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ABSTRACT The effects of the scorpion a-toxins Lgh II, Lgh III, and LghaIT on human cardiac sodium channels
(hHI1), which were expressed in human embryonic kidney (HEK) 293 cells, were investigated. The toxins re-
moved fast inactivation with ECGsyvalues of <2.5 nM (Lqh III), 12 nM (Lqh II), and 33 nM (LqhalT). Association
and dissociation rates of Lqh III were much slower than those of Lgh II and LqhalT, such that Lgh III would not
dissociate from the channel during a cardiac activation potential. The voltage dependence of toxin dissociation
from hH1 channels was nearly the same for all toxins tested, but it was different from that found for skeletal mus-
cle sodium channels (uI; Chen et al., 2000). These results indicate that the voltage dependence of toxin binding is
a property of the channel protein. Toxin dissociation remained voltage dependent even at high voltages where ac-
tivation and fast inactivation is saturated, indicating that the voltage dependence originates from other sources.
Slow inactivation of hH1 and uI channels was significantly enhanced by Lqh IT and Lqgh III. The half-maximal volt-
age of steady-state slow inactivation was shifted to negative values, the voltage dependence was increased, and, in
particular for hHI1, slow inactivation at high voltages became more complete. This effect exceeded an expected
augmentation of slow inactivation owing to the loss of fast inactivation and, therefore, shows that slow sodium

channel inactivation may be directly modulated by scorpion a-toxins.
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INTRODUCTION

Voltage-gated Na* channels play a major role in rapid
electrical signaling in excitable cells. They are modu-
lated by a variety of toxins, which bind to various sites at
the channel protein (Catterall, 1992; Gordon, 1997).
The scorpion a-toxins are thought to bind to receptor
site 3 (Catterall, 1992) that is partially formed by amino
acid residues in the extracellular linker between seg-
ments S3 and S4 in the fourth homologous domain
(D4) of the channel protein (Rogers et al., 1996; Ben-
zinger et al., 1997, 1998). The extracellular regions be-
tween segments S5 and S6 in domains D1 and D4 are
also discussed to contribute to receptor site 3 (Thom-
sen and Catterall, 1989). The major effects of scorpion
a-toxins are a remarkable slowing of fast inactivation of
Na* channels and slight modifications of the voltage
dependence of channel activation. The effect of the
extracellular toxin binding to inactivation, which is
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mainly mediated by the intracellular linker between do-
mains D3 and D4 (West et al., 1992), is thought to be
exerted via a coupling to the voltage-sensing S4 seg-
ment. In this sense, scorpion a-toxins can be consid-
ered a part of a large family of gating-modifying toxins
that bind to the extracellular loops between S3 and S4
and that modify the voltage-dependent gating of the
structurally related calcium (w-grammotoxin; McDon-
ough et al, 1997) and potassium (e.g., hanatoxin;
Swartz and Mackinnon, 1997; Li-Smerin and Swartz,
1998, 2000; Li-Smerin et al., 1999; Winterfield and
Swartz, 2000) channels. Therefore, a detailed study of
toxin—channel interactions may also shed further light
on the molecular mechanism of ion channel function.
As scorpion a-toxins remarkably slow down fast inacti-
vation of Na* channels, they prolong the action poten-
tials of excitable cells. As a consequence, these toxins
may kill animals by inducing paralysis and arrhythmia
(Hille, 1992). The exact mechanism can only be under-
stood when the effects of several toxins of one scorpion
species on various Na* channel subtypes are compared.
Therefore, we examine here the effects of Lgh II, Lgh
III, and LghalT, which are representatives of the sub-
families of a-toxins from the Israeli yellow scorpion Leiu-
rus quinquestriatus hebraeus, namely classical a-toxins,
a-like toxins, and a-toxins (Gordon et al., 1998), on hu-
man cardiac sodium channels (hH1).! The results are
compared with previously published data on rat skeletal
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muscle sodium channels (pI; Chen et al., 2000) to infer
about the physiological consequences of these o-toxins.

The binding of scorpion a-toxins to mammalian Na*
channels has been shown to be voltage dependent,
which means that the affinity of scorpion a-toxins to
Na™ channels is decreased during depolarization (Cat-
terall, 1992; Rogers et al., 1996; Chen et al., 2000), but
the source of this decreased affinity is not yet known.
LqTx and ATX II (toxin from sea anemone Anemonia
sulcata) partially lose their effect on fast inactivation of
Na* channels after depolarization in a way that sug-
gests a coupling to channel activation (Rogers et al.,
1996). However, it is not clear whether there is a direct
link to activation or a rather indirect link by means of
coupled processes such as fast or slow inactivation. Our
previous report on wl Na* channels (Chen et al., 2000)
showed that the three scorpion a-toxins Lgh II, Lqh III,
and LghalT dissociate from the channel in a voltage-
dependent way in a voltage range where both activation
and fast inactivation are expected to be saturated. This
leaves open the question regarding the molecular
mechanism underlying the voltage-induced toxin disso-
ciation. In addition, it was found that the toxins tested
share the same voltage dependence of dissociation,
suggesting that this decreased affinity for scorpion
a-toxins may be determined only by the channel prop-
erty. Here, we test this hypothesis by examining a differ-
ent cloned channel type.

In particular, we address the question on whether or
not there is a coupling between a-toxin binding to Na*
channels and slow inactivation. Besides the fast inacti-
vation that is largely mediated by the cytosolic linker
between domains D3 and D4 according to a hinged-lid
mechanism (West et al., 1992), Na* channels can un-
dergo inactivation at slower time scales, which is best
characterized by very slow recovery from inactivation
on the order of a minute at resting voltages (e.g., Rudy,
1978). Slow inactivation appears to be structurally sepa-
rate from fast inactivation because it remains intact af-
ter fast inactivation was removed completely with a-chy-
motrypsin (Valenzuela and Bennett, 1994). However, it
can be enhanced when fast inactivation is removed by
inducing mutations in the fast inactivation structure
(isoleucine, phenylalanine, and methionine [IFM] mo-
tif replaced by QQQ); Featherstone et al., 1996; Rich-
mond et al.,, 1998). Unlike fast inactivation of Na‘t
channels, slow inactivation seems to involve rather
complex conformational changes of the channel pro-
tein. This notion is supported by several studies report-
ing on effects on slow inactivation by mutagenesis of
Na* channels at very different locations in the channel

VAbbreviations used in this paper: HEK, human embryonic kidney cells;
hH1, human cardiac sodium channel; IFM, isoleucine, phenylala-
nine, and methionine; pl, rat skeletal muscle sodium channel; rBII,
rat brain sodium channel II.

protein, particularly interesting being those mutations
that are linked to inherited human diseases such as my-
otonia (Balser et al., 1996; Cummins and Sigworth,
1996; Hayward et al., 1997; Richmond et al., 1997;
Wang and Wang, 1997; Vilin et al., 1999; Mitrovic et al.,
2000). A recent study shows that slow inactivation of
Na* channels is even linked to structural rearrange-
ments in the pore region (Ong et al., 2000).

