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Abstract: Rabbit hemorrhagic disease virus (RHDV) is the causative agent of rabbit hemorrhagic
disease (RHD). RHD, characterized by hemorrhaging, liver necrosis, and high morbidity and mortality
in rabbits and hares, causes severe economic losses in the rabbit industry worldwide. Due to the lack
of an efficient in-vitro propagation system for RHDV, the current vaccine is produced via chemical
inactivation of crude RHDV preparation derived from the livers of infected rabbits. Inactivated
vaccines are effective for controlling RHD, but the potential problems of biosafety and animal welfare
have negative effects on the application of inactivated vaccines. In this study, an oral Lactobacillus
casei (L. casei) vaccine was used as an antigen delivery system to express RHDV capsid protein
VP60(VP1)-eGFP fusion protein. The expression of the recombinant protein was confirmed via
western blotting and immunofluorescence (IFA). Our results indicate that oral administration of this
probiotic vaccine can stimulate secretory immunoglobulin A (SIgA)-based mucosal and IgG-based
humoral immune responses in rabbits. The immunized rabbits were completely protected against
challenge with RHDV. Our findings indicate that the L. casei expression system is a new strategy for
the development of a safe and efficient vaccine against RHDV.
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1. Introduction

Rabbit hemorrhagic disease (RHD), characterized by severe necrotizing hepatitis and disseminated
intravascular coagulation in the liver, spleen, kidney and other solid organs, is a highly contagious
and lethal infection in rabbits [1,2]. RHD is peracute and often lethal hepatitis caused by the rabbit
caliciviruses Lagovirus europaeus GI.1 (previously called rabbit hemorrhagic disease virus—RHDV)
and Lagovirus europaeus GI.2 (previously called RHDV2 or RHDVb) [1,3,4]. This disease was first
reported in China in 1984, and has, since, spread rapidly around the world in less than 10 years,
causing considerable economic losses in the rabbit industry and impacting the ecology of wild rabbit
populations [1,2,5,6]. In 1989, OIE designated this illness as a viral hemorrhagic disease and added it
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to List B of the International Animal Health Code [7]. Subsequently, a novel lagovirus, GI.2, emerged
in France in 2010 [4]. GI.2 is now endemic in Europe and Australia, and appears to be replacing GI.1
strains in these regions [8–10].

RHDV (rabbit hemorrhagic disease virus) is the etiologic factor of RHD. RHDV is a calicivirus in
the genus Lagovirus, family Caliciviridae [1]. RHDV is a non-enveloped icosahedral virus possessing a
single-stranded positive sense RNA genome that is approximately 7.4 kb in length [2,11]. The genome
comprises a 5′ untranslated region (UTR), a 3′ UTR, and two overlapping open reading frames
(ORFs): ORF1 and ORF2. ORF1 encodes a polyprotein that is cleaved by the viral protease into seven
nonstructural proteins (NSP1-7) and a major structural capsid protein VP60 (presently VP1) at its
C-terminus. VP10 (presently VP2) is a minor structural protein that is encoded by ORF2 [11–13].

Vaccination is the main approach for controlling RHDV because no effective treatment is available
for this disease. Inactivated vaccines against RHDV were introduced in the early 1990s, improving the
survival of rabbits on rabbit farms [7,14]. However, RHDV inactivated vaccines are manufactured
using the livers of rabbits infected with RHDV. This is because RHDV cannot grow in any continuous
cell lines. Therefore, biological risks, animal-welfare concerns, and high costs are the major bottleneck
problems in the production and usage of tissue-inactivated vaccines [2].

