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Purpose: Rupture of an arterosclerotic plaque in the carotid artery is a major cause of stroke. Biome-
chanical analysis of plaques is under development aiming to aid the clinician in the assessment of
plaque vulnerability. Patient-specific three-dimensional (3D) geometry assessment of the carotid
artery, including the bifurcation, is required as input for these biomechanical models. This requires a
high-resolution, 3D, noninvasive imaging modality such as ultrasound (US). In this study, a high-res-
olution two-dimensional (2D) linear array in combination with a magnetic probe tracking device and
automatic segmentation method was used to assess the geometry of the carotid artery. The advantages
of using this system over a 3D ultrasound probe are its higher resolution (spatial and temporal) and
its larger field of view.
Methods: A slow sweep (v = � 5 mm/s) was made over the subject’s neck so that the full geometry
of the bifurcated geometry of the carotid artery is captured. An automated segmentation pipeline was
developed. First, the Star-Kalman method was used to approximate the center and size of the vessels
for every frame. Images were filtered with a Gaussian high-pass filter before conversion into the 2D
monogenic signals, and multiscale asymmetry features were extracted from these data, enhancing
low lateral wall-lumen contrast. These images, in combination with the initial ellipse contours, were
used for an active deformable contour model to segment the vessel lumen. To segment the lumen–
plaque boundary, Otsu’s automatic thresholding method was used. Distension of the wall due to the
change in blood pressure was removed using a filter approach. Finally, the contours were converted
into a 3D hexahedral mesh for a patient-specific solid mechanics model of the complete arterial wall.
Results: The method was tested on 19 healthy volunteers and on 3 patients. The results were com-
pared to manual segmentation performed by three experienced observers. Results showed an average
Hausdorff distance of 0.86 mm and an average similarity index of 0.91 for the common carotid artery
(CCA) and 0.88 for the internal and external carotid artery. For the total algorithm, the success rate
was 89%, in 4 out of 38 datasets the ICA and ECA were not sufficient visible in the US images.
Accurate 3D hexahedral meshes were successfully generated from the segmented images .
Conclusions: With this method, a subject-specific biomechanical model can be constructed
directly from a hand-held 2D US measurement, within 10 min, with a minimal user input. The
performance of the proposed segmentation algorithm is comparable to or better than algorithms
previously described in literature. Moreover, the algorithm is able to segment the CCA, ICA,
and ECA including the carotid bifurcation in transverse B-mode images in both healthy and
diseased arteries. © 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on
behalf of American Association of Physicists in Medicine. [https://doi.org/10.1002/mp.13960]
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1. INTRODUCTION

Stroke is a major cause of invalidity and mortality, affecting
more than 1 million persons annually in Europe. Approxi-
mately 20–25% of all strokes are caused by rupture of an
arterosclerotic plaque in the carotid artery.1 Arterosclerotic pla-
ques tend to develop in the wall at the vicinity of the carotid
artery bifurcation, where the common carotid artery (CCA)
splits into the internal and external carotid artery (ICA and

ECA). High peak stresses in the fibrous cap of carotid plaques
are related to the rupture risk. To assess stresses in plaques and
fibrous cap, biomechanical models can be used, typically built
using patient-specific imaging data. Research by Nieuwstadt
et al.2 showed that high sampled three-dimensional (3D) mod-
els are required for an accurate calculation of the magnitude of
the peak plaque/cap stresses. To obtain a patient-specific geom-
etry of the carotid artery bifurcation, a full 3D view of the
region of interest is required, as well as an accurate lumen–wall
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segmentation. Modalities such as C omputed tomography (CT)
and magnetic resonance (MR) either involve ionizing radiation,
high costs, or are not accessible for all patients. Ultrasound has
the advantage of noninvasive, high-resolution imaging with the
drawbacks of anisotropic image resolution and contrast. The
goal of this study is to develop a method to obtain a patient-
specific, full 3D and detailed geometry of the carotid bifurca-
tion using ultrasound imaging. This geometry can be used to
perform accurate geometrical measurements, or as input for
simulations such as finite element solid mechanics models of
the wall, computational fluid dynamics, and fluid–structure
interaction simulations. For clinical acceptance, this method
should require a minimal user input, should be able to cover
small variations and details of the geometry, and have sufficient
accuracy. Manual segmentation by experienced observers is an
alternative, but is known to be a labor intensive task that suffers
from high intra- and interobserver variability. However, in

ultrasound, image resolution is anisotropic and contrast suffers
from speckle, artifacts, and noise, which makes it difficult to
use standard image segmentation techniques. Still, several seg-
mentation methods for ultrasound images have been proposed.

Table I gives an overview of segmentations algorithms that
have been developed or used to segment the carotid artery in
transverse US images. The first step in automatic segmenta-
tion in the transverse view is localization (detection) of the
CCA or ICA and ECA. This is often done with manual anno-
tation5,8 and later with automated methods.9 In general, the
shape of the healthy and diseased carotid cannot be modeled
as an ellipse. To find the true lumen/wall border, rather than
fit an ellipse/circle, additional steps are required. Instead of
using the intensity gradient estimation, several authors used
local orientation or phase based methods. One of the first
successful implementations for ultrasound imaging was
reported in Ref.21 where they used a phase-based scheme to

TABLE I. A literature overview of segmentation algorithms of transverse ultrasound images of the carotid artery.