As scorpion a-toxins at least partially remove fast inac-
tivation of Na* channels, it is reasonable to assume that
scorpion a-toxins enhance the slow inactivation of Na*
channels. However, it is not easy to examine the effects
of scorpion a-toxins on slow inactivation of Na* chan-
nels, because many scorpion a-toxins, like LqTx (Rogers
et al., 1996), rapidly dissociate from Na* channels dur-
ing relatively long and high depolarizations, which are
necessary to induce steady-state slow inactivation. In
these cases, effects of scorpion a-toxins on slow inactiva-
tion of Na* channels are expected to be negligible. How-
ever, the toxins used here, particularly Lqh III, interact
with ul and also with hH1 Na* channels very strongly,
providing a possibility to study the toxin action on slow
inactivation without considerable toxin dissociation.

MATERIALS AND METHODS
Cell Culture

Human embryonic kidney (HEK) 293 cells (CAMR) were stably
transfected with hH1 sodium channel a subunits (Gellens et al.,
1992) according to the methods described previously (Chen et
al.,, 2000), and the resulting HEK 293_hH]1 cells were obtained.
The cell lines HEK 293_hH1 and HEK 293_pI (Chen et al.,
2000) were maintained in DME, supplemented with 10% FCS in
a 5% CO, incubator.

Electrophysiological Measurements

Whole-cell voltage clamp experiments were performed as de-
scribed previously (Chen et al., 2000). Patch pipets with resistances
of 0.9-2.0 MQ) were used. The series resistance was compensated
for by >80% to minimize voltage errors and cells with access resis-
tance above 5 M() were discarded. A patch-clamp amplifier EPC9
was operated by Pulse +PulseFit software (both HEKA Elektronik).
Leak and capacitive currents were corrected with a p/n method.
Currents were low-pass filtered at 5 kHz and sampled at a rate of
25 kHz. All experiments were performed at 20 * 2°C. The patch
pipets contained the following: 35 mM NaCl, 105 mM CsF, 10 mM
EGTA, and 10 mM HEPES, pH 7.4 with CsOH. The bath solution
contained the following: 150 mM NaCl, 2 mM K(l, 1.5 mM CaCl,,
1 mM MgCl,, 5 mM glucose, and 10 mM HEPES, pH 7.4 with
NaOH. Lqh III (Sautiere et al., 1998) and LqhalIT (Eitan et al.,
1990) were obtained from Latoxan, and Lqh II (Sautiere et al.,
1998) was provided by Dr. D. Gordon (Tel Aviv University, Tel Aviv,
Israel). The application of toxins was performed with an applica-
tion pipet as described previously (Chen et al., 2000).

Data analysis was performed using PulseFit (HEKA Elek-
tronik) and IgorPro (WaveMetrics) running on Macintosh com-
puters. All data were presented as mean = SEM (n = number of
independent experiments) unless stated otherwise. Two-tailed ¢
tests were used to check for significant differences between two
groups of data.
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Current-Voltage Relationships

From a holding potential of —120 mV, test depolarizations in the
range from —80 to +70 mV were applied at time intervals of 6 s.
The peak currents were measured during the test pulses and then
fitted as a function of the test voltage (V) with an activation model
assuming three independent gating units and a single-channel
conductance obeying the Goldman-Hodgkin-Katz equation:

~(V-E,,,)/25 mV
1-e¢ 1

S— s ()

V725 mV —(V-V,)/k, 3

- [T+e ]
I'is the conductance, and E,., is the reversal potential. The last
term describes the open probability of the channels, character-
ized by the voltage of half-maximal activation per subunit, V,,
and the slope factor, k.

IV =TV

Steady-State Fast and Slow Inactivation

For steady-state fast inactivation, conditioning pulses of 500-ms
duration ranging between —140 and —30 mV were applied be-
fore available channels were assayed with a short depolarizing
pulse to —20 mV. The resulting inward currents were normalized
to the maximal current predicted by the data fit with Eq. 2. The
voltage dependence of steady-state fast inactivation was described
with a Boltzmann function of first order, characterized by the
half-maximal voltage of fast inactivation, V;, and the correspond-
ing slope factor, k¢

Luorn(V) = ag+ a1/ {1+ exp[(V=V,)/ by 1}, (2)

where a,is an offset, and q, is the amplitude. When fitting steady-
state fast inactivation without toxins, @, = 0 and a; = 1.

For steady-state slow inactivation, the membrane potential was
stepped from holding potential to the first 10-ms test pulse (SI)
at 0 mV, and then recovered from inactivation for 5 ms at —120
mV. The second 30-ms test pulse (S2) to 0 mV was used to elicit
Na* currents (L) after inducing steady-state slow inactivation by
60-s prepulses at several voltages and subsequent recovery from
fast inactivation for 50 ms at —140 mV (see Figs. 7 A and 9 A).
The first test pulse was used to monitor the full toxin effect be-
fore each prepulse voltage and to normalize the peak current
changes occurring during the experiment. The membrane po-
tential held at —140 mV for at least 40 s between each recording
allowed to completely recover from slow inactivation. The peak
current Iy was normalized to the peak current I; and was plot-
ted as a function of the prepulse voltage (see Figs. 7 B and 9 B).
The voltage dependence of slow inactivation was fitted with Eq.
2, characterized by the half-maximal voltage of slow inactivation,
Vis» and the corresponding slope factor, k.

Degree of Fast Inactivation

The degree of fast inactivation was assayed by measuring the
peak current as well as the mean current level between 4.5 and 5
ms after the start of the depolarization. This ratio I v / Lcax gives
an estimate of the probability for the channels not to be inacti-
vated after 5 ms: a value of zero represents complete inactivation
in 4.5 ms; a value of one, no inactivation.

Kinetics of Fast and Slow Inactivation

Kinetics of fast inactivation was quantified by double-exponential
functions to the decaying section of the Na* currents:

I(?1) = apc+ ajexp(=t/7) + a,exp(-1/7,) . (3)
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apc is the noninactivating current amplitude, @ and a, are the
amplitudes, and 7; and 7, are the time constants of the fast and
the slow component, respectively.

The development of slow inactivation was examined with a
two-pulse protocol. After the first test pulse (SI), the membrane
potential was held for conditioning pulses with increasing dura-
tions (60 ms to 104 s). The second test pulse (S2) was used to
monitor how much current (k) was available after recovery
from fast inactivation (see Fig. 8 A). The normalized currents I,/
Is; provided information about how many channels entered slow
inactivation during the conditioning pulse. Plotting the ratio I,/
Is; as the function of the conditioning pulse durations yielded
the time constants of the development of slow inactivation, based
on fits with double-exponential functions (Eq. 3).

The recovery from slow inactivation was investigated with a
similar two-pulse protocol. The first test pulse (S3) was used to
elicit Na* current (k). Subsequent depolarization to 0 mV for
60 s was used to induce steady-state slow inactivation. After recov-
ering at —140 mV with increasing durations, the second test
pulse (54) was used to record the current (I; see Fig. 8 B). Re-
covery time constants were obtained with Eq. 3 by fitting the ratio
Isy/Lss versus recovery duration.

Dose—Response Curves of Toxin Effects on Fast Inactivation

The dose dependence for toxin-induced removal of fast inactiva-
tion was measured by plotting the ratio [ /e at 0 mV as a
function of toxin concentration, which is described with the Hill
equation:

I

sus” Lpear (0 MV) = @, + (ay - ag)/[1 + (EC50/[t0xin])h], (4)
where & is the Hill coefficient, [toxin] is the toxin concentration,
and g is the offset. The amplitude, ;, provides the maximal value
of the ratio L /L. at 0 mV indicating the expected maximal ef-
fect of the toxin on fast inactivation. ECy, provides a measure for
the concentration of half-maximal fast inactivation inhibition. For
data fits, the a, values always were held at the values obtained un-
der control conditions. Errors for EC;), a;, and /& were obtained
from these fits with the Igor Program (WaveMetrics), considering
the SEM values of the individual data points for the weighting.