RHDV spreads mainly through the upper respiratory and digestive tracts. The initial steps
leading to RHDV infection take place on mucosal surfaces [15,16]. It is generally believed that mucosal
immunization is an effective approach for preventing systemic infection by pathogens present on
mucosal surfaces [17]. The gastrointestinal (GI) tract is the largest mucosal surface accessible via
oral administration [18]. Oral vaccination can trigger a response involving neutralizing mucosal
antibodies (IgA) and cell-mediated immunity, and does not interfere with IgG-based responses [19–22].
Additionally, oral vaccines show better safety and compliance profiles, and are simpler to manufacture
and administer, than traditional injectable preparations [23,24]. However, the delivery of antigens for
oral vaccination of the GI tract is hindered by multiple physicochemical and biological barriers; antigens
can be subjected to early disintegration and advanced degradation by low pH and proteases present
in the GI tract [25,26]. L. casei is a probiotic that is well known for its health-promoting properties,
such as maintaining homeostasis and suppressing pathogens in humans and animals [27]. L. casei
has shown a good safety profile, can colonize the intestine, and exerts a nonspecific immunoadjuvant
effect. For those reasons, oral vaccines using L. casei as a delivery system for pathogenic antigens have
garnered much interest in vaccine development [27–29]. Currently, there is increasing interest in the
development of L. casei oral vaccines, and this approach is significant for the effective induction of
a mucosal immune response [30]. The results to date have been confirmed that the safety and the
effectiveness of L. casei were used as the oral vaccine vehicle, which were extensively used in protecting
individuals against a variety of pathogens [31–37].

Developing an efficient and safe oral vaccine that can induce strong mucosal and systemic immune
responses is desirable for effective prevention of RHDV. Therefore, in our current study, we developed
a recombinant L. casei expressing the major structural capsid protein VP60(VP1)-eGFP fusion protein
of RHDV. Then we evaluated the humoral and mucosal immune responses to this recombinant L. casei,
and assessed its immunogenic properties upon administration as an oral vaccine.

2. Materials and Methods

2.1. Bacterial Strain, Virus, Primers, and Plasmid

Lactobacillus casei ATCC 393 (LC393), kindly provided by Jos Seegers (NIZO, Ede,
The Netherlands), the vector pPG-T7g10-PPT transformed into competent LC393 cells
by electroporation to generate L.casei pPG-T7g10 (pPG/LC393). Lactobacillus casei was
cultured in de Man, Rogosa and Sharp (MRS) broth at 37 ◦C without shaking under
anaerobic conditions. RHDV-1 was extracted from homogenates of liver samples obtained
from RHDV-infected rabbits in our laboratory. The sequences of the primers used for
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PCR amplification of VP60 were as follows: 5′-ATGGAGGGCAAAACCCGCACAGCGC-3′;
5′-TCAGACATAAGAAAAGCCATTGGCT-3′. pPG-T7g10-PPT, constructed in our previous study [33],
was used as a constitutive expression plasmid in this study; it encoded resistance to chloramphenicol
(Cm) and contained an HCE promoter, T7g10 enhancer, PgsA anchor, and the rrnBT1T2
terminator. Plasmids pMD18-T simple-eGFP and pMD18-T simple-VP60 were constructed in our
laboratory previously.

2.2. Construction of Recombinant L. casei (pPG-T7g10-eGFP-VP60/LC393)

A schematic diagram of the recombinant DNA plasmid is shown in Figure 1. In brief, recombinant
plasmid pMD18-T simple-eGFP was cleaved with SacI and KpnI restriction endonuclease and inserted
into the corresponding sites of a pMD18-T simple-VP60 expression vector digested using SacI and KpnI.
This generated recombinant plasmid pMD18-T simple-eGFP-VP60. The eGFP-VP60 fragment, cleaved
with SacI and ApaI, was inserted into a constitutive expression vector pPG-T7g10-PPT, resulting
in the recombinant plasmid pPG-T7g10-eGFP-VP60 (Cm+). Afterwards, the Cm resistance gene in
pPG-T7g10-eGFP-VP60 (Cm+) was disrupted using MunI and NcoI. Finally, the recombinant plasmid
pPG-T7g10-eGFP-VP60 was obtained via blunt-end ligation and transformed into competent LC393
cells by electroporation to generate recombinant L. casei pPG-eGFP-VP60/LC393.
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Figure 1. Schematic diagram showing the construction of recombinant plasmids. 1O: eGFP, cleaved with
SacI and KpnI, was inserted into the corresponding sites of pMD18-T simple-VP60 digested by SacI and
KpnI; 2O: eGFP-VP60 fragment, cleaved with SacI and ApaI, was inserted into constitutive expression
vector pPG-T7g10-PPT; 3O: Cm resistance gene in pPG-T7g10-eGFP-VP60 (Cm+) was disrupted by
MunI and NcoI, and recombinant plasmid pPG-T7g10-eGFP-VP60 was obtained by blunt end ligation.