Paper Year Dimensions Algorithm Extra information Bifurcation Plaque
No. of
images Probetracking

3D
Geometry

Robert3 1989 3D Reconstruct voxel
volume

3D geometry from 5
B-mode images

no no 5 (B-mode
images)

magnetic
probetracking

yes

Abolmaesumi4 2000 2D Star algorithm Seed point inside
lumen

yes no 1 (B-mode
sequence)

robot
controller

yes

Mao5 2000 2D Active contour Seed point inside
lumen

no no 7 (B-
mode images)

no no

Gill6 2000 3D 3D deformable
contours

Manually placed
balloon.

yes yes 1 (3DUS) magnetic
probetracking

yes

Guerrero7 2007 2D Star Kalman filter Seed point inside
Lumen

no no 3 (B-mode
sequences)

magnetic
probetracking

no

Hamou8 2007 2D Active contour Seed points inside
lumen

no no 91 (B-
mode images)

no no

Golemati9 2007 2D Hough transform Detection only no no 10 (B-mode
sequences)

no no

Stoitsis10 2008 2D Hough transform +
Active contours

no stenosis 10 (B-mode
sequences)

no no

Wang11 2009 2D Spokes algorithm Ellipse fit no no 38 (B-mode
sequences)

no no

Ukwatta12 2011 2D Level set Anchor points on the
boundary on each slice

no yes 21 (3DUS) mechanical
stage

no

Ukwatta13 2013 3D Sparse field level set Anchor points on the
boundary on each slice

no yes 21 (3DUS) mechanical
stage

no

Riha14 2013 2D Viola-jones detector Detection only no yes 971 images
(15 subjects)

no no

Benes15 2013 2D Designed machine
vision

Detection only no no 16 (B-mode
sequences)

no no

Lorza16 2013 2D Surface graph cuts Reconstruction of
voxel volume

yes yes 20 (B-mode
sequences)

magnetic
probetracking

yes

Yeom17 2014 3D Correlation map +
ellipse fitting

Carotid artery rat yes no 12 (B-mode
sequences)

mechanical
stage

yes

Narayan18 2015 2D+t Local phase
information + speckle
estimation

Detection + ellipse fit no no 4 (B-mode
sequences)

no no

Smistad19 2016 2D Deep convolutional
network

Detection yes no 2 (B-mode
sequences)

no no

Narayan20 2017 2D Feature assymetry +
eccentricity

no no 971 images14 no no
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detect acoustic boundaries in echocardiographic image
sequences. Aforementioned segmentation techniques are all
based on B-mode images or videos. Instead of using B-mode
images, the radio frequency signal can be used for segment-
ing longitudinal acquisitions of the CCA. An example is the
sustain attack low-pass filter, that was developed to detect the
vessel wall in longitudinal images.22

Still, all these methods were applied or tested on two-di-
mensional (2D) data whereas the 3D geometry is requires.
The 3D geometry of the bifurcated carotid artery can be
imaged with a 3D ultrasound probe; however, the spatial and
temporal resolution of matrix array probes are currently still
inferior to typical linear arrays for 2D imaging, and the field
of view (image width) is limited by the size of the transducer
and the frequency used, which requires additional steps to
obtain a full 3D geometry of the entire carotid artery includ-
ing the bifurcation. One solution to obtain a high-resolution
3D dataset is mechanical scanning. Here, the movement of a
2D linear array is controlled by a mechanical stage.17,23,24

The image acquisition is performed in a predefined manner,
at fixed spatial positions, so that the dataset is uniformly
spaced and there are no missing planes in the acquired vol-
ume. For human carotid imaging, this approach is not favor-
able because of practical issues involving safety and anatomy.
Especially the latter requires flexibility to capture the full
geometry at the most optimal angle for every patient.

In this study specifically, an approach is introduced and its
performance investigated, that allows automatic segmentation
of the entire CCA, including the bifurcation, ECA, and ICA.
Rather than using a 3D ultrasound probe, the high spatial and
temporal resolution of 2D ultrasound are used in combination
with a magnetic probe tracking device. By making a �8 cm
sweep over the neck of the patient, the complete geometry of
the common, external, and internal carotid artery can be cap-
tured, including a possible plaque. This approach requires an
automatic segmentation and tracking algorithm of transverse
US images covering the full range of the bifurcated carotid
artery, including the low contrast images of the ICA and
ECA. A segmentation algorithm was developed which only
requires two seeds in the first frame. The method was vali-
dated in a group of healthy volunteers and compared to man-
ual segmentation by trained observers, and was demonstrated
in several patients.

