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The recent advent of targeted and immune-based therapies has revolutionized the
treatment of melanoma and transformed outcomes for patients with metastatic
disease. The majority of patients develop resistance to the current standard-of-care
targeted therapy, dual BRAF and MEK inhibition, prompting evaluation of a new
combination incorporating a CDK4/6 inhibitor. Based on promising preclinical data,
combined BRAF, MEK and CDK4/6 inhibition has recently entered clinical trials for the
treatment of BRAFV600 melanoma. Interestingly, while BRAF- and MEK-targeted therapy
was initially developed on the basis of potent tumor-intrinsic effects, it was later discovered
to have significant immune-potentiating activity. Recent studies have also identified
immune-related impacts of CDK4/6 inhibition, though these are less well defined and
can be both immune-potentiating and immune-inhibitory. BRAFV600 melanoma patients
are also eligible to receive immunotherapy, specifically checkpoint inhibitors against PD-1
and CTLA-4. The immunomodulatory activity of BRAF/MEK-targeted therapies has
prompted interest in combination therapies incorporating these with immune
checkpoint inhibitors, however recent clinical trials investigating this approach have
produced variable results. Here, we summarize the immunomodulatory effects of
BRAF, MEK and CDK4/6 inhibitors, shedding light on the prospective utility of this
combination alone and in conjunction with immune checkpoint blockade.
Understanding the mechanisms that underpin the clinical efficacy of these available
therapies is a critical step forward in optimizing novel combination and scheduling
approaches to combat melanoma and improve patient outcomes.
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INTRODUCTION

Melanoma is the deadliest and most aggressive form of skin cancer,
predominately arising from exposure to damaging ultraviolet
radiation (1–3). Early surgical resection of the primary lesion
results in high survival rates (4, 5) but an undetected melanoma
that metastasizes to secondary organs leads to poor patient
prognosis. Prior to the advent of modern therapies, patients
presenting with advanced metastatic melanoma had a median
overall survival of 5.1 months from diagnosis, with a 3-year
survival probability of less than 5% (6). However, in 2011, the
development of two new classes of therapeutics revolutionized the
landscape of melanoma treatment; targeted therapies and
immunotherapies. While unrelated and mechanistically distinct,
the unprecedented success of these two therapies in the clinic
rapidly led to their integration as a standard-of-care treatment for
melanoma patients. However, despite these remarkable therapeutic
advances, the overall prognosis for patients with late stage
melanoma remains poor, reflecting the limitations of these therapies.

While targeted therapies improve survival in almost all patients
treated, many do not receive long-term benefits due to the eventual
emergence of drug resistance (7–9). Combinatorial targeted
therapy strategies are therefore being developed with the goal of
overcoming this acquired resistance. However, tumors are
inherently highly adaptable and targeting tumor-intrinsic
pathways alone rarely leads to durable tumor regression.
Immunotherapies, on the other hand, engage the host immune
response, and the immune system is arguably the only anti-cancer
tool that is equally as adaptable as the tumor itself. This is reflected
in the clinical response to immune checkpoint blockade (ICB),
where approximately 75% of patients who initially respond to this
therapy achieve long-term sustained tumor regression (10–12).
However, in contrast to targeted therapy, only a subset of patients
respond to ICB (13–15). Additionally, complications arising from
adverse events (16, 17), along with the high cost of administering
these therapies (18), highlights an urgent need to better understand
and predict which patients are most likely to respond, so that
therapy choice and timing can be personalized.

The short-lived responses to targeted therapy and the lower
initial response rates to ICB means that many melanoma patients
inevitably receive both of these therapeutic classes at some point
throughout the duration of their treatment. For example, a
patient who progresses on targeted therapy may be switched to
ICB as a second line of treatment, or vice versa. Interestingly,
while the clinical success of targeted therapies is attributable to
tumor-intrinsic inhibitory mechanisms, it is now clear that these
therapies also modulate anti-tumor immunity, which can
substantially impact on the concurrent or subsequent response
to immunotherapy. The immunomodulatory activity of targeted
therapies, and the potential of combined targeted therapy and
ICB approaches will be discussed in this review.
TARGETED THERAPIES IN MELANOMA