2.3. Analysis of Protein Expression by Western Blotting

The recombinant L. casei pPG-eGFP-VP60/LC393, pPG/LC393, and LC393 were cultured overnight
in MRS broth and harvested by centrifugation at 9000 × g for 10 min at 4 ◦C After cell lysis
and centrifugation, the supernatant was subjected to 12% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and western blot assay. The proteins in the supernatant were
separated by SDS-PAGE and electrotransferred onto PVDF membranes (Millipore, Milford, MA,
USA). The immunoblot was then incubated with the following primary antibodies: Rabbit polyclonal
anti-VP60(VP1) prepared in our laboratory (at the dilution of 1:200), and mouse monoclonal anti-eGFP
(at the dilution of 1:5000) (Abcam, Cambridge, MA, USA) eat 4 ◦C overnight. Then, the immunoblot
was incubated with horseradish peroxidase (HRP)-conjugated goat anti-rabbit or goat anti-mouse
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IgG secondary antibodies (at the dilution of 1:5000) (Sigma, Ronkonkoma, NY, USA) at 4 ◦C for 30
min. Protein expression was visualized using a chemiluminescent substrate reagent (Thermo Scientific,
Durham, NC, USA) according to the manufacturer’s instructions.

2.4. Analysis of Protein Expression by Indirect Immunofluorescence

We used fluorescence microscopy and indirect immunofluorescence assay (IFA) to detect the
expression of VP60 (VP1) and eGFP. In brief, recombinant L. casei was cultured overnight in MRS at 37
◦C. Cell pellets were washed thrice with PBS, incubated with rabbit anti-VP60(VP1) hyper-immune
serum(prepared in our laboratory), and then with TRITC red fluorescently labeled anti-rabbit IgG
secondary antibody (diluted at 1:200) at 37 ◦C for 30 min. Cell pellets were then washed thrice,
resuspended in 200 µL PBS, and smeared onto microscope slides. Images were obtained via laser
confocal microscopy (model LSM510 META; Zeiss, Oberkochen, Germany).

2.5. Immunization, Specimen Collection, and RHDV Challenge

Two-month-old specific pathogen-free (SPF) rabbits, obtained from Liaoning Changsheng
Biotechnology Co., Ltd. (Liaoning, China) were housed under SPF conditions with free access
to standard chow diet and water. Prior to oral administration, recombinant L. casei was cultured
overnight in MRS medium, washed with PBS, and then resuspended in PBS at a final concentration of
1 × 1010 CFU/mL. The rabbits were randomly separated into three groups, with six rabbits per group.

The first group was injected with a single does of a commercial inactivated RHDV vaccine.
The second group was orally administered 5 mL L. casei pPG-eGFP-VP60/LC393 (1 × 1010 CFU/mL).
The third group, serving as unimmunized control, was inoculated with 5 mL of orally administered
PBS. The rabbits were immunized orally once a day for three consecutive days and boosted twice at
2-week intervals (Figure 2).

Serum, nasal washes, vaginal lotions, tears, and fecal samples were obtained on days 0, 7, 14, 21,
28, and 35 after immunization, and were stored at −20 ◦C until use. Fecal samples were pretreated
according to a previously published method [35].

