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A B S T R A C T   

Aim: Rapidly developing AI and machine learning (ML) technologies can expedite therapeutic development and 
in the time of current pandemic their merits are particularly in focus. The purpose of this study was to explore 
various ML approaches for molecular property prediction and illustrate their utility for identifying potential 
SARS-CoV-2 3CLpro inhibitors. 
Materials and methods: We perform a series of drug discovery screenings based on supervised ML models 
operating in different ways on molecular representations, encompassing shallow learning methods based on fixed 
molecular fingerprints, Graph Convolutional Neural Network (Graph-CNN) with its self-learned molecular rep-
resentations, as well as ML methods based on combining fixed and Graph-CNN learned representations. 
Results: Results of our ML models are compared both with respect to the aggregated predictive performance in 
terms of ROC-AUC based on the scaffold splits, as well as on the granular level of individual predictions, cor-
responding to the top ranked repurposing candidates. This comparison reveals both certain characteristic ho-
mogeneity regarding chemical and pharmacological classification, with a prevalence of sulfonamides and 
anticancer drugs, as well as identifies novel groups of potential drug candidates against COVID-19. 
Conclusions: A series of ML approaches for molecular property prediction enables drug discovery screenings, 
illustrating the utility for COVID-19. We show that the obtained results correspond well with the already pub-
lished research on COVID-19 treatment, as well as provide novel insights on potential antiviral characteristics 
inferred from in vitro data.   

1. Introduction 

Among various techniques from the fields of artificial intelligence 
(AI) and machine learning (ML), the applications to the problem of 
molecular property prediction are of central significance for the drug 
discovery process, starting from the early screening phase in which 
potential promising drug candidates can be identified [1]. In the current 
urgent need to fight the global COVID-19 pandemic the merits of AI and 
ML are particularly in focus [2–10], taking into account that in silico 
results are still subject to additional in vitro and in vivo experiments and 
further clinical trials to ensure their safety and efficacy [11]. 

The current pandemic crisis is caused by a novel coronavirus, named 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that 
emerged in 2019 in Wuhan, China and rapidly turned out to be a life- 
threatening pathogen. On March 11, 2020, the World Health Organi-
sation declared COVID-19 a pandemic, leading to nearly 100 million 
COVID-19 cases and over 2 million deaths till the moment of writing this 
article [12,13]. The novel pathogen belongs to the family Coronaviridae 
and it is an enveloped virus with a positivesense, single-stranded RNA 
genome. SARS-CoV-2 belongs to the genus Betacoronavirus, together 
with SARS-CoV-1 [14] and both are zoonotic pathogens that have 
caused fatal epidemics or pandemics after entering the human popula-
tion. For these highly pathogenic viruses pharmacotherapeutic in-
terventions are still needed to be improved [15]. 

☆ The views expressed in this article are those of the authors and not necessarily those of Erste Group IT. 
* Corresponding author. 

** Corresponding author. 
E-mail addresses: jacek.haneczok@gmail.com (J. Haneczok), mdelijewski@sum.edu.pl (M. Delijewski).  

Contents lists available at ScienceDirect 

Journal of Biomedical Informatics 

journal homepage: www.elsevier.com/locate/yjbin 

https://doi.org/10.1016/j.jbi.2021.103821 
Received 8 February 2021; Received in revised form 18 April 2021; Accepted 16 May 2021   

mailto:jacek.haneczok@gmail.com
mailto:mdelijewski@sum.edu.pl
www.sciencedirect.com/science/journal/15320464
https://www.elsevier.com/locate/yjbin
https://doi.org/10.1016/j.jbi.2021.103821
https://doi.org/10.1016/j.jbi.2021.103821
https://doi.org/10.1016/j.jbi.2021.103821
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbi.2021.103821&domain=pdf
http://www.elsevier.com/open-access/userlicense/1.0/


Journal of Biomedical Informatics 119 (2021) 103821

2

Drug repurposing, or repositioning, defined as finding alternative 
indications for approved or investigational drugs outside their primary 
registration, could be a possible way to overcome the time limitation of 
research and development needed to design a new drug. Repurposed 
drugs have lower risk of failure and require lower investments compared 
to de novo drug development, [16], which has a very low success rate, 
reaching about 6.2% [1,17] while taking typically 12 to 15 years [18]. 

The purpose of our study was to identify the best repurposing can-
didates among the Food and Drug Administration (FDA) approved 
drugs, based on their predicted antiviral activity against SARS-CoV-2. To 
this end we have trained supervised machine learning models based on 
data from a large crystallographic fragment screen against SARS-CoV-2 
3CL protease (3CLpro). The 3CLpro of SARS-CoV-2 known as the main 
protease is an enzyme which has essential role in processing the poly-
proteins that are translated from the viral RNA. The 3CLpro operates at 
no fewer than 11 cleavage sites on the large polyprotein 1ab (replicase 
1ab) and inhibition of the activity of this enzyme blocks viral replica-
tion. The big advantage of the supposed inhibitors is that such molecules 
are unlikely to be toxic, as no human proteases with a similar cleavage 
specificity are known [19]. 

Similar studies in the context of in silico AI and ML applications for 
identifying drug candidates for the treatment of COVID-19 have been 
reported in the literature, based on different ML approaches, as well as 
different training datasets and molecular representation methods. 
Kowalewski et al. [20] used shallow learners (random forest and SVM) 
trained on data for 65 target human proteins known to interact with the 
SARS-CoV-2 proteins, including the ACE2 receptor, and showed volatile 
candidates as novel inhaled therapeutics. Beck et al. [6] applied a deep 
learning-based drug-target interaction model (Molecule Transformer- 
Drug Target Interaction) pre-trained on the Drug Target Common 
(DTC) database and BindingDB database (with manual curations) and 
predicted antiviral properties among known antiviral drugs in order to 
identify the most promising anti-SARS-CoV-2 candidates. Ke et al. [4] 
utilized a deep neural network model trained on two different databases, 
one of them including in particular next to SARS-CoV active drugs also 
drugs active against human immunodeficiency virus and influenza virus 
and indicated the best drug candidates after confirming their activity 
against a feline infectious peritonitis (FIP) virus. The results obtained in 
comparable in silico approaches show repurposing candidates from very 
diverse pharmacological groups, including, among others, antibiotics, 
antivirals, painkillers, diuretics, antihistamines, drugs acting on respi-
ratory tract, circulatory and cardio-vascular systems as well as anti-
cancer drugs [20,6,4,21,5]. 

The main contribution of our study is twofold. Firstly, we explore 
various ML approaches, operating in different ways on molecular rep-
resentations, encompassing:  

• Shallow learning methods based on fixed molecular fingerprints,  
• Graph Convolutional Neural Network (Graph-CNN) model with its 

self-learned molecular representations,  
• ML methods based on combining fixed and Graph-CNN learned 

molecular representations. 