The main contributions of this study are a complete frame-
work to create a full 3D geometry of the healthy and diseased
carotid artery using a free-hand US, including the bifurcation
and possible plaque. This framework enables large area mea-
surements with robust automatic segmentation, temporal and
spatial filtering techniques, and meshing. Compared to simi-
lar work,6,16 our method shows a high level of robustness,
and obtains a higher resolution and more accurate geometry.
Previous works12,13 showed 3D lumen–intima and media/ad-
ventitia segmentation using a mechanical stage; however they
required seed points in every frame. Their work was focused
on monitor treatment response, whereas this study focuses on
geometry reconstruction for biomechanical modeling, which

requires the larger geometries, ICA and ECA, and the geome-
try at constant pressure.

2. MATERIALS AND METHODS

2.A. Population

Nineteen healthy volunteers aged between 18 and 30 yr
and three patients with severe stenosis were included in this
study. All subjects gave informed consent prior to the mea-
surements and are not using any type of cardiac support
devices which could be disturbed by the magnetic field of the
probe tracking device. This research was granted ethical
approval from the ethics committee of the local hospital
(Catharina Ziekenhuis Eindhoven, NL). All patients and vol-
unteers gave their informed consent.

2.B. Data acquisition

A clinical MylabOne Vascular Ultrasound system
(ESAOTE EUROPE, Maastricht, NL) with a linear probe
SL3323 (fc = 7.5 MHz) was used for all data acquisition.
This system is attached to a magnetic probe tracking device
(CUREFAB CS, M€unich, DE). A protocol was designed that
included a slow velocity sweep (10–20 s) over the neck, from
the distal to proximal part of the right- and left-side carotid.
The measurement started distal to the bifurcation, at the posi-
tion where both the lumen–wall borders of the ICA and ECA
are still fully visible in the B-mode image. The sonographer
aimed to perform the sweep with a constant speed and cap-
ture the entire vessel(s) in a transverse view. The intima–me-
dia thickness was measured using the ArtLAB software
(ESAOTE EUROPE, Maastricht, NL). Next, the procedure
was repeated for the left carotid artery. Before the measure-
ment, the blood pressure of the volunteer was measured using
a standard brachial blood pressure cuff. In a first pilot study,
3 patients (2 males and 1 female, age >65 yr) underwent the
sonographic exam described in the previous section. All these
patients were scheduled for an endarterectomy procedure.

2.C. Vessel tracking

The CUREFAB system grabbed B-mode frames from the
video port of the MyLabOne system. For further post-pro-
cessing, the video data, with a frame rate of 25 Hz, and the
corresponding spatial coordinates were extracted from the
probe tracking device. To track the position of the vessel in
each image a Kalman filter was used, adapted from Ref.7.
This algorithm was based on the Star-Kalman algorithm from
Ref.4. The center point of the vessel is selected manually, in
the first frame where both the ICA and ECA are visible, ren-
dering user interaction to a minimum. The Star algorithm is
used to estimate the lumen–wall border. Along N radii origi-
nating from the center point, with angular equally spaced
increments of Dh ¼ 2p

N , a step edge detection function was
used to find high probability edge positions.25 Next, since the
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initial shape of the artery can be approached with an ellipse,
an ellipse was fitted through the highest probability edge
positions. The radius r of the ellipse is given as a function of
the angle h:

rðhÞ ¼ rarbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2acos

2ðh� h0Þ þ r2bsin
2ðh� h0Þ

p (1)

where ra is the semi-major axis of the ellipse given in pixels,
rb is the semi-minor axis given in pixels, and h0 is the angle
with respect to the x-axis. From frame to frame, the position
of the vessel’s center will change, due to variations in the
geometry and transducer movement. A temporal Kalman fil-
ter was used to stabilize ellipse estimates. The fitted ellipse
parameters are used as an observation in the Kalman filter.
The Kalman state vector X is used to describe the state of the
vessel:

X ¼ xc; yc; ra; rb; _xc; _yc; _ra; _rb½ �T (2)

here, _xc; _yc; _ra; _rb are the time derivatives of the ellipse param-
eters. The angle h0 was not considered as a state variable,
since in a healthy artery, the shape is close to a circle, the
angle h0 is than unclear. The state space equations are written
as:

Xiþ1 ¼ FXi þ fi
ui ¼ CXi þ #i

�
(3)

with F and C the constant state transition matrix and mea-
surement matrix, given, respectively, by:

F ¼ I4 I4Dt
04 I4

� �
C ¼ I4 04½ � (4)

In represents a n by n identity matrix and 0n a n by n zero
matrix. Here, ui is a column containing the ellipse parameters
estimated in frame i. fi and #i are the sequences of white,
zero-mean, Gaussian noise, Dt is set to 1. Fig. 1 shows an
overview of the tracking and segmentation method.