Three groups of rabbits (n = 6), immunized with pPG-eGFP-VP60/LC393, inactivated vaccine,
or PBS, were challenged with 1 mL RHDV crude liver extract (at a viral RNA copy number of 1.0 ×
105.79) administered via intramuscular injection into the leg at 37 d after the first vaccination (Figure 2).
The viral RNA copy number was determined by Real-time PCR. All rabbits were humanely euthanized
and dissected at 10 days post-infection (DPI).
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Figure 2. Immunization, viral challenge, and sampling. Blue dot indicates the time points used for
administration of inactivated-virus vaccine; red triangles indicate the time points used for administration
of recombinant L. casei; green diamonds indicate the time points used for administration of PBS; yellow
stars indicate the time points used to collect samples, and purple arrow indicates the time points used
for viral infections.
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2.6. ELISA Immunoassay

The levels of anti-VP60(VP1)-specific IgG in the sera, and those of SigA in the feces, genital tract
secretions, and intestinal mucusa, of the rabbits used in this study, were determined via ELISA. Briefly,
polystyrene microtiter plates were coated with RHDV and incubated overnight at 4 ◦C. After washing
thrice with PBST (PBS containing 1% Tween-20), the plates were blocked with 5% skimmed milk at
37 ◦C for 2 h. After washing thrice with PBST, the collected samples, prepared in triplicate, were
diluted with PBS (sera diluted at 1:50; supernatants of feces, tears, vagina, and nasal cavity lavage
diluted at 1:10), incubated at 37 ◦C for 1 h. Then, an HRP-conjugated goat anti-rabbit IgG or IgA
antibody (Sigma, Ronkonkoma, NY, USA) was added to each well (at 1:2000), and incubated for 1 h at
37 ◦C. Color was developed using tetramethylbenzidine (TMB) (Sigma, Ronkonkoma, NY, USA) as a
substrate, and absorbance was measured at OD 490.

2.7. Histopathological Analysis

The liver, spleen, and small intestine obtained from the rabbits were subjected to histopathological
examination. Tissue samples were fixed in 10% neutral-buffered formalin, processed routinely,
embedded into paraffin blocks, and sectioned at 4 µm. The sections were stained with hematoxylin
and eosin (H&E), and morphology was evaluated using light microscopy.

2.8. Statistical Analysis

All data are presented as mean ± standard deviation (SD). The samples from each group (6 rabbits)
were pooled and then analyzed as one sample in triplicate. Data were analyzed using two-way
ANOVA with multiple comparison (LSD) test in SPSS. Different letters (a vs. b, a vs. c, b vs. c) indicate
significant differences (p < 0.01) at the same time point.

3. Results

3.1. Determination of Chloramphenicol Resistance and Inherited Stability of Recombinant L. casei

The recombinant plasmid pPG-T7g10-eGFP-VP60 was generated (Figure 1) and transformed by
electroporation into competent LC393 cells. eGFP-positive recombinant L. casei cells were collected
by flow cytometry and designated as pPG-eGFP-VP60/LC393. To assess whether recombinant
L. casei retained chloramphenicol resistance, recombinant L. casei were cultivated on MRS solid
plates containing and not containing chloramphenicol. Our results indicate that recombinant L. casei
pPG-eGFP-VP60/LC393 grew normally on MRS medium without chloramphenicol, but did not grow
on MRS medium containing chloramphenicol. This indicates that the chloramphenicol gene had been
removed successfully (Figure 3a).

We then examined the inherited stability of the recombinant L. casei. Recombinant L. casei
pPG-eGFP-VP60/LC393 was serially inoculated 40 times. The 5th, 10th, 15th, 20th, 25th, 30th, 35th,
and 40th generations of recombinant L. casei were cultured for 16 h, and the plasmid was extracted.
Inherited stability was then assessed using PCR and sequencing. Our results indicate that recombinant
L. casei showed good inherited stability and no gene deletion (Figure 3b).
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Figure 3. Identification of recombinant L. casei pPG-eGFP-VP60/LC393 (a) Recombinant L. casei cells
were cultivated on MRS solid plates with (right) and without chloramphenicol (left). 1: pPG/LC393, 2:
pPG-eGFP-VP60/LC393 (Cm+), 3: pPG-eGFP-VP60/LC393; (b) Inherited stability of recombinant L. casei
pPG-eGFP-VP60/LC393. Recombinant L. casei pPG-eGFP-VP60/LC393 was serially inoculated 40 times.
The plasmid was then extracted, and inherited stability was evaluated by PCR amplification of VP60.
Lanes 1-8 indicate the 5th, 10th, 15th, 20th, 25th, 30th, 35th and 40th generations of recombinant L. casei;
Lane 9 indicates positive control; Lane 10 indicates negative control; Lane M indicates DNA molecular
weight markers.