Toxin Dissociation and Association Kinetics

Dissociation kinetics was measured with double-pulse protocols.
A conditioning dissociation pulse (from +20 to +180 mV) with
increasing durations was applied, returning to —120 mV for 50
ms to recover channels from fast inactivation. Na® current was
then elicited with a 30-ms test pulse to —20 mV. The holding po-
tential of —120 mV ascertained maximum toxin rebinding. The
extent of removal of fast inactivation was assayed with the ratio I ,,,/
Ica- The average values of L /I, from several experiments
were plotted as a function of the dissociation durations. Single-
exponential fits revealed the time constants (7,y). The time
course of toxin dissociation was determined in the range of
membrane voltages. Plotting 7,4 as the function of the dissocia-
tion voltage produced the voltage-dependent dissociation curves.
Single-exponential fits (Eq. 5) revealed the voltage dependence:

(V) = (7,— 7..)exp(—ze,/kT) + 1, ()]

where 7, is the time constant at 0 mV, ¢,is the unitary electron
charge, and zis the apparent gating valence (gating charge, z¢).
In some cases, a steady-state component (7.,) was necessary to de-
scribe the data. The fit provides the slope factor, which indicates
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FiGure 1. Lqh II, Lqh III, and LqhalT are active on hH1 chan-

nels. Superimposed whole-cell currents were recorded from HEK
293_hH1 cells at test voltages between —80 and +70 mV in 10-mV
increments in the absence (left) and presence (right) of 5 nM of
the indicated toxins.

how much voltage change is needed for an e-fold increase in the
time constants.

The association rates were assessed with a double-pulse proto-
col. A conditioning prepulse to very high depolarization voltages
caused maximal toxin dissociation. It was followed by hyperpolar-
izing pulses of increasing duration to follow the time course of
toxin rebinding and action. At each association voltage, the asso-
ciation kinetics was followed by plotting Iy /I, VeTsus the asso-
ciation durations and fitted with a single exponential to yield the
time constants (7,,).

RESULTS

Lgh Toxins Modify Activation and Fast
Inactivation of hH1 Channels

Families of Na* currents from whole-cell recordings of
HEK 293_hHI1 cells in the absence (left) and presence
(right) of 5 nM Lqh II, Lgh III, and LghaIT are shown
in Fig. 1. Although under control conditions hHI
channels inactivate rapidly and completely, Lqh II and
Lqgh III at that low concentration strongly slowed down
fast inactivation of hH1 channels. At 100 nM, LqhalT
also had a considerable effect of fast inactivation of
these channels (see below).

From data like those shown in Fig. 1, but in the ab-
sence and presence of 100 nM toxins, current-voltage
relationships and voltage dependencies of steady-state
fast inactivation were compiled and analyzed with Eqgs.
1 and 2, respectively. The resulting parameters for

TABLE 1

Parameters for the Activation and Steady-state Fast Inactivation
of hH1 Channels

Activation Fast inactivation
V ke Var Feng apc
mV mV n mV mV % n

Control =529 + 1.5 123 +0.2 12 —881*20 54*01 1.0*x03 11
LghII —58.1 * 1.7% 14.4 = 0.4* —95.8 £ 2.3% 85 £ 0.2*% 5.6 = 0.8*%

Control —47.7 32 128 * 0.5
Lgh III —52.2 = 3.5% 15.3 = 0.7*

8 —841%+29 52*x01 06=*x02 7
—89.1 = 3.4* 8.6 = 0.3* 5.8 = 0.7*

Control —54.6 =15 123*04 10 —899*21 55*03 06=*=02 9
LghalT —60.7 = 1.7* 13.7 = 0.5* —96.5 = 2.1* 8.6 = 0.3* 3.5 £ 0.7*

Parameters of activation and inactivation of hH1 channels in the absence
and presence of 100 nM of the indicated toxins.

*ttest: P<0.01.

Tt test: 0.01 < P < 0.05.

channel activation and fast inactivation are shown in
Table I. All three toxins at 100-nM concentration
shifted the threshold of channel activation by about —5
mV and slightly increased the slope factors of activation
without changing the reversal potential (not shown).
The toxins only slightly increased the maximal inward
Na* currents through hH1 channels (0-30%), whereas
they largely increased the peak inward currents in cur-
rent-voltage relationships of pI channels (30-70%;
Chen et al., 2000). Lgh II, Lqh III, and LqhalT shifted
the steady-state inactivation in hHI1 channels by only
about —6 mV. However, they caused a decrease in volt-
age dependence of inactivation due to significantly in-
creasing the slope factors of fast inactivation from ~b.5
to ~8.5 mV (Table I).

To quantify the functional effects of the toxins on hH1
channels, experiments with various toxin concentrations
were performed. The average values of the ratio I ./
L (Fig. 2 A) from several experiments were plotted as
a function of test voltages for the indicated toxin con-
centrations (Fig. 2 B, Lgh II). In the control, fast inacti-
vation of hHI channels after 5 ms increases with increas-
ing test voltage, and is complete at ~0 mV. This clearly
indicates that the fast inactivation is strongly voltage de-
pendent. Increasing toxin concentrations gradually re-
duced the voltage dependence of fast inactivation. The
dose dependence of inactivation removal was analyzed at
0 mV (framed data points in Fig. 2 B). The fits of the re-
sulting dose-response curves (Fig. 2 C) according to Eq.
4 yielded the EG;, values 11.5 = 2.5 nM, 2.5 = 0.1 nM,
and 32.9 * 5.0 nM, and the g, values of 0.87 = 0.03,
0.89 = 0.01, and 0.83 = 0.04 for Lqh II, Lqh III, and
LqghalT, respectively. The data obtained for Lqgh III on
hHI1 channel should be considered an operational esti-
mate of the upper limit. Owing to the very slow onset of
block (see below), no steady-state conditions could be
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FiGure 2. The degree of toxin-induced loss of fast inactivation is
dose dependent. The ratio f; /L (A) was chosen as a parameter
for the degree of removing fast inactivation by toxins. (B) L ne/Leax
in the absence and the presence of the indicated concentrations of
Lgh II was plotted versus test voltages. Straight lines connect the
data points. (C) L ns/Les Obtained at 0 mV test voltage (framed
data points of B), was plotted versus the concentrations of Lqh II,
Lqgh III, and LgholT. Data were fitted according to Eq. 4 (continu-
ous lines) yielding the following: for Lqh II, ¢; = 0.865 * 0.034,
ECGyy = 115 = 25 nM, and 2 = 0.82 * 0.08; for Lqh III: ¢, =
0.885 = 0.012, EG;, = 25 £ 0.1 nM, and & = 2.04 = 0.24; and for
LghalT: ¢; = 0.826 * 0.044, EG;, = 32.9 * 5.0 nM, ~ = 1.10 = 0.15.
The number of experiments for each point is indicated. contr., control.

obtained at very low concentrations. Therefore, the EG;
value is overestimated. By the same argument, the Hill
coefficient of 2.04 = 0.24 for Lqgh III will be overesti-
mated as well, whereas the dose dependencies of Lqh II
and LghalT obeyed more realistic Hill coefficients of
0.82 *+ 0.08 and 1.10 £ 0.15, respectively. Compared
with the results obtained for the other two toxins and
also for the toxin interaction with pl sodium channels
(Chen et al., 2000), the interaction between hHI1 and
Lqh IIT shows unusual properties.