Secondly, we describe a series of drug discovery screenings based on 
these approaches, and illustrate their utility for identifying novel groups 
of potential drug candidates against COVID-19. We show that the ob-
tained results both correspond well with the already published results on 
COVID-19 treatment, as well provide novel insights on potential anti-
viral characteristics inferred from in vitro data obtained using crystal-
lography techniques. An illustrative overview of the considered ML 
enabled screening pipelines is given in Fig. 1. 

2. Materials and methods 

2.1. Datasets 

The dataset used to train our models consists of molecular samples 
from the fragments screened for binding with SARS-CoV-2 3CL protease 
(3CLpro) using crystallography techniques. Data is sourced from the 
Diamond Light Source group [22] and deposited in the Protein Data 
Bank, with appropriate protocols and experimental details. Data was 
released on the 18th March, 2020, and contained ∼ 880 samples, thereof 
78 hits, 58 on the active site and 39 which are covalently bound 
[23–25]. The screening was based on the crystal structure of 3Clpro at 
2.16 Å in complex with a covalent inhibitor [26]. This structure of the 
SARS-CoV-2 3CLpro at high resolution (PDB ID: 6YB7) was used to 
conduct a large crystallographic fragment screen against it. The full 
length protein was cloned as described in [27] for the SARS main pro-
tease, which yielded crystals of the unliganded enzyme that diffracted to 
high resolution (1.25 Å) on beamline I04-1, in a different space group to 
the inhibitor complex. The structure was then determined and refined, 
the active site was empty and solvent accessible, building a setup for 
screening, including fragment-based drug discovery (XChem), where 
small chemical fragments can be soaked into drug targets, leading to 
release of set of 80 hit structures which were fully modelled and refined 
[28]. Due to the fact that SARS-CoV-2 3CLpro is an integral component 
in the viral replication process the considered dataset composes to our 
knowledge the largest and most actual currently available sample of this 
type, on which a ML model can be trained to provide predictions for 
inferring the antiviral activity against SARS-CoV-2. Compounds that 
inhibit SARS-CoV-2 3CLpro are tagged as active (antiviral activity is 
positive). The obtained combined predictions offer structural and reac-
tivity information for on-going structure-based drug design against 

Fig. 1. A schematic illustration of the utilized machine learning enabled screening pipelines based on fixed molecular fingerprints and Graph-CNN neural 
representations. 
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SARS-CoV-2 3CLpro [28]. 
For a screening set of candidate molecules, among which the best 

repurposing candidates are identified based on their predicted inhibiting 
potential against SARS-CoV-2, we employed the FDA set of all approved 
drugs [29]. The set of FDA approved drugs is an important resource for 
medical practice and consists of compounds that are safe and efficacious 
drug products, approved by the FDA for use in the USA [30]. 

2.2. Machine Learning Task 

In this study we consider supervised ML approaches applied to the 
task of molecular property prediction [31] based on a training set given 
as a set of pairs {(xi,yi) : i = 1,…,n}, where xi is the representation of the 
molecular structure of the ith compound, taken as the starting point for 
the learning algorithm, and yi is its property or activity score, in our 
context binary label corresponding to the activity or inactivity of the 
compound. 

2.3. Molecular representations 

In general, two types of representations of the molecular structure xi 
can be considered:  

• Fixed molecular descriptors or fingerprints where xi ∈ Rp are pre- 
computed numerical vectors of features or xi ∈ Np are nonnegative 
count vectors or, more typically, xi ∈ {0,1}p are binary vectors 
representing the presence or absence of particular substructures (or 
other characteristics of the compound),  

• Molecular graph encodings (such as SMILES [32,33]) xi, which, 
inspired by representational learning [34], are further jointly con-
verted into fixed-length embeddings ̃xi ∈ Rd using sequence or graph 
models, most typically based on neural networks, yielding self- 
learned neural fingerprints or embeddings, jointly learned through 
back-propagation. 

Accordingly, ML models operating on the fixed pre-computed mo-
lecular fingerprints are typically shallow learning methods, whereas 
deep neural networks are used for constructing the self-learned molec-
ular representations. In general it remains an open research area to find 
out which of the two paradigms is superior for which task and for which 
characteristics of the underlying dataset [1,35]. 

2.4. Shallow learning on fixed representations 

Based on fixed pre-computed molecular fingerprints providing rep-
resentations of the molecular structures, shallow learning approaches 
apply further transformations. Fixed molecular fingerprints are typically 
either dictionary-based or hash-based. Whereas dictionary-based fin-
gerprints rely on a predefined dictionary of substructures or features, 
hash-based approaches use hashing algorithms to combine large number 
of substructures into unique fingerprints. Depending on how the sub-
structures are enumerated, the hash-based fingerprints can be further 
divided into topological or path-based and circular fingerprints. We use 
in our experiments the following methods: i) dictionary-based MACCS 
keys [36], ii) hashed path-based RDKit’s implementation inspired by the 
Daylight fingerprint [37] and iii) hashed circular fingerprints generated 
using a variant of the Morgan algorithm [38]. 

We include in our study the current state-of-the-art shallow learners 
such as decision tree ensembles and SVMs and compare them with 
regularized logistic regression. 

2.4.1. Regularized Logistic Regression 
Logistic regression (LogReg) model [39] involves modeling the 

conditional distribution of the response given the predictors p(y|x) using 
the logistic function. For the two-class classification problem coded via 

y ∈ { − 1,1} the logistic regression model is of the form p(y = 1|x) =

eβ0+βTxi/(1 + eβ0+βTxi ), where β’s are unknown parameters. A regularized 
logistic regression with L2 penalty is fitted by minimizing the following 
cost function 

min
β0 ,β

(
1
2
βT β+C

∑n

i=1
(log(exp( − yi(β0 + βT xi))+ 1)),

where C > 0 is a hyper-parameter corresponding to the inverse of the 
regularization strength. 

2.4.2. Support Vector Machine (SVM) 
Support vector machine (SVM) [40,39] is a kernel-based classifica-

tion method attempting to identify an optimal decision boundary be-
tween the observations belonging to two categories. Decision 
boundaries are found by mapping the training data x to a high- 
dimensional version φ(x), where φ is a mapping (called the feature 
map) from the input space into some Hilbert space F , called the feature 
space.1 The SVM algorithm finds in the feature space F a decision 
boundary as a linear hyperplane with the maximal margin, where the 
margin maximization problem can be conveniently reformulated as the 
following convex optimization problem 

min
α0 ,α

(
∑n

i=1
max(0, 1 − yif (xi))+

λ
2
αT Kα),

with f(x) = α0 +
∑n

i=1αik(x,xi), where yi ∈ { − 1, 1},K is the matrix of 
kernel evaluations for all pairs of training points and λ = 1

C with a tuning 
parameter C > 0 controlling the cost of violation to the separation 
margin. Given the solutions α̂0 and α̂ the decision function is given by 
sign( f̂ (x)) = sign(α̂0 +

∑n
i=1 α̂i k(x,xi)). 