3.2. Expression of the RHDV VP60(VP1) by Recombinant L. casei

Recombinant L. casei pPG-eGFP-VP60/LC393, pPG/LC393, and LC393 cells were cultured in MRS
broth without chloramphenicol antibiotic. Cell lysates were analyzed by western blotting using mouse
anti-eGFP monoclonal antibody and rabbit anti-VP60(VP1) polyclonal antibody. For both anti-eGFP
and anti-VP60(VP1) antibodies, specific immunoreactive bands of the expected size were observed in
recombinant L. casei pPG-eGFP-VP60/LC393, and there was no band at the corresponding position in
pPG/LC393 or LC393 (Figure 4a). Confocal microscopy and IFA were used to determine the expression
of the eGFP-VP60(VP1) fusion protein in recombinant L. casei. Confocal microscopy was also used to
observe the expression of eGFP in L. casei. Our results show the emission of green fluorescence in L. casei
pPG-eGFP-VP60/LC393, but not in pPG/LC393 (Figure 4b, top). For IFA, pPG-eGFP-VP60/LC393 and
pPG/LC393 were incubated with rabbit anti-VP60(VP1) polyclonal antibody and TRITC-conjugated
goat anti-rabbit IgG secondary antibody, and then observed using laser confocal microscopy. Emission
of red fluorescence was observed in pPG-eGFP-VP60/LC393, but not in pPG/LC393 (Figure 4b, bottom).
These results indicate that the protein of interest was successfully expressed in the recombinant L. casei.
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(a) Identification of the eGFP-VP60(VP1) fusion protein was conducted by western blotting using
anti-eGFP antibody (left) and anti-VP60(VP1) antibody (right). The relevant immunoreactive bands were
detected in cell pellets of strain pPG-eGFP-VP60/LC393 (lane 1), but not those of strains pPG/LC393
(lane 2) or LC393 (lane 3). M: Protein molecular weight markers. (b) The fluorescence of eGFP
was observed by confocal microscopy directly (top), identification of VP60 by IFA assay using an
anti-VP60(VP1) antibody (bottom), respectively. Red and green fluorescence were observed in strain
pPG-eGFP-VP60/LC393 (right), but not in strain pPG/LC393 (left). Scale bar represents 30 µm.

3.3. Induction of Systemic and Mucosal Antibody Responses

Next, we analyzed the immunogenicity of recombinant L. casei pPG-eGFP-VP60/LC393 and
effectiveness of the inactivated virus vaccine in rabbits after oral and intramuscular immunization.
Systemic and mucosal immune responses were assessed by detecting the presence of anti-RHDV IgG
and IgA antibodies; the levels of these antibodies were quantified using ELISA. Starting at day 7 after
primary vaccination, a significantly increased level of anti-VP60(VP1)-specific IgG was detected in
rabbits orally administered with pPG-eGFP-VP60/LC393, and in those injected with the inactivated
vaccine, compared with the responses of the PBS-treated control group (p < 0.01). Additionally, there
was less IgG present for the L. casei vaccine in comparison to the inactivated vaccine (Figure 5).
Similarly, localized levels of anti-VP60(VP1)-specific SigA in the feces, tears, vagina, and nasal cavity
lavage of the immunized rabbits were measured via ELISA. In brief, mucosal SigA levels increased
significantly in the feces (Figure 6a), vagina (Figure 6b), nasal cavity (Figure 6c), and tears (Figure 6d)
of the group orally immunized with pPG-eGFP-VP60/LC393 compared with those of the PBS-treated
control group (p < 0.01). The level of SigA induced by oral immunization with pPG-eGFP-VP60/LC393
was higher than that induced by the inactivated vaccine.
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Figure 6. Levels of anti-RHDV-specific IgA in immunized rabbits. Determination of specific
anti-RHDV-specific IgA levels in feces (a), vagina (b), nasal cavity (c), and tears (d) was performed by
ELISA using RHDV as the coating antigen. The samples from each group (6 rabbits) were pooled and
then analyzed as one sample in triplicate. Bars represent the mean ± standard deviation (SD) in each
group. Different letters (a vs. b, a vs. c, b vs. c) indicate significant differences (p < 0.01) at the same
time point.