2.C.1. Centerline correction

Abrupt movements by the sonographer can result in loss
of vessel tracking. These movements are registered by the
probe tracking device. Instead of solely initiating the Star
algorithm on Xi�1, the center point is updated by the
expected movement of the vessel center, based on the mea-
surement by the probe tracking device. It is assumed that the
image plane of frame fi�1 is perpendicular to the vessel, and
as a consequence the estimated center point ðxc; ycÞ�i , is the
intersection with the image plane of the next frame fi and the
outer normal originating from ðxc; ycÞi�1. If the distance
between the center points ðxc; ycÞ�i and ðxc; ycÞi�1 is greater
than five pixels, centerline correction is applied.

2.C.2. Bifurcation

Seeds were placed in the ICA and ECA and each artery
was considered separately. Once the ellipses intersect near the
bifurcation, the outer eight-shaped contour is used in the next

step. Once one of the ellipses encloses the center point of the
other ellipse, the ICA and ECA are considered to be merged
into the CCA. To determine the initial Kalman parameters for
the CCA, an ellipse is fitted through the combined outer (con-
vex hull) contour points of the ICA and ECA.

2.D. Segmentation

To find a more accurate delineation of the lumen–intima
boundary, an active contour model is used, initialized with
the previously acquired ellipse contours X. This ellipse con-
tour was re-sampled to 100 points using linear interpolation.
The active contour model is adapted from Kass et al.26 The
so-called snake energy E�

snake is minimized,

E�
snake ¼

Z 1

0
½EintðxðsÞÞ þ EimageðxðsÞÞ þ EconðxðsÞÞ�ds

(5)

with x(s)=(u(s),v(s)), the image coordinates and Eimage is
the total image energy. This energy term moves the snake
towards line and edge features in the image. The internal
energy Eint prevents the snake from bending and stretching
and basically keeps the contour smooth. Econ is the external
constraint energy, which is in our model a balloon energy,
“pushing” the contour to the vessel wall. To ensure a robust
segmentation, instead of using the original B-mode image,
the image is preprocessed (Fig. 2). First, image sharpening
was performed using a Gaussian high-pass filter in the fre-
quency domain, which improves visibility of the wall struc-
tures.27 The transfer function of the Gaussian high-pass filter
is given by:

Hðu; vÞ ¼ 1� exp

�
�Dðu; vÞ2

2D2
0

�
(6)

where D0 is the cut-off frequency (unit: pixel�1) and D(u,v)
the distance from the origin of the Fourier Transform for an
N by M image is given by:

Dðu; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u�M

2

� �2

þ v� N
2

� �2
s

(7)

Next the 2D monogenic signal is calculated using the 2D
even log-Gabor filter28:

GevenðxÞ ¼ exp

�
� ðlogðabsðxÞx0

ÞÞ2
2ðlogðr0ÞÞ2

�
(8)

here, x is the two-dimensional frequency in the 2D Fourier
transform of the original image. After filtering the monogenic
signal can be written as:

fmðxÞ ¼
feðxÞ
fo1ðxÞ
fo2ðxÞ

2
4

3
5 (9)

The 2D monogenic signal consists of one even component
fe and two odd components fo1 and fo2, which can be com-
bined to one odd part:
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foðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fo1ðxÞ2 þ fo2ðxÞ2

q
(10)

To detect edges, the Kovesi’s feature asymmetry measure
(FA) was calculated based on the monogenic signal29:

FAðxÞ ¼
X
i

bj fo;kiðxÞj � j fe;kiðxÞj � Tc
AkiðxÞ þ �

(11)

here, k is a set of wavelengths of the band-pass filter used to
calculate the monogenic signal. A(x) is the amplitude of the
combined odd component with the even component. The
notation ⌊.⌋ means that every negative value is replaced with
a zero, whereas the factor e prevents a division by zero. T, a
scale specific noise threshold, is set to 0.18 (adapted
from Bridge28). After normalizing FA(x), every value lies in
the range 0 < FA(x) < 1, where a value close to 1 corre-
sponds with wall structures. To avoid that the snake is located
between two wall borders, intensity thresholding of the

original B-mode image is used. The pixels with a higher
intensity than the 80th percentile of the B-mode image, most
likely wall structures, are filled with the maximum pixel
intensity.

2.E. Plaque segmentation

In arteries with a plaque present, the ellipse that was esti-
mated using the Star-Kalman tracking algorithm is not suit-
able as initial guess for the snake. To extract the lumen
boundary in arteries with plaque, we propose to use Otsu’s
automatic thresholding method,30 applied within the ellipse
found with the Star-Kalman algorithm to detect the lumen
boundary. First the original US image was smoothened using
a Gaussian smoothing, so that the resulting boundaries are
less sharp. A mask of the detected Kalman contours was used
for Otsu’s automatic thresholding algorithm with three

Star algorithm Ellipse fitCenter point correction

Kalman update

Image adjustments
+ initial contourDeformed contourTransformation 3-D space

Postion prediction

Kalman gain Next frame Xi-1 = Xi

Xm

X*
i 

Xi

Xi-1 

Xp

Xi-1 

FIG. 1. Overview of the tracking and segmentation algorithm.
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classes, see Fig. 3 (LEFT). Next, the boundaries were
extracted from the contour around class with the lowest gray
values, which represent the lumen, see Fig. 3.

