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Abstract

Objectives

There has been renewed interest in lactate as a risk biomarker in sepsis and septic shock.

However, the ability of the odds ratio (OR) and change in the area under the receiver

operator characteristic curve (AUC-ROC) to assess biomarker added-value has been

questioned.

Design, setting and participants

A sepsis cohort was identified from the ICU database of an Australian tertiary referral hospi-

tal using APACHE III diagnostic codes. Demographic information, APACHE III scores, 24-

hour post-admission patient lactate levels, and hospital mortality were accessed.

Measurements and main results

Hospital mortality was modelled using a base predictive logistic regression model and

sequential addition of admission lactate, lactate clearance ([lactateadmission—lactatefinal]/lac-

tateadmission), and area under the lactate-time curve (LTC). Added-value was assessed

using lactate index OR; AUC-ROC difference (base-model versus lactate index addition);

net (mortality) reclassification index (NRI; range -2 to +2); and net benefit (NB), the number

of true positives per patient adjusted for the number of false positives. The data set com-

prised 717 patients with mean(SD) age and APACHE III score 61.1(16.5) years and 68.3

(28.2) respectively; 59.2% were male. Admission lactate was 2.3(2.5) mmol/l; with lactate of

� 4 mmol/L (37% hospital mortality) in 17% and patients with lactate < 4 mmol/L having

18% hospital mortality. The admission base-model had an AUC-ROC = 0.81 with admission

lactate OR = 1.127 (95%CI: 1.038, 1.224), AUC-ROC difference of 0.0032 (-0.0037,

0.01615; P = 0.61), and NRI 0.240(0.030, 0.464). The over-time model had an AUC-ROC =

0.86 with (i) clearance OR = 0.771, 95%CI: 0.578, 1.030; P = 0.08; AUC-ROC difference

0.001 (-0.003, 0.014; P = 0.78), and NRI 0.109(-0.193, 0.425) and (ii) LTC OR = 0.997, 95%

CI: 0.989, 1.005, P = 0.49; AUC-ROC difference 0.004 (-0.002, 0.004; P = 0.34), and NRI

0.111(-0.222, 0.403). NB was not incremented by any lactate index.
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Conclusions

Lactate added-value assessment is dependent upon the performance of the underlying pre-

dictive model and should incorporate risk reclassification and net benefit measures.

Introduction

The recent interest in the role of lactate as a biomarker of risk in the critically ill and in sepsis

and septic shock in particular [1] is perhaps surprising, given the long history of such observa-

tions [2], a point reiterated in commentaries [3, 4]. The landmark trial of early goal-directed

therapy (EGDT [5]) by Rivers, Nguyen and co-workers (2001) and the failure of three large

multi-centre trials (2014–2015) [6–8] to confirm these findings have possibly refocused the

attention of investigators on hyperlactataemia.

The statistical methods used in the assessment of lactate as a biomarker in sepsis [9] have

been calculation of the effect size (as odds ratio (OR)) and statistical significance of lactate as

single or multiple lactate measurements over the first 24 hours, or clearance over a specified

time frame (commonly 2 or 6 hours), in either univariate or multivariate logistic models [10–

13]; and the difference in the area under the receiver operator characteristic curve

(AUC-ROC) of competing models. However, biomarker assessment or its “added value” has

recently been intensely debated. The ability of the OR to “meaningfully describe a marker’s

ability to classify subjects” has been questioned [14] and “testing ROC areas generated from

nested models”, that is models with and without the biomarker, is “an approach with serious

validity problems” [15] and amounts to “. . .literally testing the same null hypothesis twice”

[16]. Authors have also not explained the exact clinical import of increments of the area under

the receiver operator characteristic curve (AUC-ROC) at, say, the second decimal place; that

is, is this small improvement “worthwhile”? [17, 18].

With the above caveats in mind, we undertook analysis of the added value of lactate as a

risk [19, 20] biomarker, with respect to in-hospital mortality, in patients with sepsis and septic

shock using prospectively recorded data from a tertiary level general Australian intensive care

unit (ICU). We report conventional indices of biomarker assessment, OR and AUC-ROC; and

measures recently recommended in the TRIPOD statement [21]: indices of risk re-classifica-

tion, the integrated discrimination improvement index (IDI) and the net reclassification index

(NRI) [20, 22]; and measures of net benefit, derived from decision curve analysis [20, 23].

Given that the data are from a single ICU, the thrust of the paper is methodological. However,

we do not eschew clinical comment and reflections on lactate as a guide to therapy (lactate as a

predictive biomarker [24]), although the latter is not to be confused with determination of lac-

tate as a prognostic risk biomarker [25].