2.4.3. Gradient Boosted Tree Ensemble (GBT) 
The approach based on Gradient Boosted Trees (GBT) adopted in this 

study is based on [41] and relies on ensembling m = 1,…,M decision 
trees T(x; Θ[m]), whose predictions are given by 

T(x; Θ[m]) =
∑J

j=1
γ[b]j I(x ∈ R[m]

j ),

where R[m]

j are the terminal nodes (representing the disjoint regions of 

the feature space) and γ[m]

j are estimates of class probabilities assigned to 

each terminal node. In the mth step, given the predictions ŷ[m− 1] based 
on the current ensemble consisting o (m − 1) trees, the following opti-
mization problem is solved 

min
Θ[m]

∑n

i=1
l(yi, ŷ[m− 1]

+T(xi; Θ[m]))+Ω(T(x; Θ[m]))

for the terminal nodes and their values Θ[m] = {R[m]

j , γ[m]

j }
J[m]

j=1 
of the mth 

tree, where l is the log-loss function and Ω(T(x; Θ[m])) is the penalty 
term2. Hence, the ensemble model is greedily updated by adding the 
new tree T(x; Θ[m]) that most improves the overall model. The prediction 
of the final GBT ensemble is given by 

ŷ =
∑M

m=1
T(x; Θ[m]).

1 Every feature map φ defines a positive definite kernel via k(x, x′) = 〈φ(x),
φ(x′)〉F , which is typically interpreted as a measure of dissimilarity between 
the inputs x and x′.  

2 The penalty term is given by Ω(T(x; Θ[m])) = γJ[m] + 1
2 λ

∑J
j=1γ[m]

j
2
, with γ and 

λ being the regularization hyper-parameters. 
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2.5. Graph Convolutional Neural Network (Graph-CNN) 

A Graph Convolutional Neural Network (Graph-CNN) operates on 
graph data, where nodes represent atoms, edges represent bonds, and 
the process of jointly encoding the molecular substructures and aggre-
gating or pooling the information into fixed-length embeddings is 
similar to the one used in Convolutional Neural Networks (CNNs). 
Similarly as in case of CNNs, layers that come earlier in the Graph-CNN 
model extract low-level generic features (representing molecular sub-
structures) and layers that are higher up extract higher-level, more ab-
stract features (representing more elaborate substructures) towards the 
Graph-CNN predictive objective. For non-Euclidean data3, such as graph 
data, defining the operations of convolution or pooling is not straight-
forward or even possible and Graph Neural Networks (GNNs) are a deep 
learning approach for addressing these difficulties [42,43]. 

A unifying framework for Graph-CNNs, generalizing several GNNs 
and CNNs approaches, proposed by Google research scientists in [44], 
are so called Message Passing Neural Networks (MPNNs). An MPNN 
operates on an undirected graph4 G with features xv representing the vth 
node (atom) and evw representing the edge (bond) between nodes v and 
w and the forward pass consist of two phases: a message passing phase 
consisting of T steps (convolutions) creating the molecular representa-
tions (self-learned fingerprints) and a readout phase using the final 
representations for making predictions. The message passing phase is 
initiated by mapping atom features xv to another set of vectors h0

v termed 
hidden states. In the tth step a message mt+1

v is created according to 

mt+1
v =

∑

w∈N(v)

Mt(ht
v, ht

w, evw),

where N(v) is the set of neighbors of v in graph G and Mt is a message 
function, and used further for updating the hidden states by 

ht+1
v = Ut(ht

v,m
t+1
v ),

where Ut is a vertex update function. The readout phase uses a readout 
function R to map the final hidden states representing the molecule to 
the final output of the neural network 

ŷ = R({hT
v : v ∈ G}).

We adopt the directed version of MPNN [45] with the implementation 
used in [46], where edge (bond) based hidden states ht

vw and messages 
mt

vw are used rather than the node (atom) based states ht
v and messages 

mt
v counterparts5, as illustrated in Fig. 2. Hidden states are initialized 

with 

h0
vw = ReLU(W0[xv, evw]),

where ReLU is the rectifier activation function, W0 ∈ Rh×h0 is a weight 
matrix and [xv, evw] ∈ Rh0 is the concatenation of the atom features xv 

and bond features evw. The message passing update equation is taken as 

mt+1
vw =

∑

k∈N(v)⧹w

Mt(xv, xw, ht
kv) =

∑

k∈N(v)⧹w

ht
kv  

and the hidden state updates are calculated using the same function at 
each step t according to 

ht+1
vw = Ut(ht

vw,mt+1
vw ) = U(ht

vw,m
t+1
vw ) = ReLU(h0

vw +Wmmt+1
vw ),

where Wm ∈ Rh×h is a weight matrix. After the final convolution step T 
the final representation of the vth atom of the molecule is calculated as 

hv = ReLU(Wa[xv,mv]),

where mv =
∑

k∈N(v)h
T
kv and Wa ∈ Rh×ha is a weight matrix with ha such 

that [xv,mv] ∈ Rha . In the readout phase, the final hidden states hv rep-
resenting the molecule are summed to produce a single embedding 
vector for the molecule h =

∑
v∈Ghv and the predictions are generated 

via ŷ = f(h), where f is a feed-forward neural network. After calculating 
the predictions, the loss function is computed over a batch of molecules 
based on model predictions and the ground truth values. The gradients 
of the loss with respect to the network weights is calculated by means of 
back-propagation and used by the optimizer to iteratively update the 
weights. 

2.6. Combining fixed and Graph-CNN learned representations 

This section provides a description of considered approaches for 
combining fixed representations (fingerprints) and self-learned repre-
sentations based on the Graph-CNN model. 

2.6.1. Graph-CNN enhanced with additional molecular features 
Graph-CNN approach described in 2.5 can be further extended by 

adding additional, auxiliary molecular features in order to enhance the 
self-learned representations. To this end the vector of self-learned rep-
resentations h is concatenated with the additional features vector haux in 
the readout phase and the predictions are generated via 

ŷ = f ([h, haux]),

where f is a feed-forward neural network. 

2.6.2. Shallow learners enhanced with Graph-CNN self-learned neural 
embeddings 

As another alternative for combining fixed pre-computed molecular 
fingerprints and self-learned molecular representations we consider 
regularized logistic regression and GBT models described in 2.4.1 and 
2.4.3 trained on the concatenation of feature vectors [x,h], where x are 
pre-computed fingerprints and h are the neural embeddings extracted 
from Graph-CNN readout phase as sum over the the atom embeddings of 
the molecule h =

∑
v∈Ghv, as described in Section 2.5. 

2.6.3. Stacking ensemble of Graph-CNN and shallow learners 
Stacking ensemble (sometimes called stacked generalization) [49] is 

a technique for combining multiple different learning algorithms, 
referred to as base models, by training a new learning algorithm on the 
predictions generated by the base models. The base-models are some-
times also called level-0 models and the new model combining their 
predictions is referred to as the meta-model or level-1 model. We employ 
the following basic stacking algorithm using 2-fold cross-validation:  

1. Split the train set in two parts,  
2. Train each of the base-models on the first part of the train set and 

generate predictions for the second part,  
3. Train each of the base-models on the second part of the train set and 

generate predictions for the first part, 

3 One of the keys to the success of CNNs and other deep NNs is their ability to 
capitalize on the statistical properties such as stationarity and compositionality 
through local statistics, which are exhibited by e.g. natural image or video data. 
In the context of CNNs and computer vision tasks stationarity stems from shift- 
invariance and composionality from the multi-resolution data structure and 
these properties are exploited by e.g. alternating convolutional and pooling 
layers. More generally, for data with underlying Euclidean or grid-like structure 
the invariances of underlying data structures are the key properties built into 
network architecture.  