2.F. Temporal filtering

A major drawback of all these sweep methods is the pres-
ence of natural geometrical changes (distension) caused by
the pulsation of the wall, that is, wall motion induced by
blood pressure variations during the cardiac cycle. These
variations can be nonuniform over the angle h, possibly
caused by either irregular distribution of the force acting on
the arterial wall, nonuniform flow patterns, and/or differences
in mechanical properties of the wall and the surrounding tis-
sue. Second, variations in external forces can cause a rigid
motion of the artery. These variations can be caused by the
probe pressure, breathing, swallowing, or other types of body
motion. During the measurements, the sonographer and the
volunteer aimed to minimize these external disturbances.
Before filtering, the centerline is corrected for rigid motion of
the artery due to the heartbeat, by using the center of mass of
every end-diastolic frame. These values are used to correct
the centerline for the other frames in time using linear inter-
polation. The corrected centerline xc can be described as a
combination of the interpolated end-diastolic centerline and
the center of mass of the segmented contours denoted by xm.

xc ¼ ð1� wcÞ � xm þ wc � xdc (12)

here wc is a weight factor and xdc are the pixel coordinates of
the diastolic centerline. The distension of the arterial wall due
to the changes in arterial blood pressure part is clearly visible
in the segmented contours (Fig. 4). In the proposed method,
the contours are corrected for the change in arterial blood
pressure, so that the geometry is equal to its state at the mean
arterial pressure pmap. The heart rate (frequency fhr in Hz) is
detected using the Fourier transform of the segmented area of
each slice over time. The highest peak within the physical
range of the heart rate is detected in the power-density spec-
trum. Since the heartbeat causes a periodic signal over time,

(a) (b)

(c) (d)

FIG. 2. (a) Original B-mode image, (b) image sharpening using a high-pass
Gaussian filter, (c) feature asymmetry image, and (d) final image used for
deformable contour model deployment, that is, feature asymmetry plus
thresholding.

Contour after Otsu thresholding
Star-Kalman ellipse

FIG. 3. Example of segmentation of the lumen boundary in presence of plaque tissue. LEFT: Otsu thresholding was applied to the gray value data within the
Star-Kalman ellipse. RIGHT: The original US image with the Star-Kalman ellipse (blue) and the detected lumen boundary (red).
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it can be removed in the frequency domain using a stop-band
or “notch” filter centered around fhr. This filtering could be
performed in the area-frequency-domain, however, nonuni-
form radial displacements were observed. So, it is more accu-
rate to filter the area-time signal in the radius-frequency
domain. Next, all contours were converted into cylindrical
coordinates, see Fig. 5. An uniform time — h grid was cre-
ated using linear interpolation. For every h, the r-t curve was
transformed to the Fourier domain, using the Fast Fourier
Transform (FFT). Instead of a stop-band or ’notch’ filter, a
low-pass filter with cut-off frequency fhr was used, since high
frequency variations in the radius are most likely caused by
small segmentation errors.

2.G. Meshing

For volume rendering, the estimated carotid geometry
needs to be transformed into a 3D mesh. After temporal fil-
tering, nonoverlapping contours/frames are selected,

depending on the desired mesh density in longitudinal direc-
tion. To mesh the bifurcation, a module from the MATLAB-
based Gibbon toolbox was adapted.31 The triangulated mesh
is smoothed using curvature flow smoothing.32 The steps
from unfiltered contours to smooth surface mesh are visual-
ized in Fig. 6.

2.G.1. Segmentation evaluation metrics

Three expert observers manually traced the lumen–wall
border of six to eight frames per acquisition, three distal from
the bifurcation, and four proximal to the bifurcation, see
Fig. 7. In the first frame, the center of the ICA and ECA was
annotated, to make sure the observers were able to find the
right arteries in the US image. The automated segmented
contours were compared with manual contours using differ-
ent metric proposed in literature. The Haussdorf distance
(HD) shows the maximal shortest distance between two con-
tours.33

The dice similarity coefficient (DSC), also known as the
Similarity Index (SI), can be used as spatial measure that
quantifies the overlap between two areas.

SI ¼ 2ðA \ BÞ
A þ B (13)

here, A and B are the areas of contours A and B. If SI = 0,
there is no overlap between A and B, whereas for SI = 1 the
contours are identical. Other area-based metrics are the so-
called sensitivity (SE) and accuracy (AC), which are defined
as:

SE ¼ TP
A ¼ TP

FN þ TP
(14)

AC ¼ 1� FP þ FN

A (15)

here, A is the “true” area, in this study the area of the manual
segmented contour. TP is true-positive area, FP the false-posi-
tive area and FN the false-negative area, all based on the
“true” contour A and the automatic segmented contour B.5