Methods

Data acquisition

St Vincent’s Hospital Melbourne in Victoria is a 400-bed university affiliated tertiary referral

hospital. The single intensive care unit of 20 beds admits approximately 1700 patients each

year and they include those undergoing cardiac surgery and neurosurgery. Patient observa-

tions are prospectively entered within a clinical information system (IntelliSpace Critical Care

and Anesthesia, Philips) which also imports the results of routine biochemical and haematol-

ogy tests. In addition, detailed patient information is entered within a second database that
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provides information to the Australian and New Zealand Intensive Care Society (ANZICS)

adult patient database [26], the latter using an Australian modification of the APACHE III

diagnostic codes [27]. This patient database has demographic information, severity of illness

scores (APACHE III [28]), Charlson Comorbidity score [29] and outcomes of ICU and hospi-

tal discharges. Both data sources were used to extract patient details and relevant pathology

results for those patients coded with sepsis or septic shock (diagnosis codes 501–504) as the

primary diagnosis. This study was approved as a quality assurance activity by the St Vincent’s

Hospital Melbourne Quality and Risk Department. All data was anonymized and de-identified

before researcher access and neither author was involved in data anonymization.

Statistical analysis

Continuous variables were reported as mean(SD) and statistical significance was ascribed at

P� 0.05; analysis was conducted using Stata™ V14.2 (2016, College Station, TX) and R statisti-

cal software (V 3.3.1).

The overall modelling process is shown in Table 1:

1. The modelling process was considered in two stages: a base logistic model for hospital out-

come was developed with particular attention paid to the functional form of continuous

variables (using fractional polynomials [30]); interactions (or effect modifiers [13]); collin-

earity between candidate predictors using the condition number (in non-linear models,

values> 15) and the correlation between variables (rho > 0.8) [31]; and, in view of possible

non-linear covariate form and the collection of data over a number of years, the potential

for overfitting, or shrinkage statistics (determined by in-sample and out-of-sample predic-

tive bias and overfitting, expressed in percentages [32, 33]). Model development was guided

Table 1.

Model Functionals Development

Initial logistic Non-linear covariate effects (fractional polnomials) Information criteria: AIC, BIC

Interactions Discrimination: AUC-ROC

Collinearity check Calibration: Hosmer-Lemeshow test

Polynomial calibration plots

In-sample and out-of-sample predictive

bias

Overfitting

Lactate

added

Lactate form Initial lactate

Fractional lactate clearance: (admission-final)/

admission

Area under lactate-time curve

Sensitivity analysis:

Lactate change: admission-final

Lactate ratio: final/admission

Log lactate ratio: log(final/admission)

Added value

AUC-ROC difference

Net reclassification index (NRI) Bootstrapped confidence intervals

Integrated discrimination improvement index (IDI) Bootstrapped confidence intervals

Net benefit

https://doi.org/10.1371/journal.pone.0185320.t001
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by progressive reduction of information criteria (Akaike (AIC) and Bayesian (BIC) infor-

mation criteria [34]); the conventional criteria of discrimination (AUC-ROC) and calibra-

tion (Hosmer-Lemeshow statistic [35] and model variable parsimony.

Calibration plots (observed binary responses versus predicted probabilities) were under-

taken using ’givitiR’ [36, 37], a user written package within R statistical software [38]. The

relationship of predictions to the true probabilities of the event was formulated with a sec-

ond logistic regression model, based upon a polynomial transformation of the predictions,

the degree of the polynomial (beginning with second order) being forwardly selected on the

basis of a sequence of likelihood ratio tests. The calibration belt presents 80% and 95% con-

fidence levels; the deviation of the calibration belt from the line of identity is indicated by a

reported P value.

Categorical variables were parameterised as indicator variables including calendar years;

the latter were included in all models.

2. the primary analysis followed the literature examples and addressed initial lactate (mmol/

L), fractional lactate clearance ([lactateadmission—lactatefinal]/lactateadmissionl) [39] and area

under the lactate-time curve [5], calculated as per Jaki and Wolfsegger, using the “PK”

module [40] in R statistical software. We were concerned to avoid the confounding effect of

dynamic [12] lactate indices (“change scores” [41]) that were related to initial lactate. We

also considered: lactate change (lactateadmission—lactatefinal), lactate ratio (lactatefinal / lacta-

teadmission) and log ratio (log(lactatefinal / lactateadmission) = log(lactatefinal)-log(lactateinitial))

[42]. Diagnostic measures were scatter plots of lactate clearance, change, ratio and log ratio

against initial lactate; computation of Kaiser’s R (R > 1 favours change; R< 1 favours frac-

tional lactate clearance [43]); and use of Bland-Altman plots via the user written Stata™
module “concord” [44] (favoured index having the minimum slope of the reduced major

axis of the difference between indices versus the mean of indices).

