM bioscaffolds are derived
through the decellularization of mammalian tissue (89, 90, 138).
The most common tissue sources are xeno- or allogeneic in nature
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and include decellularized dermis, small intestine, bladder, and
pericardium among others.

It is now well recognized that the ability of these materials to
promote constructive remodeling is tied to their ability to mod-
ulate the host macrophage response (3, 92, 93, 135). Multiple
studies have shown that ECM based scaffold materials which are
properly prepared facilitate a transition from an M1 to an M2
phenotype around 7–14 days post-implantation (3, 92, 93). The
exact mechanisms by which these materials facilitate this response
remain largely unknown; however, a number of key aspects have
been identified. The materials must be adequately decellularized
to remove potentially immunogenic cellular constituents and the
material must be able to degrade (3, 92, 93, 139). In the presence
of excess cellular material or if the material has been chemically
crosslinked to prevent degradation, an extended M1 type immune
response with no transition to an M2 response is observed and is
associated with poor remodeling outcomes or encapsulation.

The necessity of degradation for the transition to an M2 phe-
notype suggests that breakdown products of the ECM scaffold
material may possess immunomodulatory activity. Studies have
shown that ECM bioscaffolds can be solubilized and the degra-
dation products formed into a hydrogel under physiologic condi-
tions (140, 141). This hydrogel ECM, when used as a coating for
polypropylene surgical mesh, can facilitate a transition from the
default M1 and FBR type response to a more M2 type response
with a reduction in the FBR and encapsulation (142). These results,
as well as other recent in vitro studies, further demonstrate the
inherent immunomodulatory nature of ECM based biomaterials
as well as their ability to improve remodeling outcomes (124, 142).

WORDS OF CAUTION
The above examples clearly illustrate an emerging paradigm in
regenerative medicine. That is, strategies which are able to mod-
ulate the host response from an M1 to an M2 macrophage
response are associated with better outcomes. However, these
results should be interpreted with caution. Macrophage pheno-
types have been described in many ways (143). “M1” and “M2”
(with M2 macrophages including subsets M2a, M2b, and M2c)
represents the common terminology used to describe these cells.
Macrophage phenotypes have also been described as a spectrum
between M1 and M2 with any individual cell being capable of
expressing multiple aspects of either phenotype at any given time.
Given this phenotypic heterogeneity, and the transient nature
of the remodeling process following injury, further study of
biomaterials-macrophage and stem cell-macrophage interactions
are warranted, as is more thorough definition of the resultant phe-
notypes and their unique functions. It is unlikely that macrophages
which result from interactions with biomaterials, particularly
those with inherent naturally occurring ligand landscapes, or stem
cells will possess phenotypes which precisely resemble the canon-
ical IFN-γ and LPS (M1) or IL-4, IL-13 (M2a), IC and TLR/IL1-R
ligand (M2b), or IL-10 (M2c) activated macrophages.

Adding further complexity to the definition of macrophage
phenotypes in regenerative medicine applications is the variability
in tissue resident macrophage populations. For example, microglia
are the resident macrophages of the brain and derive from the
embryonic yolk sac during development and persist in the brain

thereafter, presumably through a process of local replication (144–
146). As is described above, these cells have been demonstrated in
a number of studies to have phenotypes which are distinct from
circulating monocyte-derived macrophages and are known to play
distinct roles in a number of CNS disease processes. Other tissue
resident macrophage populations also exist, each with a distinct
and tissue specific phenotype (147). While a full description of
tissue resident macrophages in all body systems and their distinct
phenotypic characteristics is beyond the scope of this review, it
is important to understand how these differences and the relative
contributions of local versus circulating cells will affect outcomes.

At present, studies investigating macrophage phenotype fol-
lowing exposure to biomaterial implants have largely relied upon
single surface or gene expression markers as indicators of M1 and
M2 polarization. It is now well established that macrophages pos-
sess highly complex and plastic phenotypes and that the use of
multiple phenotypic markers is essential. Further, a better under-
standing of the functional implications of these phenotypes is
needed to create a mechanistic understanding of the ways in
which macrophages may direct tissue remodeling outcomes fol-
lowing biomaterial implantation or stem cell delivery. With this
understanding, next generation therapies can be developed to tar-
get and modulate specific macrophage phenotypes with desirable
characteristics for the given application.

It should further be recognized that baseline macrophage polar-
ization states may be affected by patient characteristics. As is
mentioned above, there is now increasing evidence for changes
in macrophage phenotype and response to activating stimuli with
age and disease both acute and chronic (12, 23, 148, 149). Com-
monly employed pharmacologic interventions may also affect the
response. Also, it is logical that the tissue microenvironment which
results following an injury may also be different than that which
is experimentally and sterilely created in an animal model. Thus,
there is a need to investigate macrophage response to regenerative
medicine strategies in animal models which, at least in part, can
mimic aspects of these complex situations.

CONCLUSION
Macrophage polarization has been clearly shown to be an impor-
tant determinant of success in regenerative medicine strategies
for tissue reconstruction. Macrophages can promote both positive
and negative outcomes, which are dependent upon the context in
which they are encountered, their phenotype, and function. How-
ever, at present, there remains much to be investigated and defined
regarding macrophage phenotypes associated with biomaterials,
stem cells, and regenerative medicine. Thus, context specific def-
initions and identification of beneficial phenotypes are needed.
Similarly, the unique functions of these cells must also be clearly
defined in order to better understand their true role in the remod-
eling process. Indeed, a focus upon macrophage function during
the process of constructive remodeling may prove more useful
than further characterization of complex phenotypic markers.
Moving studies from correlative to causative and expanding the
number of outcome metrics, both phenotypic and functional, will
assist in defining both biomaterials and stem cell associated phe-
notypes and also provides targets for next generation regenerative
medicine therapies, which seek to modulate macrophages as a
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means of promoting functional tissue recovery – a macrophage
centric approach. It is increasingly clear that those strategies that
adopt such an approach to regenerative medicine will meet with
improved success.
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