4 The formalism of MPNN can be easily extended to directed multigraphs.  
5 The motivation for this model design is to avoid messages that loop back to 

their preceding node, which can introduce noise [47,46]. For similarities be-
tween this edge-based message passing design and belief propagation in prob-
abilistic graphical models see [45,48] 
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4. Use out-of-sample predictions from steps 2. and 3. to train the meta- 
model  

5. Re-train each of the base models on the full train set for generating 
predictions for the held-out test set. 

As we aim at building a model combining fixed molecular repre-
sentations with neural self-learned representations we consider two 
pairs of base learners: i) LogReg and Graph-CNN, and ii) GBT and Graph- 
CNN. The first pair represents a stacking of Graph-CNN with arguably 
the simplest shallow learner and the latter a stacking of state-of-the-art 
shallow classifier with Graph-CNN. As a meta-model we employ a lo-
gistic regression model. 

2.7. Model training setups 

All utilized fingerprints are calculated using the Python’s API to the 
RDKit library. Our shallow learning pipelines are based on 
scikit − learn Python library [50]. Regularized logistic regression is 
implemented using scikit-learn’s LogisticRegressionCV using the 
quasi-Newton lbfgs optimizer. SVM is implemented using scikit- 
learn’s SVC classifier with Gaussian radial basis function (RBF) kernel. 
The GBT implementation is based on the scikit-learn wrapper interface 
for XGBoost [41]. The hyper-parameter tuning for the shallow learners 
was performed with the grid-search method, using 5-fold and 10-fold 
stratified cross-validation, resulting in a nested cross-validation setup. 
The Graph-CNN model is based on Chemprop’s implementation using 
PyTorch, described in [46], including the same initialization of the 
feature vectors (for atoms: atomic number, number of bonds, formal 
charge, chirality, number of bonded hydrogen atoms, hybridization, 
aromaticity, atomic mass; for bonds: bond type, conjugation, ring 
membership and stereochemistry features). For performing stochastic 
gradient-based optimization in the training stage the Adam algorithm 
[51] was used and adjustments of the learning rate were performed 
using the Noam scheduler with piecewise linear increase and exponen-
tial decay, inspired by [52]. During training, the model was evaluated 
with respect to AUC on a holdout validation set containing 10% of the 
training molecules and the early stopping technique was employed. 
Hyper-parameters of Graph-CNN were tuned via Bayesian optimization 
method utilizing Hyperopt Python library, using the implementation 
described in [46]. 

2.8. Evaluation Method 

The quality of the classifier outputs is assessed using Receiver 
Operating Characteristic curve-Area Under the Curve (ROC-AUC) as the 
primary metric. Performance evaluation is based on repeated random 
sub-sampling cross-validation using 10 randomly seeded 80:20 scaffold 
splits of training and testing data. Comparing to commonly used random 
splits, the utilized scaffold splits offer a superior and more challenging 
evaluation setup, testing model’s ability to generalize to new chemical 
spaces, critical for drug repurposing applications [35]. The utilized 
scaffold splitting approach follows [53,35] and relies on partitioning of 
the molecular structures based on their Murcko scaffolds calculated 
using RDKit. In order to test the models’ capacity to generalize to new 
molecular structures based on the desired test set size and ensuring that 
the test set is not too homogeneous, partitions with molecule count that 
would exceed the half of the test set size are allocated to the train set. 
The remaining partitions are randomly allocated to the train and test 
sets, until the desired split ratio is achieved. 

2.9. Generating Final Predictions 

The final predictions of the antiviral activity of the FDA approved 
drugs are generated after re-training the models on the whole dataset 
and ranking the repurposing candidates based on their predicted prob-
abilities of activity. To reduce the variability inherent in predictions due 
to stochastic nature of the algorithms, we build meta-ensembles con-
sisting of 10 models, each trained with a different random seed. The final 
rank of each drug used for ordering the repurposing candidates is ob-
tained by taking the median over the individual rankings from the meta- 
ensemble. 

3. Results 

As the ML methods employed in this study are divided into the 
classes of: i) shallow learning methods based on fixed molecular fin-
gerprints, ii) Graph-CNN utilizing self-learned representations and iii) 
methods based on combining i) and ii), we begin with a summary of the 
results based on all ML approaches, followed by dedicated subsections 
providing more details. 

3.1. Results summary 

For shallow learning models we have compared the ROC-AUC 

Fig. 2. A schematic illustration of the 
described Graph Convolutional Neural 
Network (Graph-CNN) based on Mes-
sage Passing Neural Network (MPNN) 
architecture. Message passing phase 
(left): k-dimensional atom embeddings 
hv, for all v = 1,…,V atoms (vertices of 
graph G representing the molecule), 
calculated as the ReLU-transformed 
products of the weight matrix Wa and 
the concatenation of the initial atom 
features xv and the sums mv of the final 
values of the bond (edge) states hkv for 
k ∈ N(v), obtained after the final 
convolution step T. Readout phase 
(right): atom embeddings hv summed 
up to build the k-dimensional neural 
representation h of the molecule are 
further passed as an input to the feed- 
forward neural network with L-layers, 
followed by a sigmoid activation 
function σ outputting a binary 
response.   
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performance values under the evaluation scheme described in Section 
2.8, based on all considered types of fingerprints listed in Section 2.4. 
We observe that 1024-bit circular fingerprints show the highest per-
formance, as illustrated in Fig. 3, and hence we proceed in further ex-
periments with this fixed fingerprint setup. 

Different setups for Graph-CNN model compared in terms of ROC- 
AUC are shown in Fig. 4. First, we compared the default Graph-CNN 
with a version with tuned hyperparameters and additionally enforced 
equal number of active and inactive molecules in each batch (class 
balance). Then, we run experiments with ensembling 5 instances of the 
Graph-CNN model as well as versions with the following additional 
features, combined as described in Section 2.6.1: version with additional 
200 RDKit features (following [46]), version with MACCS fingerprints as 
additional features and versions with 1024-bit and 2048-bit circular 
fingerprints as additional features. For generating final predictions using 
Graph-CNN we employ the version with tuned hyperparameters and 
class balance. 