FIG. 4. Example of the segmented area of each contour (red) in [mm2] over
time [s], the dotted line is the area of the contours after temporal filtering.
The vertical black line represents the position of the bifurcation, on the left of
that line the area of the internal and external carotid artery are combined.
[Color figure can be viewed at wileyonlinelibrary.com]

r

θ

y
r

θ

t
filter direction

x

FIG. 5. Contours are transformed to polar coordinates (r�h). A low-pass filter was performed in the r - t - direction. [Color figure can be viewed at wileyonline
library.com]
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3. RESULTS

The proposed method was tested on 41 acquisitions of 19
different volunteers and three patients, that is, both the left
and right carotid artery in the healthy volunteers, and the ste-
nosed artery in the patients, respectively. The average sweep
speed was 5.4 � 1.2 mm/s. Four measurements were
excluded since the ICA and ECA were not visible/detectable
by human observers. This can be caused by bad image quality
or the inability to create a proper view that includes both the
ICA and ECA. Each observer segmented 149 frames for the
CCA and 93 frames for ICA and ECA of the healthy volun-
teer datasets. Overall, the observers tend to be more in agree-
ment in terms of the lumen–wall borders in axial direction.

For both, volunteer and patient data, the tracking algo-
rithm was used. However, for segmentation, the data were

categorized as images with and without plaque. Images with-
out plaque were segmented using the algorithm described in
Section 2.D and images with plaque with the algorithm
described in Section 2.E. Figures 8 and 9 shows the auto-
mated segmented area vs manual segmented area of each
observer. For bigger areas near the bifurcation, the algorithm
tends to underestimate the total surface. Observer 2
(44 mm2) and 3 (45 mm2) segmented on average a larger
CCA area compared to observer 1 (41 mm2) and the algo-
rithm (40 mm2). Bland–Altman plots (Figs. 8 and 9) show a
mean difference of �3:2mm2 for the CCA and �1:0mm2

This underestimation of the area is also confirmed by the
regression of y = 0.91x.

Figure 10 shows box-and-whisker plots of the similarity
index, Hausdorff distance, accuracy, and sensitivity for each
observer separately. The box-and-whisker plots are generated

FIG. 6. (a) Contours obtained from the automatic segmentation algorithm, (b) contours after temporal filtering, (c) surface mesh obtained from the selected con-
tours, and (d) surface mesh after curvature flow smoothing. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 7. LEFT: Common carotid artery, RIGHT: Internal and external carotid artery with the combined manual segmented contours (red) and segmentation algo-
rithm contours (blue).
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for two distinct parts: from proximal CCA to the bifurcation
(ICA & ECA) and the volume ranging from the most distal
image to the bifurcation (CCA). The segmentation of the CCA

is more accurate than the automatic segmentation of the ICA
and ECA, as shown by all metrics with Similarity indexes
between 0.89 and 0.94 (CCA) vs 0.85 and 0.91 (ICA/ECA)
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FIG. 8. Comparison between manual and automated segmented common carotid artery area ½mm2�. The left panel shows the regression (forced to intersect the
origin) results and the right panel shows the Bland–Altman plot. The difference is �3:2mm2, r and p are the Pearson r-value and correlation P-value, respec-
tively. [Color figure can be viewed at wileyonlinelibrary.com]
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and sensitivity values of 0.84–0.94 (CCA) vs 0.83–0.92 (ICA/
ECA). In Table II all metrics are reported for the CCA and
ICA/ECA regions, including their median and the lower and
upper quartiles. In Fig. 11, 24 geometries after removal of the
heartbeat and filtering are displayed. Ten geometries were not
displayed, since there were not enough frames of the ICA/ECA
available in the sweep, which impedes determination of the
heartbeat-free geometry. The length of acquisitions varies
between 37.7 and 95.9 mm. In the “longer” acquisitions, some
movement of the patient was observed.

Figure 12 shows segmentation and geometry construc-
tion of three patient measurements. The contours displayed
in red, that is, the stenosed areas, are found using the algo-
rithm described in Section 2.E, whereas the blue contours
were detected using the Star-Kalman algorithm (see Sec-
tion 2.C). The panels in the right show the obtained
geometries of the lumen–wall or plaque boundary. The

stenosis, indicated with a black arrow, are visible at differ-
ent locations: in the ICA (Patient A and B) and proximal
to the bifurcation (Patient B and C). Patients B has a sev-
ere stenosis in the CCA, whereas the degree of stenosis in
patient C is mild (50–70%).