3. The added value [20] of indices was computed using:

a. AUC-ROC difference (model with and without the marker) using bootstrap 95% inter-

vals (n = 1000).

b. The NRI (theoretical range -2 to +2) computed by assessing the change (movement “up”

or “down” within categories) in the classification of the risk / probability of patients with

respect to the end point (hospital mortality) by the addition of the new marker in ques-

tion; that is, NRI = P(up|event) − P(down|event) + P(down|nonevent)-P(up|event). In

the absence of understandable and well-verified risk categories, a category-free (“contin-

uous”) version may be computed, as the NRI has been demonstrated to be computation-

ally sensitive to the number of risk categories used [45]. Furthermore, as we were

interested in risk across the whole spectrum (0 to 1), we report the category-free form of

NRI (NRI(>0)). The latter is a measure of the effect size of a new predictor with respect

to prediction models, rather than the difference in performance of the two models [46].

The IDI, a complement to the AUC-ROC, is defined as: IDI = (ISnew − ISold) − (IPnew

− IPold), where IS is the integral of sensitivity over all possible cut-off values and IP is

the corresponding integral of “1-specificity” [47]. The IDI magnitude indicates the

increase in the separation of mean predicted risks/probabilities for events and non-

events that has occurred by the incorporation of the new biomarker [48] and is identical

to the difference in Pearson R2 values [20].

Bootstrap 95% CI (n = 1000) of both NRI and IDI for event, non-event and overall are

reported as opposed to P-values [49, 50]. The indices in a. and b. above were computed

using the user written “incrisk” Stata™ module [51].
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c. Net benefit, the number of true positives per patient adjusted for the number of false

positives, that is:

Net Benefit ¼
True positives � False positives pt

1� pt

� �

n
; ð1Þ

where n is the total sample size and pt is the probability threshold, using the written

“dca” Stata™ module [52]. The graphical display format is of net benefit versus threshold

probabilities (0 to 1), where the latter indicates potential points of risk for clinical deci-

sion making. For instance, if biomarker measurement would be undertaken at (and

below) a particular patient risk(s), the X-axis may be truncated at the upper margin of

plausible risk(s). As we were interested in net benefit comparisons across the whole spec-

trum of probabilities [53], the X-axis was maintained at 0 to 1. In the graph, the solid

“Treat All” line crosses the horizontal “Treat None” line (at zero on the Y-axis) at the

study prevalence value (see graphical displays below).

Net benefit is typically used to assess the value of a diagnostic test over a range of "proba-

bility thresholds" (relative value of treatment if disease is present to value of avoiding

unnecessary treatment). However, net benefit has been demonstrated to be a proper

measure of model performance [54] and the highest net benefit is optimal [23, 55]. In

the current paper, net benefit was used as a comparative index of model performance.

Results

The data set (collected over 7 years) comprised 717 patients with mean(SD) age and APACHE

III score 61.1(16.5) years and 68.3(28.2.2) respectively; 59.2% were male and 27% were ventilated

in the first 24 hours. ICU and hospital length of stay (days) were 4.3(6.4) median 2, and 23.7

(28.5) median 15, respectively. ICU and hospital mortality outcome were 12.3% and 21% respec-

tively. The Charlson Comorbidity Index ranged from 0 to 15, median 1 and interquartile range

3. On admission lactate was 2.3(2.5) mmol/l; 17% of patients had a lactate of� 4 mmol/l, with

37% hospital mortality and patients with a lactate< 4 mmol/l had a hospital mortality of 18%.

Univariate analyses

The performance of univariate predictors of hospital outcome was compared between initial

lactate (OR 1.185, 95%CI: 1.049, 1.270), lactate clearance (OR 0.640. 95%CI: 0.501, 0.817), area

under the lactate-time curve (OR 1.013, 95%CI: 1.008, 1.018) and APACHE III score (OR

1.053, 95%CI: 1.044, 1.063); only the latter demonstrated non-linear effect form and was para-

meterised as a third-degree fractional polynomial. As seen in Fig 1, all variables showed a

range dependent change in mortality, with variable levels of uncertainty (95%CI). Not surpris-

ingly, the APACHE III score, as it reflects both severity of illness and impact of therapy over 24

hours, was the best predictor with respect to the logistic AUC. Predicted probabilities from

each of the logistic models showed good calibration (calibration graphs not shown), with P

values� 0.12.