Comparing the performance of shallow learners to Graph-CNN and 
our methods based on combining fixed and Graph-CNN-learned repre-
sentations we generally observe that after the above mentioned selection 
of fingerprint method, all models operate on roughly the same level of 
performance in terms of ROC-AUC, as shown in Fig. 5. However, 
although the aggregated performance in terms of ROC-AUC does not 
differ too much, we observe significant and interesting differences in 
characteristics on granular level of individual predictions, on which we 
comment further in the dedicated subsections below. The obtained ROC- 
AUC values for our base (non-combined) models are: LogReg 0.82 
(±0.08), SVM 0.79 (±0.07), GBT 0.82 (±0.06), Graph-CNN 0.81 
(±0.09). The corresponding ROC-AUC values for our final versions of 
combined models are: LogReg and GBT enhanced with Graph-CNN self- 
learned neural embeddings 0.82 (±0.08) and 0.79 (±0.06), respectively, 
and the stacking ensembles based on Graph-CNN and LogReg as well as 
Graph-CNN and GBT, both 0.82 (±0.07). The approach based on 
enhancing Graph-CNN with additional molecular features described in 
2.6.1 was generally observed to result in somewhat lower (as well as 
more dispersed) average performance values with ROC-AUC ranging 
from 0.67 (±0.12) to 0.79 (±0.11), hence we drop this approach from 
the further analysis and proceed with approaches for combining Graph- 
CNN with fixed molecular embeddings described in Sections 2.6.2 and 
2.6.3. 

Generally, the predictions obtained by all considered models show 
certain characteristic homogeneity regarding both chemical and phar-
macological classification, with prevalence of sulfonamides and anti-
cancer drugs. Interestingly, based on all considered models, among the 
top 3 rank-ordered repurposing candidates for COVID-19, either sul-
fonamides or anticancer nitrogen mustard derivatives, or both, are 
identified. 

Our top rank-ordered repurposing candidates obtained by LogReg, 
GBT and Graph-CNN models are provided in Tables 1–3, respectively. In 
particular, among repurposing candidates that were identified based on 
at least three ML approaches used in this study, are: famotidine and 
bosentan, which both belong to sulfonamide derivatives, as well as 
imatinib (benzanilides) and melphalan (alkylating nitrogen mustard), 
which both belong to anticancer drugs. Notably, the relationship of 
famotidine, bosentan and imatinib to the course of COVID-19 has been 
already discussed in the literature [54–56]. 

In the remainder of this section we report in more detail on the re-
sults obtained by the individual ML approaches. 

3.2. Shallow learning on fixed representations 

The results obtained with the LogReg model, listed in Table 1, show 
strong homogeneity in reference to both chemical and pharmacological 
classification, with predominant representation of sulfonamides6 and 
anticancer drugs7. Moreover, LogReg identifies the three mentioned 
above drugs, already discussed in literature in the context of COVID-19: 
bosentan, famotidine, imatinib. In order to investigate further the 
characteristic chemical and pharmacological pattern that emerged in 
the predictions obtained by the LogReg model, we follow with the SVM 
model. The top rank-ordered predictions from the SVM model are also 
observed to be characterized by a certain dominance of sulfonamides8 

and anticancer9 drugs, however to a lesser extent compared to the 
LogReg predictions. Moreover, apart from the already listed drugs 
identified by our models and already discussed in the literature in the 
context of COVID-19, additional drugs appearing both in our SVM re-
sults and already published studies are: rivaroxaban [57,58] and sil-
denafil [59]. In order to further verify the dominance of specific drug 
categories indicated by our shallow models, we proceed with the GBT 
results, shown in Table 2. Here, as deeper interaction effects between the 
molecular features are taken into account, we observe a greater chem-
ical and pharmacological diversity among the obtained repurposing 
candidates for COVID-19. Beside the so far identified characteristic drug 
classes10, the novel pharmacological groups discovered by the GBT 
model consist of macrolide antibiotics representation including azi-
thromycin, clarithromycin and erythromycin as well as by vaborbactam, 
a beta-lactamase inhibitor. Among drugs which are already discussed in 
the literature in the context of COVID-19 and identified additionally by 
the GBT model are melphalan (clinical trial), ibrutinib [60], azi-
thromycin, clarithromycin [61] as well as linagliptin, a dipeptidyl 
peptidase 4 (DPP-4) inhibitor for the treatment of type II diabetes [62]. 

3.3. Graph-CNN 

Drug indications obtained by the Graph-CNN are generally consis-
tent with those obtained with our shallow models based on fixed fin-
gerprints, both in terms of chemical and pharmacological classification, 
with strong representation of sulfonamides and anticancer drugs, as 
shown in Table 3. Among results obtained with the Graph-CNN model, 
which have been already discussed in the literature in reference to 
COVID-19 are melphalan (clinical trial) and famotidine [54]. Interest-
ingly, the novel repurposing candidates additionally indicated by the 

6 Sulfonamide derivatives are represented here by sulfadiazine, sulfasalazine, 
sulfanilamide and mafenide with antimicrobial activity as well as bumetanide 
and furosemide, belonging to diuretics, belinostat, an anticancer drug, famo-
tidine, with antihistaminergic mechanism of action, bosentan, a dual endo-
thelin receptor antagonist, as well as thiothixene, an antipsychotic agent.  

7 Anticancer drugs are represented here by ifosfamide and estramustine, 
which belong to the class of nitrogen mustard compounds, carmustine, 
belonging to nitrosoureas, belinostat, a sulfonamide derivative, imatinib, a 
benzanilides representative, lapatinib, a quinazolinamines derivative, as well as 
mitoxantrone, an antraquinone derivative.  

8 Beside the common indications which emerge both in SVM and LogReg 
results (11 drugs), additional sulfonamide derivatives are represented by lifte-
grast, a lymphocyte function–associated antigen-1 antagonist and sildenafil, a 
selective inhibitor of cGMP specific phosphodiesterase type 5 (PDE5).  

9 Additional anticancer drug to those already indicated by LogReg model is 
panobinostat, a tryptamine derivative.  
10 Beside the common indications emerging both in GBT, SVM and LogReg 

results, additional sulfonamide derivative is tamsulosin, a selective alpha-1A 
and alpha-1B adrenoreceptor antagonist. Also selexipag, belonging to amino-
sulfonyl compounds, which is used for the treatment of pulmonary arterial 
hypertension (PAH) has been among the best repurposing candidates. Addi-
tional anticancer drug to those already indicated by LogReg and SVM models 
are melphalan and chlorambucil, belonging to nitrogen mustards as well as 
ibrutinib, a diphenylethers analogue. 
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Graph-CNN model are 2-mercaptoethanesulfonic acid (coenzyme M) 
and thiosulfuric acid, which are both used together with anticancer 
drugs in order to reduce their toxicity. 