The time course of fast inactivation in hH1 channels
in the absence and presence of the toxins was analyzed
using double-exponential functions (Fig. 3 A and Eq.
3). The two time constants (Fig. 3 B) and the relative
amplitudes of the fast components (Fig. 3 C) were plot-
ted versus test voltages. Under control conditions, the
fast component was >90% at test voltages higher than
—30 mV, and its time constant showed a clear voltage
dependence (Fig. 3 B, open circles). In the presence of
100 nM of the toxins, the time constants of the slow
components of fast inactivation displayed no voltage de-
pendence at test voltage above —20 mV, whereas time
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Ficure 3. Voltage dependence of fast inactivation kinetics in hH1
channels. (A) Current traces elicited by depolarizations to 0 mV be-
fore and after application of 100 nM Lqgh II. The continuous super-
imposed curves are the results of double-exponential data fits (Eq.
3). (B) Voltage dependence of time constants for fast inactivation ki-
netics in control conditions (n = 22; O) and in the presence of 100
nM Lqh II (= 6; ), Lqh III (n = 5; M), and LqhaIT (n = 11; @).
(C) Relative amplitudes of the fast components (a/[apctas+a,]).
Straight lines connect the data points. const., constant.

constants for fast components appeared to retain much
less voltage dependence than under control conditions.
At the test voltage of 0 mV, the time constants of slow
components were 39 £ 3, 50 £ 9, and 33 = 3 ms for
Lqgh II, Lgh III, and LghalT, respectively. Compared
with a control value of 0.68 £ 0.01 ms, time constants of
fast components were 1.3 £ 0.1,2.1 = 0.4,and 1.1 = 0.1
ms for the toxins. Compared with the control value of
95 * 1%, the relative contributions of the fast compo-
nents at 0 mV were about 20 = 2, 10 + 2, and 31 * 3%
for Lqh II, Lgh III, and LghalT, respectively. Thus, Lqh
III not only removes fast inactivation of hH1 channels at
lower concentrations, but also slows down inactivation
more extensively than the other two toxins tested.

Toxin Association and Dissociation in hH1 Channels

After obtaining stable toxin effects at a concentration
of 100 nM, toxin dissociation rates in hH1 channels
were obtained in a voltage range from +20 to +180 mV
with protocols like that shown in Fig. 4 A. As shown in
Fig. 4 (B and C) a 100-ms dissociation pulse to +120
mV almost completely removed the effects of 100 nM
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Ficure 4. Voltage depen-
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posed current traces for a
toxin-dissociation experiment
in the presence of 100 nM
Lqh II, Lgh III, and LqholT.
Currents were measured af-
ter conditioning pulse steps to
+120 mV with increasing du-
ration and a 50-ms return to
—120 mV to recover from fast
inactivation. The superim-
posed traces show the acceler-
ation of fast inactivation due
to toxin dissociation with
longer conditioning pulses
(durations are indicated in
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indicated toxins from hH1 channels at +120 mV dissociation potential. The ratio f /...« Was plotted versus the logarithm of the dissoci-
ation time and the indicated fit curves were obtained using single-exponential functions, yielding dissociation time constants (7). Similar
experiments were performed for other voltages. (D) The dissociation (Dissoc.) time constants were plotted as a function of the dissocia-
tion voltage (large symbols, n = 4-5). Also shown are data for pl skeletal muscle sodium channels (Chen et al., 2000; small symbols). The
superimposed single-exponential fits to the high voltage data points yielded the increases in voltage that are needed to accelerate toxin dis-

sociation e-fold.

Lgh II and LqghalIT on fast inactivation of hHI1 chan-
nels, whereas a 540-ms dissociation pulse to the same
voltage only partially removed the effects of Lqgh III on
fast inactivation. At the same dissociation voltage, the
toxins exhibited quite different dissociation time con-
stants in hH1 channels with the order 7,4 (Lgh II) <
Tor (LqhalT) <7,4 (Lgh III), e.g., at dissociation volt-

A 50 ms
dissociaton 41
200 ms test pulse
+100 mv -20 mv

association
0 mV

3.25s

age +100 mV, 7,4 values were 27, 84, and 2,010 ms. As a
consequence, in the explored voltage range, equivalent
dissociation rates are obtained for Lgh III at voltages
~140 mV higher than for Lqgh II.

For each toxin, the dissociation rates were strongly
voltage dependent with more depolarized voltages sig-
nificantly accelerating the dissociation rate. In the high

FiGure 5. Toxin association kinetics in hHI1
channels. (A) Superimposed current traces for a
toxin-association experiment at association volt-
age —120 mV in the presence of 100 nM Lqh IL
As indicated by the protocol, a 200-ms depolariz-
ing step to +100 mV was used to dissociate most
of the bound Lqh IL. For the rebinding of the
toxin, the membrane potential was subsequently
returned to —120 mV. The superimposed current
traces show the slowing of fast inactivation due to
the rebinding of Lqgh II with increasing periods at
—120 mV (50 ms to ~13 s). (B) The kinetics of
toxin association was assayed by measuring the ra-
tio I n/Learo here plotted versus the association
time at —120 mV for Lqh I (O0) and LqhaIT (@).
Fits were performed with single exponentials. (C)
The association (Assoc.) time constants (const.)
were obtained in a voltage range from —160 to
—100 mV for Lgh II and LghalT, and then plot-
ted versus the association voltage (n = 3-5). The
single data point (M) for the association rate of
100 nM Lqh III was measured by rapid toxin ap-
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plication (see Fig. 6). As a control, association
rates for I skeletal muscle sodium channels are
indicated (from Chen et al., 2000; small symbols).
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voltage limit, single-exponential fits yielded slope fac-
tors of 25.9 = 1.4, 24.8 = 8.0, and 25.8 = 2.0 mV for
Lqh II, Lgh III, and LqhalT, respectively (Fig. 4 D). Re-
analysis of the dissociation data for pl channels (Chen
et al., 2000; small symbols in Fig. 4 D) yielded voltage
dependencies of 14.4 = 1.1 mV (Lgh II), 11.9 = 0.7 mV
(Lqh III), and 12.7 = 0.9 mV (LqhalT), clearly showing
that the voltage dependence of toxin dissociation is de-
termined by the channel protein and not by the toxin.

The association time constants (7,,) of 100 nM Lqh
II and LqhalIT in hHI channels were measured with
protocols shown in Fig. 5 A at association voltages be-
tween —160 and —100 mV. As shown in Fig. 5 C, the as-
sociation rates of Lqh II and LqhalT were not voltage
dependent in the range between —160 and —120 mV.
This result is similar to that found for plI channels for
Lgh II (Chen et al., 2000). However, above —120 mV,
association became significantly slower.