Although the logistic AUC-ROC differed between each of the predictors, a different per-

spective results when comparing the net benefit curves, as seen in Fig 2. There was little differ-

ence between the lactate derived indices, although net benefit of both initial lactate and area

under the lactate-time-curve extends to a threshold probability of at least 0.5, compared with

approximately 0.3 for clearance. Again, the net benefit of the APACHE III dominated across

all threshold probabilities.
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Multivariate analysis: Admission variables

The best fitting model (n = 681 evaluable patients) incorporated age and initial lactate (linear

effects), index of comorbidity (as a 0.5, 3 fractional polynomial) and categorical variables indi-

cating coma, cirrhosis and a heart rate� 150 beats per minute. Model parameter estimates,

diagnostics and risk reclassification measures are seen in Table 2. The calibration line of iden-

tity was contained within the 80 and 95% CI over the whole range (Fig 3). Measures of net ben-

efit are shown in Fig 4 and it is obvious that despite lactate being an “independent predictor”

of hospital outcome, there was little or no overall net benefit of including it in a predictive

model, although both models had net benefit across all threshold probabilities.

As a sensitivity analysis with respect to the added value of a biomarker in a “poorly” per-

forming model [56], two categorical predictors above were dropped (coma and a heart

rate� 150 beats per minute) and the logistic analysis was repeated. Model parameter esti-

mates, diagnostics and risk reclassification measures are seen in Table 3. Measures of net bene-

fit are shown in Fig 5; there was some separation of the two curves with (small) advantage to

inclusion of lactate as predictor, but no benefit of either models beyond a threshold probability

of approximately 0.58.

Dynamic lactate indices. Both the scatter plot of fractional clearance against initial lactate

and Kaiser’s R (= 0.322) favoured fractional clearance over lactate change. However, the

Fig 1. Univariate predictors of hospital mortality.

https://doi.org/10.1371/journal.pone.0185320.g001
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minimum slope of the reduced major axis (= 1.112) of log lactateinitial-log lactatefinal suggested

efficacy for the log lactate ratio which was also considered.

Multivariate analysis: Overtime variables, fractional clearance

The best fitting model (n = 662 evaluable patients) incorporated age and clearance (linear

effect), index of comorbidity (as a 0.5, 3 fractional polynomial), APACHE III score (third-

degree fractional polynomial) and categorical variables indicating coma and cirrhosis (the var-

iable denoting heart rate� 150 beats per minute was non-significant at P = 0.123 and was

removed from the model with no change of information criteria). Model parameter estimates,

diagnostics and risk reclassification measures are seen in Table 4; lactate clearance was non-

significant. The calibration line of identity was contained within the 80 and 95% CI over the

whole range (S1 Fig). Model measures of net benefit are shown in Fig 6 and there was little or

no overall net benefit of including clearance in a predictive model, although both models had

net benefit across all threshold probabilities, of greater magnitude than the admission models.

A second sensitivity analysis was performed, restricting the lactate time span (admission to

last) to� 6 hours; the clearance estimate was OR 0.777, 95%CI: 0.583, 1.037. The decision

curve analysis graph of net benefit (24-hour model versus 24 hour model plus clearance) was

unchanged (S2 Fig).

Fig 2. Univariate net benefit curves.

https://doi.org/10.1371/journal.pone.0185320.g002
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Multivariate analysis: Overtime variable, area under the lactate-time

curve

The same base model as above for lactate clearance analysis was used. Area under the lactate-

time curve (n = 603 evaluable patients) was non-significant at OR 0.997, 95%CI: 0.989, 1.005,

P = 0.49. Model parameter estimates, diagnostics and risk reclassification measures are seen in

Table 5. The calibration line of identity was contained within the 80 and 95% CI over the

whole range (S3 Fig). Net benefit analysis revealed little or no advantage of including area

under the lactate-time curve in a predictive model, the graph being similar to that of the clear-

ance analysis (S4 Fig).

Log lactate ratio, when added to the base model above was non significant (OR 1.349, 95%

CI: 0.892, 2.040; P = 0.156) and the net benefit curves were again almost coincident (graph not

shown).

Table 2. Model parameter estimates, diagnostics and risk reclassification measures: Initial lactate.