3.4. Combining fixed and Graph-CNN self-learned representations 

First, we report on the results based on LogReg and GBT models 
enhanced with Graph-CNN self-learned embeddings, as described in 
Section 2.6.2. These results remain generally consistent in terms of the 
prevalence of sulfonamides11 and anticancer12 drugs. Stacking 

ensembles combining Graph-CNN with the GBT and the LogReg models, 
respectively, as described in 2.6.3, give indications which are generally 
consistent with so far identified drug classes, encompassing sulfon-
amides and anticancer nitrogen mustard derivatives. Beside the com-
mon indications identified by both of considered stacking ensembles, 
including sulfadiazine, sulfasalazine, sulfanilamide, famotidine, beli-
nostat and mafenide, both models add specific indications, which are 
consistent with previously found predictions referring to sulfonamides 
and anticancer drugs. These indications include: diclofenamide, chlo-
rothiazide, hydrochlorothiazide furosemide, carmustine, ifosfamide, 
chlorambucil, melphalan, cyclophosphamide and imatinib obtained by 
the stacking ensemble of Graph-CNN and LogReg models, as well as 
bosentan, bumetanide, lapatinib, estramustine, mitoxantrone and ibru-
tinib, which are obtained with the stacking ensemble of Graph-CNN and 
GBT models. 

An interesting observation based on the results from the combination 
of the Graph-CNN and GBT models in a stacking ensemble, is the iden-
tification of the following additional drugs, being either closely related 
to other similar derivatives with documented relation to COVID-19 
outcome, or being explicitly discussed in this context: macitentan, an 
endothelin receptor antagonist, cytarabine, an antineoplastic anti- 

Fig. 3. Evaluation of shallow learning performance based on different versions of molecular fingerprint methods: boxplots of ROC-AUC based on 10 randomly seeded 
80:20 scaffold splits of training and testing data. 

Fig. 4. Evaluation of different setups for a Graph-CNN 
model. The boxplots show ROC-AUC based on 10 
randomly seeded 80:20 scaffold splits of training and 
testing data for the following configurations (from top 
to bottom): default Graph-CNN, version with tuned 
hyperparameters, version with tuned hyperparameters 
and an equal number of active and inactive molecules 
in each batch (class balance), an ensemble of 5 Graph- 
CNN models, version with additional 200 RDKit fea-
tures [46], version with MACCS fingerprints as addi-
tional features, versions with 1024-bit and 2048-bit 
circular fingerprints as addi.tional features.   

11 In comparison to the LogReg model, additional sulfonamide derivatives 
obtained after the enhancement with neural embeddings are: diclofenamide, 
chlorothiazide, hydrochlorothiazide, and belinostate, also an anticancer 
representative. In comparison to the GBT model, additional sulfonamide de-
rivatives obtained after the enhancement by neural embeddings are: diclodfe-
namide, chlorothiazide and hydrochlorothiazide.  
12 Additional anticancer drugs obtained after enhancing the LogReg model 

with neural embeddings are: chlorambucil, cyclophosphamide and mitotane. In 
comparison to the GBT model, additional anticancer drugs obtained after the 
enhancement by neural embeddings are: carmustine, mafenide and mitotane. 
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metabolite and doxycycline, a tetracycline antibiotic [63,64]. 

4. Discussion 

The SARS-CoV-2 pandemic requires a fast-track of drug development 
as the course of the disease in many cases is still unpredictable and 
constitutes a great challenge. One may suggest a deep analysis of 
currently available potential pharmacological agents through artificial 
intelligence-enabled screening of chemical space with particular 
emphasis on repurposing candidates. The FDA approved drugs consti-
tute a good starting point in the context of repurposing officially 
approved and safe drugs against COVID-19 [10]. 

The preliminary comparative analysis of the results obtained in our 
study reveals existence of two major classes of drugs, sharing similarities 
both in terms of chemical and pharmacological classification, namely 
the class of anticancer drugs and the class of sulfonamides. These two 
families of drugs are identified already by the logistic regression model, 
being the simplest of the considered models. Although the considered 
more sophisticated models lead to roughly the same level of aggregated 

performance in terms of ROC-AUC, we observe interesting differences 
on the level of individual predictions. In particular, due to automatically 
taken into account deeper interactions between the molecular features, 
the GBT model is able to discover structures characterized by higher 
variety, for example a new representation of antibiotics, from the group 
of macrolides consisting of azithromycin, clarithromycin and erythro-
mycin. The macrolide antibiotics are supposed to improve the course of 
viral infections, at least through indirect mechanisms including anti- 
inflammatory or immunomodulatory (or both) effects, however there 
is no clear evidence of clinical efficacy of macrolides in coronaviruses 
infections till now [61]. 

At the forefront of anticancer drugs, melphalan, ifosfamide, cyclo-
phosphamide, carmustine, estramustine, mechlorethamine (mustine) 
and chlorambucil, belonging to organic nitrogen compound or nitrogen 
mustard compounds were among the most commonly stated drugs in the 
majority of used by us models. Beside this group, also other anticancer 
drugs have been among the best indicated by our models, like diphe-
nylmethanes (mitotane), as well as quinazolinamines (lapatinib), 
diphenylethers (ibrutinib) and anthraquinones (mitoxantrone). A 

Fig. 5. Evaluation of the performance of shallow (LogReg, SVM, GBT), Graph-CNN and combined approaches based on concatenated fixed fingerprints with neural 
embeddings as well as stacking of Graph-CNN and shallow models: boxplots of ROC-AUC based on 10 randomly seeded 80:20 scaffold splits of training and 
testing data. 

Table 1 
Top repurposing candidates based on the screening generated using the regularized logistic regression model and fixed molecular fingerprint features. Next to IDs and 
drug names the corresponding compound classes and pharmacological classes are shown.  

ChEMBL ID Drug Name Compound class Pharmacological class 

CHEMBL439 Sulfadiazine aminobenzenesulfonamides antimicrobial 
CHEMBL421 Sulfasalazine benzenesulfonamides antiinflammatory/antimicrobial 
CHEMBL58 Mitoxantrone anthraquinones anticancer 
CHEMBL1987518 Ensulizole organosulfonic acids selective UV-B filter 
CHEMBL554 Lapatinib quinazolinamines anticancer 
CHEMBL1072 Bumetanide benzenesulfonyl compounds diuretics 
CHEMBL21 Sulfanilamide aminobenzenesulfonamides antimicrobial 
CHEMBL1024 Ifosfamide nitrogen mustards anticancer 
CHEMBL419 Mafenide benzenesulfonamides antimicrobial 
CHEMBL941 Imatinib benzanilides anticancer 
CHEMBL957 Bosentan benzenesulfonamides anti-pulmonary hypertension 
CHEMBL408513 Belinostat benzenesulfonamides anticancer 
CHEMBL902 Famotidine sulfonamide antihistaminergic 
CHEMBL3317857 Vaborbactam oxaborine derivatives beta-lactamase inhibitor 
CHEMBL1575 Estramustine nitrogen mustards anticancer 
CHEMBL35 Furosemide aminobenzenesulfonamides diuretics 
CHEMBL1201 Thiothixene organosulfonamides antipsychotic agent 
CHEMBL1198857 Vilanterol benzylethers selective β2-adrenergic agonist  
CHEMBL513 Carmustine nitrosoureas anticancer  
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representative of the nitrogen mustard compounds, melphalan, is under 
the 2nd phase clinical trial (NCT04380376) that evaluates the efficacy 
and safety of low-doses of melphalan in patients with pneumonia with 
confirmed or suspected COVID-19 infection. Similarly, another pro-
posed by us top repurposing candidate, ibrutinib, is already being 
assessed in a clinical trial to treat COVID-19 patients (NCT04375397) 
[65]. Ibrutinib, a representative of novel anticancer drugs belonging to 
the group of the Bruton’s tyrosine kinase (BTK) inhibitors is used to treat 
indolent B-cell malignancies, mantle cell lymphoma, chronic lympho-
cytic leukemia and chronic graft-versus-host disease (cGVHD) [66]. The 
inhibition of BTK pathway was assessed as a promising target to reduce 
the excessively severe immune response in case of COVID-19 [67] and 
ibrutinib was suggested to be protective against pulmonary injury in 
SARS-CoV-2 infected patients due to reducing production of proin-
flammatory and chemoattractant cytokines13 [60]. It may be worth to 
mention, that ibrutinib has been among the best results indicated by the 
GBT and also by the version of GBT enhanced with neural embeddings. 