Owing to the very slow dissociation of Lqh III, it is
very complicated to completely remove this toxin from
hH1 channels even at very high dissociation voltages up
to +180 mV, which in most cases leads to a loss of the
seal in the whole-cell configuration. Thus, it was impos-
sible to measure systematically association rates of Lqh
IIT in hHI channels with standard protocols as shown
in Fig. 5 A.

Therefore, we attempted to estimate the association
rates of Lqh II and Lqgh III in response to rapid toxin ap-
plication. Toxin effects were assayed by measuring f .,/
Lca at short depolarizations to —20 mV, which were ap-
plied with a repetition interval of 1 s (Lgh II) and 5 s
(Lgh III), respectively. The time course of I 1n,/Jcar after
application of 100 nM of the toxins is shown for two ex-
amples in Fig. 6 A. The development of the toxin effect
could be well fitted with single-exponential functions.
The time constants obtained from these fits are com-
pared with the time constants obtained by association
experiments using high voltage (“V”) to dissociate the
toxins from the channels (Fig. 6 B, left). It is clearly seen
that the time constants, obtained with these methods,
are very similar for Lqh II. For Lqh III, the slow associa-
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tion, only roughly estimated by voltage-induced dissocia-
tion experiments, could be confirmed (45 * 7).

At —120 mV, the association rates were estimated to
be 3.7, 0.22, and 2.5 uM~!s7! for Lqh II, Lqgh III, and
LqhalT, respectively. Thus, Lgh II binds very rapidly,
whereas binding of Lqh III proceeds very slowly. The
expected time constants of association with 5 nM of
Lqgh II, Lqgh III, and LqhalT, were about 54, 900, and
80 s, respectively, defining stringent limits to the sys-
tematic evaluation of the effects of Lqh III owing to its
very slow binding and dissociation kinetics. As toxin ef-
fects were usually evaluated about 30 min after toxin
application, this extremely slow association of Lqh III
could be the source for the apparently large Hill coetfi-
cient (Fig. 2 C) because the effect at low toxin concen-
trations will be underestimated.

Toxin Modulation of Slow Inactivation and Toxin
Binding in hH1 Channels

The molecular source for the voltage dependence of
scorpion a-toxin dissociation from Na* channels is not
yet known. The common belief is that protein confor-
mational changes associated with channel activation
and/or fast inactivation result in a reduced toxin bind-
ing affinity, and hence toxin dissociation. However,
there are additional processes linked to channel activa-
tion that may cause a reduced toxin affinity. If we com-
pare the dissociation rates of the Lgh toxins from hH1
and pl channels, we notice that the toxins appear to
bind more tightly to hH1 channels and the voltage de-
pendence of the dissociation from hHI channels is
only about half as big as for wlI channels (Fig. 4). This
difference is in a way reminiscent of the difference that
these two channel types show in respect to the process
of slow inactivation. hHI1 channels have an incomplete
slow inactivation and a weak voltage dependence,
whereas pl channels slow inactivate more extensively
and exhibit a steeper voltage dependence (Richmond
et al., 1998; O’Reilly et al., 1999). Thus, in particular
because Lqh III is binding so tightly to wI and hHI
channels even at very high dissociation voltages, it

FIGURE 6. Association kinetics after rapid toxin ap-
plication. (A) The degree of hHI channel inactiva-
tion was assayed by repetitive test pulses to —20 mV

Lah Ht with an interval of 1 s (Lqgh II, 6 ms depolarization;
100 0) or 5 s (Lgh III, 10 ms depolarization; M). The
holding voltage was —120 mV. At time zero, 100 nM

80 of the indicated toxins were applied by an applica-
60 tion pipet. The resulting estimates for I ,s/Lcac Were
40 fit with single-exponential function (superimposed).

(B) The time constants (const.) for toxin association
20 obtained from these perfusion experiments (P) are

odp compared with those obtained from experiments
shown in Fig. 5, where the toxins were dissociated
from the channels by high voltage pulses (V). Presen-
tation as box-plots; stars and circles indicate outliers.
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FIGURE 7. Slow inactivation and toxin binding for hH1 channels.
(A) Pulse protocol used to measure “steady-state” slow inactivation
and voltage dependence of toxin binding. (B) Steady-state slow in-
activation without and with the 100 nM toxins. The peak current
measured during pulse S2 was normalized to the peak during
pulse S1 yielding the degree of slow inactivation (slow inactivation
that does markedly not recover during the 50-ms pulse at —140
mV) as a function of the prepulse voltage. The continuous curves
are Boltzmann fits. Both Lgh II and Lqh III enhance steady-state
slow inactivation. (C) Voltage dependence of the toxin-induced in-
crease of slow inactivation. The toxin-induced additional slow inac-
tivation is here presented as I, /I .o, Showing that the effect of
Lqgh II on slow inactivation is strongest at about —40 mV. (D) The
degree of the remaining toxin bound was estimated by measuring
L s/ Leax during the S2 pulse. Although Lgh III remains bound up
to 0 mV, Lqgh II nearly completely dissociates from the channel.
The continuous curves are the results of Boltzmann fits with the
parameters: Vj, = =52.1 = 1.1 mV and k, = 13.5 = 1.0 mV for Lqh
IL; and V;, = 51.0 = 1.3 mV and %, = 13.7 = 1.3 mV for Lqh III.

should be possible to directly measure its effect on slow
inactivation of these channels. As Lqgh II dissociated
very rapidly from hHI channels, the effects of Lqgh II
on slow inactivation of hHI1 channels were initially ex-
amined as a control for Lgh IIL

Steady-state slow inactivation was measured with the
protocol described in Fig. 7 A. In the absence of toxins,
slow inactivation of hHI channels is incomplete, i.e., a

TABLE I1I
Parameters for the Steady-State Slow Inactivation of hHI1 and ul

Channels
Vis kg apc
mV mV % n
hH1 channels
Control —44.7+ 0.5 20.1 = 1.1 51 =2 5
LqhII —68.4 = 1.1%* 14.6 = 1.6% 43 = 4 4
Lqh III —63.9 = 2.2% 18.7 1.9 20 * 4* 5
wl channels
Control —-55.3 = 1.0 10.5 £ 0.2 28 = 2 11
Lqgh III —63.2 = 0.2%* 7.6 £0.3*% 21 £ 2% 6
Lqh II —67.6 = 5.4% 8.5 + 0.7* 12 + 3*

Parameters were determined in the absence and presence of 100 nM of the
indicated toxins.
*ttest: P<0.01.