Odds Ratio P Lower 95%CI Upper 95% CI

Age (years) 1.032 0.000 1.015 1.048

CCI: FP 0.5 0.199 0.023 0.049 0.800

CCI: FP 3 40.045 0.000 13.043 122.948

Cirrhosis 3.669 0.004 1.497 8.990

Coma 80.901 0.000 14.846 440.857

MPM_O_HR 5.680 0.002 1.854 17.403

Lactate 1.127 0.005 1.038 1.224

Year 2 1.044 0.917 0.465 2.343

Year 3 0.627 0.219 0.298 1.320

Year 4 0.913 0.803 0.447 1.867

Year 5 0.400 0.013 0.194 0.824

Year 6 0.449 0.036 0.213 0.949

Year 7 0.387 0.058 0.145 1.034

Model diagnostics

Hosmer-Lemeshow statistic 0.580

AUC-ROC 0.785(0.727, 0.819)

Condition number 11.8

In-sample bias 0.97%

Over-fitting 7.8%

Out-of-sample-bias 8.7%

Estimate P Lower 95%CI Upper 95% CI

NRI(>0)

Event -0.241 -0.375 -0.071

Non-event 0.481 0.370 0.577

Overall 0.240 0.030 0.464

IDI

Event 0.007 -0.0001 0.030

Non-event 0.002 -0.0001 0.008

Overall 0.010 -0.0001 0.038

AUC-ROC difference 0.003 0.061 -0.004 0.016

CCI, Charlson comorbidity index. FP, fractional polynomial. HR, heart rate. H-L, Hosmer-Lemeshow

AUC-ROC, area under the receiver operator characteristic curve. diff, difference (model with and without lactate). NRI(>0), category free net reclassification

index. IDI, integrated discrimination improvement index.

https://doi.org/10.1371/journal.pone.0185320.t002
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Discussion

In agreement with prior reports [10, 11, 13, 57], the present study has demonstrated that initial

lactate concentration, lactate clearance and area under the lactate-time curve were significant

univariate predictors of hospital outcome. Estimates of AUC-ROC for lactate dependent indi-

ces were consistent with those of Puskarich et al [57], where it was clear that estimates were for

a univariate analysis. Thus the cautions of Nguyen et al [3] regarding the magnitude of the

AUC-ROC as being “unexpectedly low” are misplaced, as the comparator paper of Nichol et al

[12], examining “critically ill patients”, showed similar unadjusted AUC-ROC estimates, but

larger adjusted estimates, and these estimates were also consistent with the adjusted estimates

in the current paper. However, the assessment of the lactate dependent indices by the

AUC-ROC belies the quite small net benefit derived from a decision curve analysis (Fig 2),

given that each of the indices was well calibrated.

Analysis using a single biological measurement will be subject to random measurement

error and the (regression) coefficient estimate will be biased to the null (regression dilution

bias). Repeated measurement, as in the area of the lactate-time curve, would be, prima facie,

the preferred measurement variable [58]. Similarly, a variable measuring time change (or

“change scores”) will be subject to regression to the mean. The two change indices, - - frac-

tional lactate clearance and log lactate ratio - -, showed a marginal relation to initial lactate, but

this would not exclude confounding by regression to the mean [41, 59]. We found little evi-

dence for the superiority of the lactate time curve in this analysis. Of some interest, in the

Fig 3. Calibration plot for admission model with initial lactate.

https://doi.org/10.1371/journal.pone.0185320.g003
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Rivers trial ([5], page 1373 Table 2) the area under the curve of lactate between treatment arms

over the first 6 hours of therapy was non-significant (P = 0.62), compared with a significant

difference in lactate clearance ([LactateED presentation − LactateHour 6]�100/ LactateED presentation),

survivors versus non-survivors (38% versus 12%, P = 0.005), in a convenience cohort of

patients with severe sepsis or septic shock as reported by Nguyen, Rivers and co-workers

(2004) [39].

Previous multivariate analyses have used a variety of modelling approaches to ascertain the

added value of lactate; ranging from a focus on an ensemble of specific lactate indices with or

without other predictive variables [10, 11, 39, 60] to a formal approach to model building [13],

as undertaken in this paper. We were careful to distinguish between an admission model and

models derived from over-time variables. In the initial admission model with the addition of

lactate, the NRI was modest at 0.24, although the AUC-ROC difference was non-significant

and the differential net benefit (without and with lactate) was negligible.