Targeted therapies, as the name suggests, are designed to
precisely target and inhibit tumor-intrinsic aberrant signaling
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pathways that drive cell survival and proliferation. Melanoma
predominately arises through the accumulation of genetic
mutations in a type of pigment-producing skin cell, called a
melanocyte, induced by repeated exposure to UV radiation or
other environmental factors (2, 3, 19). When genetic mutations
arise in genes encoding proteins critical for the regulation of cell
survival or entry into the cell cycle, uncontrolled cell
proliferation and malignant transformation can occur (20).
These ‘oncogenic driver mutations’ result in constitutive
activation of growth signaling pathways that are responsible
for both the initiation of tumorigenesis and the maintenance of
cancer growth. In a concept known as ‘oncogene addiction’,
malignant cells become reliant on these aberrant signaling
pathways (21), and as a result, blocking these pathways with
targeted small molecule inhibitors can profoundly disrupt cancer
progression through the rapid induction of tumor cell cytostasis
or death. Here we focus on three targeted therapies for the
treatment of metastatic melanoma, namely BRAF, MEK and
CDK4/6 inhibitors.

Inhibitors of the MAPK/ERK Pathway
A number of oncogenic driver mutations are found in
melanoma, though the most common occur in the gene
encoding the protein kinase BRAF. This mutation occurs at
codon 600, resulting in substitution of a valine (V) residue, often
with a glutamate (E), which renders the kinase constitutively
active (22–24). This BRAFV600E mutation occurs in around 40-
50% of melanomas (25) and leads to constitutive activation of the
mitogen-activated protein kinase/extracellular signal-regulated
kinase 1/2 (MAPK/ERK) signaling pathway (22–24) (Figure 1).
This pathway is a critical regulator of cell cycle, survival and
differentiation, and is typically activated only in the presence of
growth factors, which bind receptor tyrosine kinase receptors on
the cell surface, initiating a tightly controlled cascade of kinase-
mediated activation events (RAS!RAF!MEK!ERK) (26)
(Figure 1). However, as in the case of BRAFV600 melanoma,
aberrant activation of MAPK/ERK signaling is observed in a
number of cancers due to dysregulation of one of the protein
components in the pathway (26, 27). Indeed, in melanoma other
oncogenic driver mutations mediate tumorigenesis via activation
of MAPK/ERK signaling, including activating NRAS mutations
and loss-of function mutations in NF1, a GTPase known to
downregulate RAS activity (28). NRAS and NF1 mutations are
less frequent than BRAF mutations, occurring in approximately
10-25% and 14% of melanomas, respectively (28). Interestingly,
driver mutations that mediate activation of this pathway can co-
exist in the same tumor but are mutually exclusive at a single cell
level (29), indicating that a single MAPK/ERK activation event is
sufficient to drive oncogenesis. Given the frequency of aberrant
MAPK/ERK activity observed in melanoma, several inhibitors
have been developed to target various components of this
pathway, including inhibitors of BRAF, MEK and more
recently RAS and ERK (reviewed in 30, 31). Here, we focus on
BRAF and MEK inhibitors, and their use in treating the most
prevalent form of melanoma, BRAFV600 melanoma.

Small molecule inhibitors of mutant BRAF were developed to
block protein kinase activity and prevent activation ofMAPK/ERK
May 2021 | Volume 12 | Article 661737
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signaling in tumor cells (32) (Figure 1). Remarkably, in a phase
III clinical trial, the first BRAF inhibitor, vemurafenib, showed
such extraordinary success that the trial was stopped prematurely
so that patients in the alternative trial arm could access the
treatment (33). Vemurafenib was subsequently FDA approved
for the treatment of BRAFV600 melanoma in 2011, followed by
two more BRAF inhibitors (dabrafenib and encorafenib) in the
years following (34, 35). The clinical response to BRAF inhibition
was typified by rapid and robust tumor regression in almost all
patients treated, with very minimal toxicities (33). However,
those responses were short-lived, as tumors rapidly developed
resistance to these drugs (33, 36). Resistance has been shown
to occur through various genomic and transcriptional alterations
that lead to MAPK/ERK reactivation, as well as activation of
alternative pathways involved in growth and survival (reviewed in
ref. 36). Nonetheless, BRAF inhibitors improved median
progression-free survival (PFS) from 1.6 months (on the standard
chemotherapy, dacarbazine) to 5.3 months (33); a momentous
survival benefit for a disease in which no progress had been made
for decades.