3.4. Immune Protection Against RHDV Challenge

To assess immunoprotective efficacy, the three groups of rabbits administered
pPG-eGFP-VP60/LC393, inactivated vaccine, or PBS were infected with 1 mL RHDV (RNA copy
number of 1.0 × 105.97) at 7 days after the last booster. Our results show that all rabbits in the PBS
group died within three days post-challenge, while the rabbits immunized with recombinant L. casei or
inactivated vaccine were completely protected against challenge with RHDV (Figure 7).
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Figure 7. Protective effects in immunized rabbits after challenge with RHDV. The groups administered
L. casei pPG-eGFP-VP60/LC393, inactivated vaccine, and PBS were infected with 1 mL of RHDV liver
crude extract (at RNA copy number of 1.0 × 105.97) by intramuscular injection into the leg at 37 days
after the first vaccination. The rabbits were euthanized, and dissection was performed at 10 days
post-infection (DPI).

3.5. Histopathological Analysis on Different Tissues of the Infected Rabbits

The liver, spleen, and small intestine, collected from the rabbits in different treatment groups,
were subjected to histopathological evaluation. Lesions on liver, spleen, and small intestine were
more severe in the PBS-treated group than in the vaccinated groups. In the PBS-treated group, the
hepatocytes in the liver presented a disordered appearance and clearly manifested degeneration and
necrosis. Splenic corpuscles appeared destroyed, and some had disappeared entirely, splenic sinus was
congested, and intestine villi were necrotic and severely desquamated. There are almost no differences
between the pPG-eGFP-VP60/LC393-immunized group and inactivated vaccine-immunized group
(Figure 8).

Vaccines 2019, 7, x  9 of 14 

 

 
Figure 7. Protective effects in immunized rabbits after challenge with RHDV. The groups 
administered L. casei pPG-eGFP-VP60/LC393, inactivated vaccine, and PBS were infected with 1 mL 
of RHDV liver crude extract (at RNA copy number of 1.0 × 105.97) by intramuscular injection into the 
leg at 37 days after the first vaccination. The rabbits were euthanized, and dissection was performed 
at 10 days post-infection (DPI). 

3.5. Histopathological Analysis on Different Tissues of the Infected Rabbits 

The liver, spleen, and small intestine, collected from the rabbits in different treatment groups, 
were subjected to histopathological evaluation. Lesions on liver, spleen, and small intestine were 
more severe in the PBS-treated group than in the vaccinated groups. In the PBS-treated group, the 
hepatocytes in the liver presented a disordered appearance and clearly manifested degeneration and 
necrosis. Splenic corpuscles appeared destroyed, and some had disappeared entirely, splenic sinus 
was congested, and intestine villi were necrotic and severely desquamated. There are almost no 
differences between the pPG-eGFP-VP60/LC393-immunized group and inactivated vaccine-
immunized group (Figure 8). 

 

Figure 8. Histopathological evaluation of immunized rabbits. Histopathological examination of H&E-
stained liver, spleen, and small intestine. The tissues were obtained from the groups administered L. 
casei pPG-eGFP-VP60/LC393, inactivated vaccine, or PBS at 10 days post-challenge with 1 mL of 
RHDV liver crude extract (at RNA copy number of 1.0 × 105.97). Scale bar represents 200 μm. 