Of more import, with deletion of two covariates, a poorly performing model (in terms of

the scalar value of the AUC-ROC) produced a statistical (P = 0.03) difference in the AUC-ROC

with addition of lactate and a substantive increase in the NRI (0.240 to 0.418), with the major

re-classification occurring in the non-event category, but no discernible difference in net bene-

fit. Neither of the over-time multivariate models, starting with a base model AUC-ROC of

0.86, produced significance in lactate indices, differences in AUC-ROC or net benefit,

although the level of net benefit from threshold probabilities 0.4–1 was greater than 0.05 com-

pared with the admission model. These observations are consistent with studies showing that

Fig 4. Decision curve analysis: Net benefit for admission model, with and without initial lactate.

https://doi.org/10.1371/journal.pone.0185320.g004
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the ability of a biomarker to add value to an existing model will depend upon the existing per-

formance (value increments will be easier in poorly performing models [56, 61]) and the met-

ric of assessment [62].

Reports on the added value of lactate in sepsis have used AUC-ROC differences almost

exclusively; but the inherent problem with this strategy is the clinical interpretability of (small)

difference in AUC-ROC and what level of difference is meaningful [63]. This is exemplified in

the papers addressing the new 3rd International Definition of Sepsis. Despite referencing the

TRIPOD statement, the paper of Seymour et al [64] used AUC-ROC estimates and differences

as the sole instrument for adjudging predictivity / discrimination. The “Explanation and Elab-

oration” paper of the Tripod statement [21] canvassed in some detail the use of both risk

reclassification (NRI) and decision curve analysis [21] in multivariate prediction models. In an

interesting response to queries regarding the 3rd International Definition of Sepsis from

Makam and Nguyen [65] on the use of NRI, and Gerdin and Baker [66] on calibration of

qSOFA “in various settings with other models”, Seymour and Angus [67] agreed on the advan-

tages of the NRI in outcome prediction but suggested that “calibration is not a priority for this

exercise”. Apart from the Seymour paper [64], few assessments report concomitant calibration

of baseline or extended models, presumably on the basis that calibration was not determinate

in answering the question at hand. This, however, is not the case. The susceptibility of NRI to

Table 3. Model parameter estimates, diagnostics and risk reclassification measures.

Odds Ratio P Lower 95%CI Upper 95% CI

Age (years) 1.026 0.001 1.011 1.042

CCI: FP 0.5 0.232 0.032 0.061 0.882

CCI: FP 3 23.086 0.000 8.356 63.784

Cirrhosis 3.259 0.008 1.371 7.750

Lactate 1.201 0.000 1.120 1.289

Year 2 1.058 0.885 0.494 2.266

Year 3 0.639 0.214 0.315 1.296

Year 4 0.920 0.809 0.467 1.813

Year 5 0.433 0.016 0.220 0.854

Year 6 0.407 0.016 0.196 0.848

Year 7 0.482 0.114 0.195 1.191

Model diagnostics

Hosmer-Lemeshow statistic 0.770

AUC-ROC 0.740(0.675, 0.777)

Estimate P Lower 95%CI Upper 95% CI

NRI(>0)

Event -0.186 -0.316 -0.026

Non-event 0.604 0.467 0.657

Overall 0.418 0.185 0.587

IDI

Event 0.031 0.009 0.066

Non-event 0.008 0.002 0.018

Overall 0.040 0.0120 0.084

AUC-ROC difference 0.033 0.031 0.008 0.065

CCI, Charlson comorbidity index. FP, fractional polynomial. HR, heart rate. H-L, Hosmer-Lemeshow

AUC-ROC, area under the receiver operator characteristic curve. diff, difference (model with and without lactate). NRI(>0), category free net reclassification

index. IDI, integrated discrimination improvement index.

https://doi.org/10.1371/journal.pone.0185320.t003
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increments with poorly fitting risk models has been well described [68, 69]. Both simulation

and case studies have demonstrated that the general effect of miscalibration was to decrease

net benefit and a miscalibrated baseline model may result in a marker having inflated utility

[54, 70]. We were at pains to investigate both shrinkage statistics (in-sample bias, overfitting

and out-of-sample bias) and formal calibration plots; all models were well calibrated and

shrinkage statistics were at quite acceptable values (all< 10%).

Decision curve analysis and the concept of net benefit have not been previously applied to

the study of lactate indices as septic risk markers. As net benefit incorporates both true posi-

tives and false positives, it can be used to compare models across a range of probability thresh-

olds and is informative as to clinical value [55]. The study by Collins and Altman of

cardiovascular risk model comparisons [53] is a good example of such use of net benefit.