The predominant mechanism of resistance to BRAF
inhibitors is reactivation of MAPK/ERK signaling (36, 37). As
such, shortly after BRAF inhibitors entered the clinic, trials
commenced to examine the efficacy of combining BRAF
inhibition with inhibition of its downstream substrate kinase
MEK, with the goal of overcoming MAPK/ERK reactivation (38,
39) (Figure 1). This combination demonstrated considerable
success, improving median PFS by a further 5 months compared
to BRAF inhibition alone, and still with minimal toxicities (38,
39). As such, numerous MEK inhibitors have been developed for
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clinical use (e.g. trametinib, cobimetinib, binimetinib) and dual
BRAF and MEK inhibition is now considered the standard-of-
care over BRAF inhibitor monotherapy for the treatment of
BRAFV600 melanoma patients. However, similar to BRAF
inhibitor monotherapy, the majority of patients treated with
dual BRAF and MEK inhibitors inevitably develop resistance less
than a year into treatment (38, 39). As such, further clinical trials
are ongoing to examine other molecular targets to treat
this disease.

Inhibitors of CDK4/6
An emerging target in melanoma is the cyclin-dependent kinases 4
and 6 (CDK4/6). These kinases, which are regulated by type D
cyclins, phosphorylate and inhibit the tumor suppressor
retinoblastoma protein (RB) (40) (Figure 1). RB is a central
regulator of G1-S cell cycle transition (41, 42). In its
hypophosphorylated form, RB binds to and inhibits E2F
transcription factors, preventing transcription of genes associated
with cell cycle progression and entry into S phase (41, 43, 44).
Hence, CDK4/6 plays a critical role in cell cycle regulation in G1,
through mediation of the phosphorylation status and subsequent
function of RB (45, 46). Aberrant activity of CDK4/6 leads to
hyperphosphorylated RB, E2F-mediated progression through G1
and uncontrolled cell proliferation – a hallmark of cancer (47).
Overactivity of CDK4/6 is commonly due to an inactivating
mutation or deletion in the CDKN2A gene which encodes the
CDK4/6 inhibitor, p16INK4a (48) (Figure 1). The p16INK4a/
CyclinD-CDK4/6/RB axis is dysregulated in numerous cancers,
including around 90% of melanomas (49, 50). In many cancers,
this is due to loss of function of RB itself, however, in melanoma
FIGURE 1 | MAPK/ERK and p16/CyclinD-CDK4/6/RB signaling pathways in health and disease. (A) In healthy cells, growth factors bind receptor tyrosine kinases
on the surface of the cell to stimulate proliferation and survival through the MAPK/ERK signaling pathway, which is mediated through a cascade of phosphorylation
events (NRAS ! BRAF ! MEK ! ERK). MAPK/ERK signaling promotes cyclin D1-CDK4/6 complex formation. Inhibition of CDK4/6 by p16 prevents CDK4/6-
mediated phosphorylation of RB, thereby allowing RB to carry out its tumor suppressive function. (B) BRAFV600 mutations and loss of p16 are often seen in
melanoma. BRAFV600 is constitutively active and promotes aberrant overactivation of MAPK/ERK signaling. In the absence of p16, CDK4/6 phosphorylates and
inhibits the tumor suppressor RB. These events lead to uncontrolled cellular proliferation and survival. (C) Clinical inhibitors against BRAFV600, MEK and CDK4/6
block MAPK/ERK signaling and CDK4/6-mediated suppression of RB, thereby attenuating cell cycle and survival.
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RB is often functional, and instead aberrant activation of this
pathway is predominately driven by a loss of p16INK4a and,
subsequently, constitutive CDK4/6 activity (51). Interestingly, the
functional loss of p16INK4a and RB appear to be mutually exclusive
events in this pathway (44, 47, 52), similar to the activating
mutations in MAPK/ERK signaling.

Augmented CDK4/6 activity is observed in many cancers in
addition to melanoma, making it an attractive therapeutic target
for the treatment of a variety of malignancies (41, 44, 53). The
CDK4/6 inhibitor, palbociclib, entered its first clinical trial in
2011 for advanced solid tumors or non-Hodgkins lymphoma
and was generally well tolerated (54). Importantly, only patients
with tumor types in which RB was functional were recruited to
these trials, as CDK4/6 inhibitors rely on the de-repression of
functional RB to inhibit E2F and cell cycle progression.
Following promising clinical outcomes, palbociclib was FDA
approved for the treatment of HR-positive, HER2-negative
breast cancer in 2015, irrespective of CDK4/6 alteration status
(55). Two other CDK4/6 inhibitors (ribociclib, and abemaciclib)
have since been FDA approved and, along with a fourth inhibitor
(trilaciblib), continue to be evaluated in numerous clinical trials
for various other malignancies, including metastatic melanoma
(reviewed in ref. 56).