This finding is even more intriguing, taking into account also another 
similar anticancer drug that was among the best predictions obtained 
with the LogReg, SVM as well as the stacking ensemble of Graph-CNN 

and LogReg, namely imatinib, with reported case of SARS-CoV-2 
infection successfully treated with this drug [56]. Moreover, the safe 
and effective administration of these two kinase inhibitors in a patient 
with concomitant chronic myelogenous leukemia and chronic lympho-
cytic leukemia has been already reported [70]. Hence, these reports, put 
together with our result, compose an interesting compilation, drawing 
attention to the properties of some anticancer drugs that could be of 
value in case of oncological patients suffering from COVID-19. 

Next to anticancer drugs, the second class of drugs with the strongest 
representation among the best repurposing candidates indentified by 
our models are sulfonamide derivatives. Sulfonamides are a significant 
and valuable pharmacological class, with diuretic, hypoglycemic, anti-
thyroid, anticancer as well as antibacterial and antiviral activity. Among 
sulfonamides indicated by our models, the following subgroups are 
represented: antibacterial agents, diuretics, dual endothelin receptor 
antagonist used in the treatment of pulmonary arterial hypertension 
(PAH), a competitive histamine-2 (H2) receptor antagonist, as well as 
novel anticancer drugs. This observation is interesting, since the struc-
tural patterns of sulfonamides have been already used as a strategy to 
develop sulfonamide antivirals [71]. Notably, an antiviral activity of 
several sulfonamide derivatives, both in vitro and in vivo, has been 
already reported [71,72]. 

Specific sulfonamide derivatives, most commonly identified by our 
models are: sulfadiazine, sulfasalazine, sulfanilamide, dichlorphena-
mide, chlorothiazide, hydrochlorothiazide and mafenide. Another 
important sulfonamide identified as top repurposing candidate is 
bosentan, a dual endothelin receptor antagonist, which is approved for 
the treatment of pulmonary arterial hypertension (PAH) in New York 
Heart Association functional classification (NYHA) II-IV and in sclero-
derma patients. The drug blocks the action of endothelin molecules that 
promote narrowing of the blood vessels and lead to high blood pressure. 
Bosentan was suggested to be a treatment candidate for COVID-19 in 
association with other approved drugs [55], thanks to its potential of 
improving hemodynamics and prevention of lung fibrosis by reducing 
profibrotic and proinflammatory cytokines, like IL-2, IL-6, IL-8 and IFN- 
γ levels. 

Table 2 
Top repurposing candidates based on the screening generated using the GBT model and fixed molecular fingerprint features. Next to IDs and drug names the cor-
responding compound classes and pharmacological classes are shown.  

ChEMBL ID Drug Name Compound class Pharmacological class 

CHEMBL852 Melphalan nitrogen mustards anticancer 
CHEMBL33986 Butorphanol phenanthrenes analgesics 
CHEMBL515 Chlorambucil nitrogen mustards anticancer 
CHEMBL1575 Estramustine nitrogen mustard anticancer 
CHEMBL554 Lapatinib quinazolinamines anticancer 
CHEMBL3317857 Vaborbactam oxaborine derivatives beta-lactamase inhibitor 
CHEMBL1873475 Ibrutinib diphenylethers anticancer 
CHEMBL957 Bosentan benzenesulfonamides anti-pulmonary hypertension 
CHEMBL2105395 Ospemifene stilbenes estrogen receptor modulator 
CHEMBL21 Sulfanilamide aminobenzenesulfonamides antimicrobial 
CHEMBL421 Sulfasalazine benzenesulfonamides antiinflammatory/antimicrobial 
CHEMBL419 Mafenide benzenesulfonamides antimicrobial 
CHEMBL494753 Estrone Sulfate sulfated steroids form of estrogen 
CHEMBL439 Sulfadiazine aminobenzenesulfonamides antimicrobial 
CHEMBL1118 O-desmethylvenlafaxine cyclohexanols antidepressant 
CHEMBL659 Galantamine alkaloids cholinesterase inhibitors 
CHEMBL585 Triamterene pteridines diuretic 
CHEMBL237500 Linagliptin xanthines antidiabetics 
CHEMBL529 Azithromycin macrolides macrolide antibiotic 
CHEMBL238804 Selexipag aminosulfonyl compounds anti-pulmonary hypertension 
CHEMBL1072 Bumetanide benzenesulfonyl compounds diuretics 
CHEMBL560 Pentazocine benzomorphans analgesics 
CHEMBL1741 Clarithromycin macrolides macrolide antibiotic 
CHEMBL1071 Oxaprozin oxazoles NSAID 
CHEMBL592 Levorphanol morphinans analgesic 
CHEMBL880 Famciclovir purines and purine derivatives antivirals 
CHEMBL532 Erythromycin macrolides macrolide antibiotic 
CHEMBL836 Tamsulosin benzenesulfonamides adrenergic antagonist  

13 Moreover, it may have an additional potential of modulating T cells through 
targeting IL-2-inducible T-cell kinase (ITK), as being a (BTK)/ITK dual inhibitor. 
As it is known, that SARS-CoV-2 infection triggers lymphocyte apoptosis, which 
may be associated with the severity of the disease, targeting signaling pathways 
in T lymphocytes, especially those that preferentially regulate T cell apoptosis 
and exhaustion over activation, may be a potential strategy for treating patients 
with severe COVID-19 [65]. It is known, that patients with chronic lymphocytic 
leukemia treated with ibrutinib displayed an increase in total number of T cells, 
what may be due to the decrease in activation-induced cell death, which has 
been shown to be a result of the ITK signaling-mediated up-regulation of Fas 
ligand (FasL), which promotes activation-induced T cell death [68]. As ITK is 
highly expressed in T cells and regulates the activation and function of both 
CD4 + and CD8 + T cells, inhibition of this mechanism may be of significance 
in case of COVID-19 patients [65] This observation may be even more inter-
esting in the context of recent reports about the high severity of infection in 
patients with haematological malignancies suffering from COVID-19 [69]. 
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We would also like to underline that another promising candidate 
identified among top repurposing candidates is famotidine, a competi-
tive histamine-2 (H2) receptor antagonist. This drug in combination 
with cetirizine, has been already stated to be safe and effective method 
to reduce the progression in symptom severity in COVID-19 patients, 
presumably by minimizing the histamine-mediated cytokine storm [54]. 
Moreover, results of case series suggest that the use of high-dose oral 
famotidine is associated with improved patient-reported outcomes in 
non-hospitalised patients with COVID-19 [73]. 