4. DISCUSSION

In this study, we presented a complete and automated
framework, that was capable of assessing the total geometry
of the CCA, including the bifurcation, ICA and ECA, and
possible plaque. The use of 2D ultrasound in combination
with probe tracking provides the desired 3D geometry for
stenosis evaluation, mechanical modeling purposes, etc.,
while exploiting the higher resolution and low cost of 2D
ultrasound. Due to its limited user input, this framework
enables to create a 3D directly from the measurement, within

UQ 0.89 0.84   0.88 0.84                           0.87 0.81                                     UQ 0.94 0.92                            0.94 0.92                          0.93 0.90 
LQ 0.81 0.69                       0.79 0.71                           0.79 0.70                                     LQ 0.90 0.86                             0.89 0.85                          0.89 0.84            

UQ 0.96 0.94 0.93 0.92                           0.91 0.88                                     UQ 0.94 0.93                           1.00 0.99                          1.13 0.97 
LQ 0.88 0.87                       0.83 0.85                           0.82 0.80                                     LQ 0.50 0.54                             0.56 0.54                          0.57 0.58            

FIG. 10. Box-and-whiskers plots of the quality metrics for automated segmentation. There are 149 manual segmented contours per observer for common carotid
artery and 93 for internal and external carotid artery. [Color figure can be viewed at wileyonlinelibrary.com]
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�10 min on a standard personal computer. The proposed
method can also be used for the geometry reconstruction of
other “large” superficial arteries such as the femoral artery
and the brachial artery, where it is possible to achieve similar
images with sufficient contrast/resolution. The proposed seg-
mentation algorithm combines three different segmentation
techniques to solve a number of common problems in seg-
mentation of carotid arteries in transverse US images, by
exploiting the advantages of each technique. First of all, local-
ization of the arteries, especially the ICA and ECA is chal-
lenging. Benes et al.15 shows localization of the CCA with
success rate of 82.7%, and state of the art work20 shows a sen-
sitivity of 98.1% on a public database, but the localization

success rate is unclear. However, the performance of localiza-
tion algorithms for the ICA and ECA in humans has not been
reported in literature so far, only on rat’s carotid arteries17.

In our proposed method, the tracking algorithm provides a
reliable estimate for the position and size of the ECA, ICA
and CCA. By coupling the Star-Kalman algorithm to probe
tracking information, the algorithm is able to also correct for
unpredictable probe movements by the sonographer. Most
artery detection algorithms rely on an ellipse/circle fit.7,9,41

To find the true lumen–intima/wall border active contour
algorithms (snakes) can be used.5,8,10 However, snake algo-
rithms heavily rely on the initial contour, which is solved in
this study by using the tracking algorithm results. Moreover,
snakes are intensity or intensity gradient based and there is
less signal/reflection on the left and right side of the arterial
wall due to the physics of ultrasound propagation. As a result,
the snake tends to cross the actual borders and “leaks” out of
the vessel. Therefore, we propose to use the monogenic signal
analytically derived by Felsberg and Sommer.34 The advan-
tage of using the monogenic signal over the B-mode image,
is the high contrast between the lumen and the wall, whereas
in the B-mode image there is almost no distinction.

In 3D freehand US imaging, the images are captured on
arbitrary positions, controlled manually by the operator.3 This
gives the freedom to acquire the optimal views and move the
transducer over the irregular surface of a human neck. Several
techniques have been proposed: acoustic, optical, and mag-
netic probe tracking.3,35,37 Fenster and Downey38 used

TABLE II. Manual vs automated segmentation, the manual segmentations of
all three observers are combined.

CCA
(iqr)

CCA
(mean)

ICA & ECA
(iqr)

ICA & ECA
(mean)

HD

[mm]
0.68 (1.02–0.53) 0.86 0.71 (0.96–0.55) 0.80

SI [-] 0.92 (0.89–0.94) 0.91 0.89 (0.85–0.91) 0.88

SE [-] 0.89 (0.84–0.94) 0.88 0.88 (0.83–0.92) 0.87

AC [-] 0.84 (0.80–0.88) 0.83 0.78 (0.70–0.83) 0.76

For the common carotid artery (CCA) and the internal and external carotid artery
(ICA/ECA), the median including the lower and upper quartiles are reported.The
Hausdorff distance (HD), the similarity index(SI ), the sensitivity (SE), and the
accuracy (AC) are reported.

 37.7 mm  38.3 mm 41.9 mm 43.8 mm

 44.0 mm 44.0 mm 47.6 mm 50.6 mm

52.9 mm 53.0 mm 53.4 mm 57.7 mm 

57.8 mm 58.5 mm 61.1 mm 62.3 mm

64.6 mm 70.0 mm 73.5 mm 78.3 mm

90.3 mm 92.3 mm 94.5 mm 95.9 mm

FIG. 11. Twenty-four geometries of healthy volunteers increasing in size. The total length of each geometry is given in millimeters. [Color figure can be viewed
at wileyonlinelibrary.com]
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magnetic field sensor tracking to create a 3D volume of the
carotid, a balloon model was manually placed to initialize a
3D discrete dynamic contour algorithm to segment the ves-
sel’s lumen. Carvalho et al.39 developed an algorithm to track
the carotid artery lumen centerline, but did not perform seg-
mentation of the lumen. Instead of using B-mode, Power
Doppler can be a using in combination with magnetic probe
tracking to grade the stenosis of the internal carotid artery,40

which was not considered in our study.
The performance of the algorithm was evaluated using the