Figure 8. Histopathological evaluation of immunized rabbits. Histopathological examination of
H&E-stained liver, spleen, and small intestine. The tissues were obtained from the groups administered
L. casei pPG-eGFP-VP60/LC393, inactivated vaccine, or PBS at 10 days post-challenge with 1 mL of
RHDV liver crude extract (at RNA copy number of 1.0 × 105.97). Scale bar represents 200 µm.
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4. Discussion

Rabbit hemorrhagic disease (RHD) is a comparatively new and economically important viral
disease that affects adult rabbits [38]. It is important to develop effective strategies for preventing and
controlling the spread of RHDV. However, because there is no efficient in-vitro system for propagating
RHDV, it is difficult to produce this virus as a source of vaccine antigens [39]. At present, most
commercial vaccines are produced using viral preparations obtained from the livers of experimentally
infected rabbits [40]. This strategy raises numerous concerns with respect to animal welfare and
biological safety [2]. To address these issues, and to develop an effective, safe, and convenient oral
vaccine against RHDV, we constructed a recombinant L. casei expressing the RHDV VP60(VP1) protein.

Antigens are key factors in vaccine development. Previous studies have shown that capsid
protein VP60(VP1), a major immunogenic protein of RHDV, induces expression of a neutralizing
antibody [41]. Rabbits inoculated with a sufficient amount of recombinant VP60(VP1) are fully protected
from wild-type RHDV, and VP60 is commonly used to develop recombinant engineered vaccines
against RHDV [41,42]. Therefore, VP60(VP1) was selected as an immunogen for the development of a
recombinant engineered vaccine in this study. Recombinant engineered vaccines containing VP60(VP1)
have been developed using bacteria, yeasts, plants, poxvirus-based vectors, and insect cells as delivery
vectors [41,43–45]. However, intramuscular injection, which is the main route of administering these
recombinant engineered vaccines, requires trained personnel, generates a vast amount of biohazardous
waste, and can elicit a stress response in the animals [18,46]. These issues can be readily solved by live
vector-based oral vaccines [18].

As an oral vaccine vector, L. casei offers many advantages, such as increased safety, resistance to
the harsh GI environment, robust capacity for intestinal colonization, and nonspecific immunoadjuvant
effect [47–49]. Previously, live vector-based oral vaccines were constructed using LC393, a promising
strain of L. casei that can deliver antigenic material to the mucosa and express numerous targeted
proteins, such as VP2 protein of porcine parvovirus (PPV), glycoprotein E2 of bovine viral diarrhea
virus (BVDV), spike protein (S) of transmissible gastroenteritis virus (TGEV), and core neutralizing
epitope (COE) antigen of porcine epidemic diarrhea virus (PEDV) [35,50–52]. Oral vaccination with
these vaccines can efficiently induce mucosal, humoral, and cellular immune responses, indicating that
LC393 is an excellent vector for use in oral vaccines. Therefore, LC393 was selected as a vector in the
genetically engineered L. casei oral vaccine developed in our present study.

The main disadvantage of traditional plasmid expression systems is using antibiotic resistance
genes as selective markers for genetically engineered bacteria [53,54]. Although antibiotics are helpful
for vector screening, using antibiotic resistance genes in practice can impact biosafety, contribute to
antibiotic resistance, and present potential hazards to health and the environment [55]. To avoid
potential issues caused by antibiotic resistance markers, it is important to establish expression
vectors without the use of antibiotic resistance genes. eGFP has many advantages as a genetic
marker and reporter gene. eGFP expression is mostly non-toxic to cells, and eGFP fluorescence
can last for an extended time [55]. In the present study, we constructed a recombinant L. casei
pPG-T7g10-eGFP-VP60/LC393 using eGFP as a selection marker and removed chloramphenicol
resistance from the vector. Analysis of inherited stability of pPG-T7g10-eGFP-VP60/LC393
demonstrated that recombinant L. casei was stably inherited for more than 40 generations with no gene
deletion. We designed the pPG-T7g10-PPT expression vector, a constitutive cell-surface expressed
plasmid, to construct recombinant L. casei for the delivery of vaccine antigen. The pPG-T7g10-PPT
vector contained a T7g10 enhancer, derived from gene 10 of bacteriophage T7; the T7g10 enhancer can
augment protein translation and expression [56]. Expression of the eGFP-VP60(VP1) fusion protein
was confirmed via western blotting and IFA. Our results indicate that a genetically engineered oral
vaccine against RDHV, using L. casei without antibiotic resistance gene, was developed successfully.