We were unable to demonstrate increments of net benefit for lactate as a sepsis risk bio-

marker, in either univariate or multivariate settings; a finding that is akin to the conclusion of

the meta-analysis of Zhang and Xu [71], that in “. . .[in] sepsis or septic shock, LC [lactate

clearance] was of limited value in predicting mortality”. The inference underlying observa-

tional studies of high initial or an over-time decrease in lactate is that these states are discrimi-

nate between those who live or die. However, as these observational values occur under

changing conditions of treatment exposure, an equally valid interpretation would be that those

patients who live demonstrate decreases in lactate (over time) and those who die, do not.

These two statements are not necessarily consonant. The first suggests that lactate is on the

direct causal pathway between treatment and outcome; the latter, that lactate merely reflects

Fig 5. Decision curve analysis: Net benefit for abbreviated admission model, with and without initial lactate.

https://doi.org/10.1371/journal.pone.0185320.g005

Reconsidering lactate as a sepsis risk biomarker

PLOS ONE | https://doi.org/10.1371/journal.pone.0185320 October 3, 2017 12 / 20

https://doi.org/10.1371/journal.pone.0185320.g005
https://doi.org/10.1371/journal.pone.0185320


underlying pathophysiological processes, perhaps even, an innocent bystander. To wit, the use

of dichloroacetate to directly reduce lactate (� 20%) with no improvement in survival [72].

The two randomised controlled trials which have addressed the issue of lactate-guided ther-

apy have also not resolved the question. Jones and co-workers [73] showed non-inferiority

between lactate clearance and central venous oxygen saturation (Δ = -10% in-hospital mortal-

ity) as early sepsis resuscitation goals and found no differences in administered treatments in

the first 72 hours. Jansen and co-workers [74], in critically ill patients, targeting a decrease in

lactate by� 20% per 2 hours for the initial 8 hours of ICU stay, found no difference in hospital

mortality on the unadjusted analysis (P = 0.067), with the lactate group receiving more fluids

and vasodilators. The adjusted in hospital mortality was a substantial 22% less (RR 0.78 to

0.61) and significant at P = 0.006; but it is instructive to note that neither the unadjusted or

adjusted 28-day mortality was significant (P = 0.30 and 0.134, respectively). Since the classic

Table 4. Model parameter estimates, diagnostics and risk reclassification measures: Lactate clearance.

Odds Ratio P Lower 95%CI Upper 95% CI

Age (years) 1.017 0.057 1.000 1.035

CCI: FP 0.5 0.237 0.047 0.057 0.983

CCI: FP 3 28.496 0.000 8.336 97.411

APACHE III score: FP 3 7.182 0.000 4.181 12.337

Coma 11.646 0.021 1.458 93.036

Cirrhosis 2.955 0.029 1.118 7.809

Clearance 0.771 0.078 0.578 1.030

Year 2 1.433 0.417 0.602 3.412

Year 3 0.829 0.658 0.361 1.905

Year 4 1.053 0.898 0.478 2.321

Year 5 0.472 0.067 0.211 1.055

Year 6 0.623 0.277 0.266 1.462

Year 7 0.377 0.098 0.119 1.197

Model diagnostics

Hosmer-Lemeshow statistic 0.470

AUC-ROC 0.838(0.784, 0.865)

Condition number 11.8

In-sample bias 1.45%

Over-fitting 5.6%

Out-of-sample-bias 6.9%

Estimate P Lower 95%CI Upper 95% CI

NRI(>0)

Event -0.135 -0.310 0.217

Non-event 0.244 -0.112 0.416

Overall 0.109 -0.193 0.425

IDI

Event 0.002 -0.003 0.016

Non-event 0.001 -0.001 0.004

Overall 0.002 -0.0030 0.020

AUC-ROC difference 0.001 0.78 -0.003 0.014

CCI, Charlson comorbidity index. FP, fractional polynomial. H-L, Hosmer-Lemeshow

AUC-ROC, area under the receiver operator characteristic curve. diff, difference (model with and without clearance). NRI(>0), category free net

reclassification index. IDI, integrated discrimination improvement index.

https://doi.org/10.1371/journal.pone.0185320.t004
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1988 study of Jencks et al [75] it has been known that there is a bias in hospital mortality, due

to discharge practice, and this has been more recently reaffirmed [76, 77]. Thus, a more robust

endpoint for both trials would have been a fixed 28 or 30 day or longer (out of hospital) mor-

tality endpoint.