Furthermore, the combination of famotidine with doxycycline, 
which is also among the candidates proposed by our stacking ensemble 
model, has been already reported to state a valuable combination that 
may provide robust chemoprophylaxis effective against COVID-19 [74]. 

Another illustration of the additional value of exploring ML ap-
proaches operating on molecular features in various ways, going beyond 
the logistic regression based on fixed fingerprints, may be seen in the 
identification of a group of drugs acting on respiratory tract, possibly of 
particular significance for the treatment of COVID-19. In this group, a 
potential antiviral activity of the following drugs was identified: 
bosentan, a dual endothelin receptor antagonist used in the treatment of 
pulmonary arterial hypertension (PAH), vilanterol, a selective long- 
acting β2-adrenergic agonist (LABA), selexipag, as well as macitentan, 
both indicated for the treatment of PAH. A further interesting drug 
found after segmenting the molecular feature space by the GBT model is 
linagliptin, a DPP-4 inhibitor used for the treatment of type II diabetes. 
Linagliptin has been already indicated as a promising inhibitor of main 
protease of SARS-CoV-2 [75] and its potential to reduce inflammation, 
thus possibly minimizing the risk for COVID-19 severity, has been also 
discussed [62]. 

Interestingly, the presence of sulfonamide structures in the top 
ranked repurposing candidates predicted by our models, corresponds 
well with the results obtained by us in a similar study [76], where 
zafirlukast, containing also a sulfonamide group, was proposed to be the 
best potential repurposing candidate for COVID-19. 

Also, a representation of drugs acting on circulatory and cardio- 
vascular systems has been identified by our study, which is particu-
larly important regarding the specific implications of COVID-19 on pa-
tients underlying heart diseases. Here, we report on sildenafil as well as 
losartan as potential repurposing candidates. Sildenafil, a 
phosphodiesterase-5 (PDE5) inhibitor, acting by minimising the break-
down of cyclic guanosine monophosphate (cGMP) was suggested to 

counter the inflammatory cascade and thromboembolic episodes that 
occur in COVID-19 [59]. Moreover, a pair of drugs identified in our 
study as potential repurposing candidates, namely sildenafil and iver-
mectin, were suggested to be beneficial in COVID-19 patients [58]. 

Regarding the utility of the explored ML techniques, our observa-
tions confirm that in particular in the context of limited data sizes both 
shallow and deep models have their benefits and limitations. While 
shallow learners rely on pre-computed, fixed molecular representations, 
suitably designed shallow ML pipelines can provide more stable pre-
dictions, compared to the deep learning approaches based on self- 
learned embeddings. Among the considered types of fixed fingerprints, 
we observe that for the predictive task at hand the hash-based circular 
fingerprints showed superior performance and that due to the limited 
data size the number of bits should not be too high. Although in terms of 
aggregated performance the considered paradigms lead to comparable 
level of ROC-AUC, we observe interesting differences on granular level 
of individual predictions driven by different molecular representations 
and subsequent transformation steps. Moreover, both deep models uti-
lizing self-learned molecular embeddings as well as shallow models 
taking into account higher-order feature interactions are observed to 
lead to an increased models’ capacity to identify repurposing candidates 
for COVID-19 of higher chemical and pharmacological diversity. 

While the drug indications presented in this study constitute an 
interesting discovery, in order to conduct a more in-depth exploration of 
the predictive performance and reliability of AI-based screenings, the 
utilization of additional and larger datasets would be necessary. More-
over, exploration of alternative ML approaches and methodologies for 
representing molecular structures could lead to further interesting in-
sights. Lastly, validating in vitro and in vivo experiments and clinical 
trials need to be performed as a next step to ensure the efficacy and other 
desired properties of the proposed drugs. 

5. Conclusions 

In this study we explored ML approaches for identification of po-
tential SARS-CoV-2 3CLpro inhibitors based on fixed molecular finger-
prints and Graph-CNN neural representations. The resulting drug 
discovery screenings indicate relevance of two major classes of drugs: 
sulfonamide derivatives and anticancer drugs. Both these classes emerge 
from the performed screenings in the form of drug candidates that share 
similarities both in terms of chemical and pharmacological 

Table 3 
Top repurposing candidates based on the screening generated using the Graph-CNN model. Next to IDs and drug names the corresponding compound classes and 
pharmacological classes are shown.  

ChEMBL ID Drug Name Compound class Pharmacological class 

CHEMBL17 Diclofenamide benzenesulfonamides carbonic anhydrase inhibitor 
CHEMBL513 Carmustine nitrosoureas anticancer 
CHEMBL1670 Mitotane diphenylmethanes anticancer 
CHEMBL842 Chlorothiazide organosulfonamides diuretics 
CHEMBL435 Hydrochlorothiazide organosulfonamides diuretics 
CHEMBL427 Mechlorethamine nitrogen mustards anticancer 
CHEMBL1201798 Sevelamer epoxides phosphate binding drug 
CHEMBL130 Chloramphenicol nitrobenzenes antimicrobial 
CHEMBL88 Cyclophosphamide nitrogen mustards anticancer 
CHEMBL515 Chlorambucil nitrogen mustards anticancer 
CHEMBL1577 Methyclothiazide organosulfonamides diuretics 
CHEMBL21 Sulfanilamide aminobenzenesulfonamides antimicrobial 
CHEMBL1670 Mitotane diphenylmethanes antiinflammatory/anticancer 
CHEMBL1098319 Coenzyme M sulfhydryl (thiol) compound uroprotective agent 
CHEMBL1024 Ifosfamide nitrogen mustards anticancer 
CHEMBL419 Mafenide benzenesulfonamides antimicrobial 
CHEMBL852 Melphalan nitrogen mustards anticancer 
CHEMBL902 Famotidine sulfonamide antihistaminergic 
CHEMBL1208642 Thiosulfuric Acid sulfated steroids adjunct agent for chemotherapy 
CHEMBL1373 Modafinil diphenylmethanes stimulants 
CHEMBL1043 Dapsone benzenesulfonyl compounds antimicrobial 
CHEMBL439 Sulfadiazine aminobenzenesulfonamides antimicrobial 
CHEMBL239243 Taurine sulfonyls cholinesterase inhibitors  
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classification. Moreover, the consideration of multiple different ap-
proaches, varying both in terms of employed types of molecular repre-
sentations as well as learning algorithms transforming them, enables 
identification of structures characterized by higher variety, resulting in a 
selection of interesting groups of drugs which are in accordance with 
already published studies on COVID-19 medications. 
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