An effective oral vaccine should induce both systemic and mucosal immune responses. Thus, we
evaluated the immunogenicity of orally administered pPG-eGFP-VP60/LC393 in rabbits. The multiple
immunization procedure of recombinant Lactobacillus was employed in this study was due to the
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amounts of recombinant Lactobacillus adhered to the intestinal mucosa were decreased with the
time [57]. The immune effect of the multiple immunization procedure of recombinant Lactobacillus
has been confirmed in the previous studies [31,35]. The rabbits were immunized with inactivated
vaccine according to the instruction. Serum-derived IgG can appreciably contribute to immune
defense by reducing the ability of pathogens to cross intestinal mucosa, thereby limiting the systemic
spread of invasive organisms [58]. We detected substantially increased levels of anti-RHDV IgG in
rabbits orally immunized with pPG-eGFP-VP60/LC393; these levels increased rapidly following booster
immunization. sIgA, a major immunoglobulin in mucosal immune responses, protects against pathogen
invasion at mucosal sites [59]. Therefore, sIgA levels can be used to evaluate the protective efficacy of
vaccines [60]. In the present study, we detected high levels of antigen-specific mucosal sIgA in the nasal
washes, vaginal lotions, tears, and feces of rabbits orally immunized with pPG-eGFP-VP60/LC393.
Recombinant L. casei pPG-eGFP-VP60/LC393 induced a higher level of sIgA compared with that
induced by the inactivated virus vaccine, indicating that L. casei pPG-eGFP-VP60/LC393 was more
efficient at eliciting mucosal immune responses, and there were almost no significant differences of
sIgA and IgG antibody levels in the experimental animals administered with pPG/L. casei 393 and
PBS, which have been confirmed in our previous studies [31,35,51]. Previous studies also have shown
that oral vaccines elicit stronger mucosal immune responses than do injected vaccines [46]. In our
present study, we have shown that oral vaccination with recombinant L. casei pPG-eGFP-VP60/LC393
can strongly induce anti-RHDV systemic and mucosal immune responses.

In this study, the protective efficacy of L. casei was analyzed using rabbits. Our results show
that survival rates of rabbits vaccinated with recombinant L. casei and inactivated virus vaccine were
at 100% after the viral challenge; however, none of the rabbits in the PBS-treated group survived
challenge with RHDV. This finding indicates that pPG-eGFP-VP60/LC393, administered via oral
immunization, effectively induced a sufficient immune response to protect rabbits against infection
with RHDV. Rabbits infected with RDHV often develop acute necrotizing hepatitis and disseminated
intravascular coagulation in the liver, spleen, kidney, and other solid organs [1]. Histopathological
analysis showed topical histopathological changes in RDH of the liver and spleen of the PBS-treated
group after challenge with RHDV. However, these changes were not observed in the organs of rabbits
immunized with recombinant L. casei pPG-eGFP-VP60/LC393 or inactivated virus vaccine. The villi of
the small intestine were necrotic and severely desquamated in the PBS-treated group and the group
treated with inactivated virus vaccine. The group administered L. casei pPG-eGFP-VP60/LC393 showed
the intact structure of the villi in the small intestine. This finding indicates that L. casei protected the
intestinal environment against the effects of RHDV.

5. Conclusions

In conclusion, we developed an anti-RHDV vaccine for oral administration using L. casei to deliver
the VP60(VP1) antigen of RHDV. Our findings show that genetically engineered recombinant L. casei
pPG-eGFP-VP60/LC393 without antibiotic resistance could efficiently induce humoral and mucosal
immune responses, thereby protecting rabbits from infection with RHDV.
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