The current study proceeded from a modest sample size and did not formally address the

utility of lactate with admission values� 4 mmol/l, as in the Rivers trial [5], on the basis that

only 17% of the patients had such elevation of lactate, although such a cut -point would appear

to be more arbitrary than optimal [78]. We considered lactate as both arterial and venous. The

percentage of venous specimens was 18–22%, depending upon the data-set; 8% of lactate speci-

mens had no label. A 3-level nominal categorical variable (“blood type”) was entered into each

of the regression models (initial lactate, lactate clearance and AUC-lactate). The p-values of

the parameters of this variable were always� 0.1. Similarly, the p-values for interaction

between “years” and “blood type” was� 0.13. Lactate values below 4 mmol/l were associated

with increased mortality in this study (Fig 1) and others [79–81]. Our ability to test a lactate

clearance over the first 6 hours was also limited by this end-point being unavailable for all

patients. We would agree with the sentiments of Moons and co-workers that “Researchers and

physicians should recognize, however, that a single summary measure cannot give full insight

in all relevant aspects of the added, clinical value of a new test or biomarker” [22]. The inability

to rank the added-value analyses is a potential weakness of this study, albeit the TRIPOD state-

ment [21] offered no direct advice on this, which would require comparative power analyses of

the various estimators. That the base models were derived and tested on the same patient

Fig 6. Decision curve analysis: Net benefit for 24-hour model, with and without clearance.

https://doi.org/10.1371/journal.pone.0185320.g006

Reconsidering lactate as a sepsis risk biomarker

PLOS ONE | https://doi.org/10.1371/journal.pone.0185320 October 3, 2017 14 / 20

https://doi.org/10.1371/journal.pone.0185320.g006
https://doi.org/10.1371/journal.pone.0185320


cohort potentially inflated the performance characteristics [82] and may have underestimated

lactate added value. Missing data occurred at each stage of the three substantive multivariate

analyses; with values of 5% (admission model), 7.7% (overtime model with clearance) and 16%

(overtime model with area under the lactate-time curve). Only the missing value percentage

for the area under the lactate-time curve would appear problematic. This being said, complete

record logistic regression may be more robust to missing values than previously assumed [83].

That our results may reflect the case-mix of a single tertiary Australian ICU is not contested,

but we must be aware that all “clinical studies that use observational databases can be sensitive

to the choice of database” [84].

We conclude that the ability to demonstrate lactate as a sepsis risk biomarker depends

upon the performance of the underlying base model and any such demonstration must

embrace other assessments of added value such as risk reclassification and net benefit. Current

Table 5. Model parameter estimates, diagnostics and risk reclassification measures: AUC-lactate.

Odds Ratio P Lower 95%CI Upper 95% CI

Age (years) 1.010 0.278 0.992 1.029

CCI: FP 0.5 0.284 0.068 0.073 1.097

CCI: FP 3 33.894 0.000 9.423 121.918

APACHE III score: FP 3 7.337 0.000 3.991 13.488

Coma 12.620 0.031 1.258 126.555

Cirrhosis 2.308 0.107 0.834 6.382

AUC-lactate 0.997 0.494 0.989 1.005

Year 2 1.484 0.397 0.595 3.703

Year 3 0.820 0.661 0.339 1.986

Year 4 1.018 0.966 0.440 2.360

Year 5 0.481 0.087 0.207 1.114

Year 6 0.641 0.333 0.261 1.576

Year 7 0.404 0.124 0.127 1.282

Model diagnostics

Hosmer-Lemeshow statistic 0.180

AUC-ROC 0.823(0.766, 0.840)

Condition number 6.7

In-sample bias 1.03%

Over-fitting 4.9%

Out-of-sample-bias 6.03%

Estimate P Lower 95%CI Upper 95% CI

NRI(>0)

Event 0.328 -0.349 0.468

Non-event -0.217 -0.284 0.352

Overall 0.111 -0.222 0.403

IDI

Event -0.0001 -0.004 0.008

Non-event -0.0001 -0.001 0.002

Overall 0.002 -0.0010 0.010

AUC-ROC difference -0.002 0.340 -0.004 0.005

CCI, Charlson comorbidity index. APIII, APACHE III. FP, fractional polynomial. AUC-lactate, area under the lactate-time curve. H-L, Hosmer-Lemeshow

AUC-ROC, area under the receiver operator characteristic curve. diff, difference (model with and without area under the lactate-time curve). NRI(>0),

category free net reclassification index. IDI, integrated discrimination improvement index.

https://doi.org/10.1371/journal.pone.0185320.t005
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lactate markers, in particular, initial lactate and lactate clearance, may be subject to regression

dilution and regression to the mean.
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