noninactivating component of 51% was measured at
high voltages. Half-maximal slow inactivation was ob-
tained at —45 mV and the voltage dependence was
rather weak (20 mV per e-fold change). In the presence
of 100 nM Lqh II and Lqh III, steady-state slow inactiva-
tion was significantly shifted by about —22 and —19 mV,
respectively, and the slope factors were decreased (Fig. 7
and Table II), demonstrating that both toxins caused an
increase in voltage dependence of slow inactivation in
hHI1 channels. However, the more pronounced effect
was that Lqh III decreased the fraction of noninactivat-
ing channels at high potentials to 20%. The ratio of cur-
rent after toxin application relative to the control values
is shown in Fig. 7 C as a function of voltage. It is clearly
seen that Lqh III strongly increases the extent of slow in-
activation. Lgh II also increases slow inactivation, but
shows a maximum in this effect at about —40 mV. The
reason for this difference between Lqgh III and Lqgh II
may arise from their different binding properties. In Fig.
7 D, the degree of fast inactivation after the slow inacti-
vation prepulses (60 s) was analyzed and plotted as a
function of the prepulse voltage. Although the inactiva-
tion remains eliminated for Lgh III at the voltages up to
about +30 mV, Lqgh II dissociated at a half-maximal volt-
age of —52.1 = 1.1 mV with a slope factor of 13.5 = 1.0
mV. Lqh III only dissociated at higher voltages. Vj, of
+51.0 = 1.3 mV and %, of 13.7 = 1.3 mV were estimated
based on a smaller number of additional experiments,
which were complicated to perform because of the insta-
bility of whole-cell configurations during long depolar-
izations to high voltages. Although both toxins dissoci-
ate at high voltages, they have a significant enhancing ef-
fect on slow inactivation at physiologically relevant
voltages (e.g., —70 mV), and it appears as if some of this
effect remains at high voltages even after toxin dissocia-
tion has occurred.
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Ficure 8. Kinetics of slow inactivation for
hH1 in the presence of Lqh III. (A) Kinetics of
the onset of slow inactivation at —40 mV was
measured according to the indicated protocol.
100 nM Lqgh III accelerated the slow inactiva-
tion. (B) Kinetics of the recovery from slow in-
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Lgh III Changes the Kinetics of Slow Inactivation
in hH1 Channels

As Lqh III dramatically changed steady-state slow inacti-
vation of hHI1 channels, the effects of Lgh III on the de-
velopment of slow inactivation were examined with a
two-pulse protocol. Fig. 8 A shows that Lqgh III acceler-
ated the development of slow inactivation and increased
the fraction of hH1 channels that entered slow inactiva-
tion. In the presence of Lqgh III, the short time constant
was not affected (3.6 s), but the long time constant for
the development of slow inactivation was significantly
decreased (from 37 to 23 s at —40 mV), and the ratio
for the slow component was significantly increased
(from 29 to 52% at —40 mV). Moreover, steady-state
slow inactivation with a 102-s depolarization pulse was
significantly increased (from 42 to 72% at —40 mV).

The recovery from slow inactivation of hH1 channels
in the absence and presence of 100 nM Lqh III was in-
vestigated with the protocol shown in Fig. 8 B. Lqgh III
did not change significantly the two time constants (7,
0.22 s for control versus 0.14 s for Lqh III; and 7,, 4.98 s
for control versus 4.99 s for Lgh III) and the ratio for
the fast component of recovery from slow inactivation
(ratio of 7, 30.3% for control versus 30.5% for Lqh III).
However, the ratio of the slow component was signifi-
cantly increased from 17 to 49%. Thus, Lqgh III slowed
down the recovery rate from slow inactivation of hH1
channels mainly by influencing the amplitude of the
slow component of the recovery kinetics.

Toxin Modulation of Slow Inactivation and Toxin Binding
in ul Channels

To test whether the effect of Lgh toxins on slow inactiva-
tion is a general phenomenon or specific for hH1 chan-
nels, we performed similar experiments to those shown
in Fig. 7 for pI skeletal muscle channels (Fig. 9). In this
case, 100 nM of the toxins left shifted the voltage depen-
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Recovery time (s)

activation at —140 mV was also slowed down
by 100 nM Lqgh III. The continuous curves in
A and B are double-exponential fits (see text).

i —
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dence of slow inactivation by about —10 mV and slightly
increased the voltage dependence (Table II). The de-
gree of slow inactivation was also increased. Both Lqh II
and Lqgh III showed a maximum relative effect on slow
inactivation at around —50 to —40 mV, indicating toxin
dissociation during the 60-s prepulses to high voltages.
This is shown in Fig. 9 D by plotting I; /L. as a func-
tion of the prepulse voltage. Lgh II dissociated with a
half-maximal voltage of —39.1 £ 1.8 mV and a slope of
10.8 = 1.1 mV. Dissociation of Lgh III had to be de-
scribed with a double Boltzmann function; the most
prominent component being described by Y, = +28.9 =
1.4 mV and k, = 11.9 £ 1.1 mV. It is important to note
here that Lgh II seems to have a stronger effect on slow
inactivation than Lqh III, although Lqgh II binds less
tightly and shows much faster dissociation kinetics.

DISCUSSION
Action of Lgh a-Toxins on hH1 Channels

Lqgh II, Lqgh III, and LghaIT markedly slow down the
kinetics of fast inactivation in hH1 and significantly re-
duce the voltage dependence of steady-state fast inacti-
vation. These are typical effects of scorpion a-toxins.
The same toxins had similar effects on wI (Chen et al.,
2000) and other site 3 toxins were also shown to re-
move inactivation and to shift its voltage dependence
(Chahine et al., 1996b; Rogers et al., 1996: Benzinger et
al., 1999). This similarity suggests that the toxins act by
a similar molecular mechanism and bind to a common
site, mostly determined by receptor site 3, i.e., the
linker between segments 3 and 4 in domain D4 (see
also Benzinger et al., 1997, 1998).

Although qualitatively similar, the quantitative effects
of the three toxins tested on hH1 channels differ signif-
icantly from those previously reported for pl channels.
The limiting time constants of fast inactivation after
toxin application are >30 ms for hHI channels, but
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FIGURE 9. Slow inactivation and toxin binding for pI channels.
(A) The pulse protocol is identical to that shown in Fig. 7 A. (B)
Steady-state slow inactivation with and without 100 nM toxins. (C)
Voltage dependence of the toxin-induced increase of slow inactiva-
tion. (D) The degree of the remaining toxin bound was estimated
by measuring I ,,,/I,c.x during the S2 pulse. The continuous curves
are the results of single (Lgh II) and double (Lgh III) Boltzmann
fits. For Lgh II, j, = —39.1 = 1.8 mV, and k, = 10.8 = 1.1 mV; for
Lqh III, V;,; = —58.9 * 6.5 mV, ¢; = 0.10 = 0.01, V;, = 28.9 = 1.4
mV, and a, = 0.63 = 0.03, and a common slope factor k, = 11.9 =
1.1 mV, where ¢ is the amplitude of the respective components.

only 15 ms for pl channels. The EG;, values of Lgh II,
Lqgh III, and LqhalT to remove fast inactivation of hH1
channels are 12, <2.5, and 33 nM, respectively, com-
pared with those in plI channels of 1.4, 7.2, and 0.5 nM,
respectively. These results show that both skeletal and
heart muscle of mammals are very important targets for
these three toxins. However, it also says that the three
toxins tested are very useful tools for the discrimination
among different channel types. Although Lgh III has
the highest and LqhalT the lowest potency on hHI1
channels (separated by more than a factor of 10) for I
channels the situation is just the opposite, clearly show-
ing that structural changes of the channel protein can
result in the improvement of binding for one toxin, but
simultaneously may lead to a reduced affinity of an-

other a-toxin from the same species. Mutagenesis stud-
ies may unravel how much of these differences can be
accounted for the differences in receptor site 3. Com-
parison of the putative receptor sites 3 indicates that
there are only two residues different between hH1 and
wI channels: 11611 (hH1) versus L1429 (pI) and F1617
(hH1) versus V1435 (wI). Interestingly, the site F1617
lies COOH-terminal outside a hot spot for the binding
of gating modifying peptides identified for the interac-
tion of hanatoxin with Shaker and DRKI potassium
channels and w-Aga-IVA toxin with «;, calcium chan-
nels (Winterfield and Swartz, 2000).