quality metrics described in Section 2.G.1 and were compared
to literature. An average similarity index of 0.91 was found,
which is significantly higher than 0.83 � 0.07 (95% confi-
dence interval) reported by Wang et al.11 and comparable with
the results obtained by Smistad et al.19 Moreover, the mean
Hausdorff distance of our proposed algorithm is lower:
0.86 mm compared to 1.05 � 0.15 mm. The Dice coefficient,
similar to SI , of 0.88 � 0.04 and 0.88 � 0.02 reported by
Narayan et al.20 is slightly lower than the SI of the method

proposed. Sensitivity of 0.88 for the segmentation of the CCA
is a slight improvement compared to the 0.82–0.84 reported by
Golemati et al.9 and 0.82–0.85 by Stoitsis et al.,10 although
those methods were fully automated and applied to the CCA
region only. The specificity, similar to our definition of SE, of
0.836–0.908 reported in study of Narayan et al.20 is comparable
to 0.88 found in this study. Visible inspection of the delineations
by the plaque segmentation algorithm reveal the performance of
the method. However, due to limited patient data, no extensive
comparison with manual segmentation was performed.

Lorza et al.16shows a 3D geometry reconstruction based
on reconstructed voxel volume data. They report an average
Dice coefficient of 0.84 for healthy volunteers compared to
0.91 in our study. A disadvantage of free-hand imaging is that
the acquired volume is irregularly spaced and might contain
regions that lack image data. Hence, voxel-based methods
using free-hand 2D ultrasound will lose resolution when
reconstruction the voxel volume, however, the method pro-
posed does not suffer from this issue, since our method does

Patient A

Patient B

Patient C

FIG. 12. Segmentation and three-dimensional geometry of three patient datasets. For each patient, two US images show the lumen–wall/plaque boundary in red
and the Star-Kalman contours in blue. The geometries on the right show the lumen-wall/plaque meshes after curvature flow smoothing, see Section 2.G. The
arrows indicate stenosed locations, in the US images and geometry.

Medical Physics, 47 (3), March 2020

1045 de Ruijter et al.: 3D geometry assessment carotid artery 1045



not rely on a reconstructed volume. In our method the pixel-
size is 0.0742 mm compared to their voxel-size of 0.21 mm,
both for a depth of 4 cm.

4.A. Limitations

A total of 41 acquisitions were analyzed. Due to bad visi-
bility of the ICA and ECA four datasets were excludes, since
the goal of this study and methodology was to reconstruct the
complete carotid geometry. Moreover, the geometries of ten
datasets were not shown, despite successful segmentation
and tracking. This was due to the fact that the number of
frames containing the ICA and ECA was limited, since at
least 30 frames are required for the Fourier-based heartbeat
removal. This can be solved by improved instructions to the
sonographer and lowering the sweep velocity. This and other
probe tracking methods can only be successful if the subject
can minimize body movement, breathing, and swallowing. It
is important that the subject lies in a comfortable position
and is instructed to breathing quietly and avoid swallowing.
Visual inspection shows that the geometries are realistic,
however some motion artifact are seen. Solutions would be a
brace to restrict body movement, or the inclusion of a second
(magnetic) sensor directly to the subject’s neck to correct for
body movement. Validation of the geometries could be done
using MRI or CTA, but these data are not available for volun-
teers for the obvious reasons. The current methodology
requires two seeds in the first frame, in the ICA and ECA.
The exact location of the seed does not influence the final
results, since the algorithm will find the correct lumen–wall
boundary within five frames, although the first frames should
be excluded for the final geometry render. Furthermore, the
method is a processing pipeline that consists of several mod-
ules, each with multiple parameters. A sensitivity analyses
should be performed to identify the most important parame-
ters, whereas tuning those parameters (e.g. with machine
learning techniques) could help improve the performance in
future studies.

4.B. Future work

In future work, the patient study will be extended.
These geometries will have more irregularities as was seen
in the cases included in this study. Additional challenges
will be the presence of one or multiple stenoses, and the
presence of calcifications, which will cause shadowing in
the B-mode image. A possible solution is to combine mul-
tiple sweeps to obtain sufficient contrast over the full
length of the carotid artery. Deep-learning approaches are
a promising tool for medical image segmentation.41 devel-
oped a deep convolutional neural network that was able to
classify blood vessels in B-mode ultrasound images. Such
a technique has not been used yet to find the exact
lumen–wall borders in the full carotid geometry. An exten-
sion of our current work with deep learning could aid in
tackling the aforementioned challenges typically encoun-
tered in patient datasets.

5. CONCLUSIONS

In conclusion, a method was developed to generate an
accurate, high resolution, 3D geometry of the carotid artery
and bifurcation directly from a free-hand 2D US measure-
ment. The automatic segmentation algorithm, developed to
segment the healthy and diseased carotid artery with a mini-
mal user input, revealed an average similarity index of 0.91 in
the CCA, an average similarity index of 0.88 in the ICA and
ECA of healthy volunteers. Moreover, its ability to assess the
geometry in diseased carotid arteries was demonstrated.
Future studies will be conducted to validate the performance
in providing patient-specific input data for biomechanical
analysis of plaques.
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