The strong effect of the Lqgh toxins on human car-
diac Na™ channels may form the molecular basis for
their ability of inducing cardiac arrhythmias and, there-
fore, their life-threatening toxicity in mammals.

Strong Interaction between hHI1 and Lqh III

Although all three toxins tested slowed down the fast
inactivation time course in hH1 channels, the interac-
tion of Lgh III with hH1 channels seems to be particu-
larly strong. In the presence of 100 nM Lqgh II, Lqh III,
and LqghalT, the limiting time constants (7,) of the slow
component of fast inactivation at test voltage 0 mV
were 39, 50, and 32 ms, respectively, compared with 15
ms for all three toxins in wI channels. Thus, Lgh III is
much more potent to remove fast inactivation of hHI
channels than Lqh II and LqhalT. In addition, the am-
plitude of the slow component also provides informa-
tion on the toxin activity to remove fast inactivation on
hHI channels, e.g., in the presence of 100 nM of Lqgh
II, Lqh III, and LghalT, the ratios of the slow compo-
nent at test voltage 0 mV were much different in hHI
channels (81, 90, and 72%, respectively), but they were
nearly the same (~88%) in plI channels,

The most important feature of Lqh III seems to be
the exceptionally slow rates of binding and unbinding.
In pI channels, both toxin association and dissociation
kinetics followed the order Lqh IT > LqhalT > Lqgh III,
i.e., Lgh II is fast and Lqh III very slow (Chen et al.,
2000). This indicated that the absolute on- and off-rates
of the toxins are affected by the nature of the toxins in
a similar way. The association rates of the toxins to hHI
channels followed the same sequential order, but were
consistently slower compared to those for pl channels
(at =120 mV, 7., = 2.7 vs. 1.7 s for Lqh I; 7,, = 4.1 vs.
3.6 s for LqghalT; and 7., = 45 vs. 23 s for Lqh III). The
very slow association rate at low Lqh III concentrations
compromised a real steady-state measurement of Lqgh
III binding with electrophysiological methods.

The dissociation rates of Lgh II and LghaIT from
hH1 channels were faster than that from plI channels
(at +100 mV, 7,5 = 27 vs. 30.1 ms for Lqh IT; and 7,4 =
84 vs. 135 ms for LqhalT). However, the dissociation
rate of Lqh III from hH1 channels was much slower
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than that from pl channels (at +100 mV, 7,4 = 2,010
vs. 322 ms), suggesting that Lqh III binds to hH1 chan-
nels most strongly and the interaction between the
hHI channel and Lqh III is unusual.

Mechanism of Toxin—Channel Interactions

Several studies on scorpion a-toxins have shown that
the toxin affinity to voltage-gated Na* channels is volt-
age dependent; upon depolarization, the toxins dissoci-
ate from the channels and fast inactivation is tran-
siently restored (Rogers et al., 1996). However, the
molecular source for this voltage-dependent toxin dis-
sociation is not known. For those toxins that dissociate
rapidly, the apparent voltage dependence of “binding”
could be correlated with the activation threshold of the
Na* channels. Thus, one may speculate that channel
activation reduces the toxin’s binding affinity. However,
this conclusion cannot easily be supported by direct ev-
idence because there are additional molecular pro-
cesses that are coupled to the voltage-dependent activa-
tion mechanism. In the first place, this is fast inactiva-
tion, the major target of the a-toxins. But also, slow
inactivation is coupled to the activation process. Thus,
it remains an open question which of the factors,
namely activation, fast inactivation, slow inactivation, or
just the membrane voltage is the primary source for
the voltage-dependence of toxin—channel interactions.
Like other gating-modifier toxins acting on Na*, Ca?,
or K* channels by binding to extracellular regions
close to the S4 segment (Li-Smerin and Swartz, 1998;
Winterfield and Swartz, 2000), scorpion a-toxins bind
to receptor site 3 and therefore are expected to exert
the primary effects on the voltage sensor of Na* chan-
nels. Thus, all processes that are coupled to the confor-
mational state of S4 may be affected by toxin binding
and, in turn, may affect toxin binding.

With the results presented here we may gain some
more insight into this complex question. A direct cou-
pling of the channel activation machinery with toxin
binding is feasible. However, the toxins do not alter
channel activation in a strong way, and the small effects
on activation threshold and slope factor could be even
explained by an indirect effect due to the removal of
fast inactivation. The strong interaction of toxins with
fast inactivation therefore suggest that the binding af-
finity is reduced upon entering inactivated states. Our
study adds another possibility, namely that toxin bind-
ing is coupled to slow inactivation. Although there can-
not be direct proof because the toxin effect cannot be
assayed in the absence of the fast inactivation gate of
Na* channels, we may discuss several aspects that are in
support of a toxin interaction with both fast and slow
inactivated states.

The results about toxin association to pl (Chen et al.,
2000) and hHI channels (Fig. 5) suggest that the tox-
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ins bind to closed states of Na* channels. Association
rates became slower for hH1 channels above —100 mV,
which is consistent with a more negative threshold for
activation, but also with a more negative half-maximal
voltage of fast and slow inactivation compared with I
channels (Table II). The very rapid dissociation upon
depolarization of some toxins may indicate that slow in-
activation cannot be an important factor, because the
toxin effect is relieved before slow inactivation has oc-
curred. This argument strongly supports the impor-
tance of the state of the fast inactivation gate for the sta-
bility of the toxin—channel complex.

However, the dissociation kinetics of the toxins from
hH1 channels showed a strong voltage dependence at
potentials greater than +20 mV. This finding is consis-
tent with the results on LqTx and ATX II modulation
of rat brain sodium channel II (rBII; Rogers et al.,
1996) and the modulation of wl channels by Lqh II,
Lgh III, and LghalT (Chen et al., 2000). In contrast,
there seems to be an apparently direct coupling of acti-
vation and toxin dissociation for the interaction of
N-type calcium channels with w-grammotoxin (McDon-
ough et al., 1997); in this case, the dissociation rate of
the toxin is not voltage dependent at potentials where
channel activation is saturated.

Thus, for scorpion a-toxins the question remains re-
garding the source for this additional voltage depen-
dence at high voltages. Evaluation of the voltage depen-
dencies of toxin dissociation from hH1 channels, mea-
sured at high voltages to avoid overlap with association,
revealed that all three toxins tested exhibit virtually
identical voltage dependencies equivalent to ~1 elec-
tron charge. In pl channels, Lqh II, Lqh III, and
LqhalT also display virtually identical voltage depen-
dencies of dissociation, but equivalent to ~2 electron
charges (Chen et al., 2000). These results show that this
voltage dependence is channel-isoform specific and not
dependent on the nature of the toxins, although the ab-
solute dissociation rates differ quite substantially among
the toxins (Fig. 4 D). This could mean that the absolute
binding strength is strongly mediated by the structure
of the toxin, but is subject to a voltage-dependent mod-
ulation, associated with voltage-dependent conforma-
tional changes of the channel protein. The major struc-
tural difference of the toxins seems to be a five-residue
turn (amino acids 8-12) that has been implicated in the
binding interaction with LqhalT (Zilberberg et al.,
1997; Gordon et al., 1998; Krimm et al., 1999).

In particular, the toxins tested here dissociate quite
slowly from hHI and wl channels. Thus, it is conceiv-
able that there is a correlation between slow molecular
conformational changes, e.g., associated with the slow
component of slow inactivation (Fig. 8 A), and toxin
binding stability. Interestingly, the slope factors for the
voltage dependence of slow inactivation differ between



pl and hHI channels in a similar way as the voltage de-
pendencies of toxin dissociation. This argues in favor
of a participation of processes linked to slow inactiva-
tion in the dissociation of toxins. The binding of the
toxins to receptor site 3, which is mainly formed by the
S3-4 loop of D4, may in turn change the voltage depen-
dence of slow inactivation of Na* channels as shown in
Figs. 7B and 9 B.

Owing to the particularly slow dissociation rate of
Lqh III, the apparent binding curves (Figs. 7 D and 9
D) may deviate quite strongly from those obtained for
Lqh II. Although Lqh II can dissociate within the 60-s
prepulse after induction of the corresponding trigger,
i.e., a combination of fast and slow inactivation, 60 s are
not long enough to allow for Lqh III dissociation at low
voltages. Only upon stronger depolarization to +50
mV (hH1) or +30 mV (pnl) do the rate constants (see
Fig. 4 D) become fast enough to ensure appreciable
toxin dissociation during 60-s prepulses.

Toxin Modulation of Slow Inactivation

As shown in Figs. 7-9, Lgh IT and Lqgh IIT enhance slow
inactivation of hH1 and pl channels. These results can
be explained by direct or indirect effects of the toxins
on slow inactivation.

An indirect effect of scorpion a-toxins on slow inacti-
vation of Na* channels is expected, as fast and slow in-
activation seem to be coupled (Vedantham and Can-
non, 1998). According to this hypothesis, removal of
fast inactivation should increase slow inactivation and,
hence, a-toxins should indirectly enhance slow inacti-
vation. In fact, recent reports showed that slow inactiva-
tion of Na* channels can be enhanced when fast inacti-
vation was removed by inducing mutations in the fast
inactivation structure (IFM motif replaced by QQQ;
Featherstone et al., 1996; Richmond et al., 1998).
Therefore, toxin-induced removal of fast inactivation
will consequently enhance slow inactivation.

In addition to the indirect effect by means of a cou-
pling to fast inactivation, the toxins may directly affect
slow inactivation. There are several lines of evidence
supporting such a direct mechanism. An entirely indi-
rect mechanism would not easily explain why the toxins
reduce the voltage dependence of steady-state fast inacti-
vation (Table I) but increase the voltage dependence of
steady-state slow inactivation (Table II). In addition, 100
nM of Lgh II and Lqgh III are expected to have substan-
tial and largely similar effects on fast inactivation. As a
consequence, one would expect a similar effect on slow
inactivation when mediated by the indirect mechanism.
However, this is not the case, as Lqh III has a stronger ef-
fect than Lqgh II in hH1 channels and the opposite was
observed for wl channels. A pure indirect mechanism
would also fail to explain the persistence of the augmen-
tation of slow inactivation at high voltages (Figs. 7 C and

9 (), i.e., at voltages where toxins substantially have lost
their effect on fast inactivation (Figs. 7 D and 9 D).

Thus, besides the obvious indirect effect on slow in-
activation by removal of fast inactivation, the a-toxins
tested seem to directly affect slow inactivation by an al-
ternative mechanism. Obviously, the ultimate direct
test would be to test the toxin effects on slow inactiva-
tion of mutant channels in which fast inactivation is im-
paired (e.g., IFM-QQQ mutation in the linker between
D3 and D4). However, in our hands these mutants,
both in the background of hH1 and pl channels, did
not yield strong enough expression to allow for faithful
measurements of slow inactivation.

With this study, we intended to evaluate the effect of
Lqh IIT on slow inactivation of hH1 channels, as we
found that Lgh III binds to hH1 channels so tightly
such that strong depolarizations, which are needed to
induce slow inactivation, cannot completely dissociate
Lgh IIT from these channels. As Lqgh II dissociates so
rapidly from hHI channels, it was originally considered
a control for Lqh III. Surprisingly, Lqh II also augments
slow inactivation of hH1 and pl channels. This sug-
gests that it is a common property of scorpion a-toxins
to regulate slow inactivation of Na* channels, even if
they only bind rather weakly to Na®™ channels such as
LqTx to rBII channels (Rogers et al., 1996).

Toxin Effects on Peak Sodium Current

Typically, scorpion a-toxins or other site 3—specific tox-
ins slightly increase or decrease the peak currents of
Na* channels (Gordon, 1997). ATX II and LqTx did
not change much the peak currents of rBII channels
(Rogers et al., 1996), and ATX II did not change much
the peak currents of wl and hH1 channels either (Cha-
hine et al., 1996a). The results presented here showed
that Lqgh II, Lgh III, and LghaIT did not change much
the peak currents of hH1 channels. However, Lqgh II,
Lgh III, and LqhalT strongly increased the peak cur-
rents of wI channels by increasing the maximal channel
open probability (Chen et al., 2000). Even a partial se-
quential coupling of activation and fast inactivation
would predict an increase in peak current upon re-
moval of fast inactivation. However, this effect is coun-
teracted by a simultaneous increase in steady-state slow
inactivation. Depending on the holding voltage and
the channel type, the combination of both effects may
result in increases or decreases of the peak current. In
the case of hH1 channels, the effect on slow inactiva-
tion seems to compensate for the removal of inactiva-
tion because of the small voltage dependence of steady-
state slow inactivation that leads to an effect even at
fairly negative holding voltages (see Fig. 7 B). In com-
parison, for I channels the effect of an altered slow in-
activation is negligible around a typical holding voltage
(see Fig. 9 B) and, thus, the peak current increase in-
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duced by the removal of fast inactivation dominates.
Such effects on peak current can be eliminated when
considering that application of a-toxins may increase
the slow inactivation and slow down recovery from slow
inactivation. Therefore, the validity of repetition inter-
vals and the positioning of p/n leak pulses has to be
carefully checked in the presence of toxin.

Physiological Significance

The effects of Lqgh II and Lqh III on slow inactivation of
Na* channels (I, hH1) may play very important roles
in the toxicity of scorpion a-toxins on mammals. The
toxins kill animals by inducing paralysis and/or cardiac
arrhythmias. This results from removing the fast inacti-
vation of Na* channels and prolonging the action po-
tentials of excitable cells, but their effects on slow inacti-
vation and their voltage-dependent binding properties
have not yet been considered. In particular, at physio-
logical resting potentials of —70 to —80 mV, the in-
crease of slow inactivation induced by scorpion a-toxins
will reduce the number of available Na* channels in ex-
citable cells. This decreases the excitability and protects
the cells. In addition, long depolarizations induced by
scorpion a-toxins in excitable cells will partially dissoci-
ate the toxins from Na* channels because of their volt-
age-dependent binding properties, leading to a reduced
total toxin effect. In this respect, Lqgh III is particularly
suited in affecting cardiac function, as it remains bound
to hHI1 channels during the long cardiac action poten-
tials. In summary, the impact of a-toxins on excitable
cells may be overestimated when only considering their
primary effect on fast inactivation under voltage-clamp
conditions and very negative holding voltages.
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