Combined Inhibition of BRAF, MEK
and CDK4/6
Downstream of MAPK/ERK signaling, activated ERK translocates
to the nucleus and activates a suite of transcription factors (e.g.
ETS, ELC1, MYC, STAT1/3), mediating a network of
transcriptional changes that promote cell growth, survival and
differentiation (57). Importantly, one of the secondary response
genes induced by MAPK/ERK signaling is CCND1, which encodes
the CDK4/6 binding partner Cyclin D1 (58, 59). MAPK/ERK
signaling also functions post translationally to mediate assembly of
the CyclinD-CDK4/6 complex (60). Hence, MAPK/ERK signaling
impinges on the p16INK4a/CyclinD-CDK4/6/RB axis downstream
(Figure 1). Accordingly, aberrant activation of the latter is
associated with resistance to MAPK/ERK inhibition. Specifically,
elevated expression of CCND1 is associated with resistance to
BRAF inhibition in BRAFV600E melanoma, particularly when
CDK4 is also overexpressed (61), and a loss of CDKN2A
expression (indicative of elevated CDK4/6 activity) correlates
with poor progression free survival in patients treated with dual
BRAF and MEK inhibition (62). Together these observations make
CDK4/6 an attractive kinase to target in combination with MAPK/
ERK inhibitors. Indeed, a number of preclinical studies have
reported synergy of CDK4/6 inhibition with BRAF/MEK
inhibitors (63–65). In these studies, combined BRAF and CDK4/
6 inhibition overcomes resistance to BRAF inhibitor monotherapy
in vitro and in vivo in pre-clinical xenograft models of human
melanoma. The triple combination has also demonstrated
significantly enhanced efficacy compared to dual BRAFi/MEKi in
vitro and in vivo (66). Dual inhibition of MEK and CDK4/6 has
also shown promise in pre-clinical studies evaluating tumors with
elevated MAPK/ERK signaling that is mediated through
mechanisms other than mutant BRAF, such as mutations
Frontiers in Immunology | www.frontiersin.org 4
in RAS. For example, this combination has shown synergy in
preclinical KRAS mutant colorectal cancer models (67), and is
efficacious against a subset of NRAS and other melanoma subtypes
(68–70). Indeed, early clinical trials of dual MEK and CDK4/6
inhibition in NRAS mutant melanoma demonstrated encouraging
results (NCT01719380). A phase Ib/II clinical trial examining the
safety and efficacy of combination BRAF and CDK4/6 inhibition
was terminated early, but showed the combination was generally
well tolerated (NCT01777776). Despite promising preclinical data,
in a phase Ib/II dose escalation study, the triple combination of
encorafenib (BRAFi), binimetinib (MEKi) and ribociclib (CDK4/
6i) did not improve response rates or PFS compared to dual
encorafenib/binimetinib (71). A further dose escalation phase Ib
trial is ongoing to assess the triple combination of encorafenib,
binimetinib and palbociclib in patients naïve to or with resistance
to BRAF/MEK inhibitors (NCT04720768). Based on limited
clinical data, it is possible this triple combination may not be as
potent as first hoped from the preclinical evidence of tumor-
intrinsic activity. As such, a better understanding of the impact
of CDK4/6i on BRAFi/MEKi-mediated immune enhancement is
critical for understanding the path forward with this combination,
both as a stand-alone therapy in regard to optimal sequencing of
these inhibitors, as well as their potential to be combined with ICB.
IMMUNE CHECKPOINT INHIBITORS

In 2011, not only was the first targeted therapy approved for the
treatment of melanoma, so too was the first field-changing
immunotherapy, ipilimumab. In contrast to targeted therapies,
which aim to directly inhibit tumor growth by blocking tumor-
intrinsic pathways, immune checkpoint inhibitors aim to activate
the host immune system to control and eradicate cancer.
Ipilimumab is a monoclonal antibody developed against the
immune checkpoint inhibitory molecule, CTLA-4. Immune
checkpoints are regulatory mechanisms that are essential to
maintain immune homeostasis and fine-tune immune
responses during infection. In the setting of tumor pathology
however, engagement of immune checkpoints contributes to
tumor immune evasion, and hence, blocking the activity of
these receptors can improve anti-tumor immune responses. In
clinical trials, ipilimumab significantly improved median overall
survival (OS) from 9.1 months to 11.2 months compared to
conventional chemotherapy, and most notably promoted
durable tumor control, with significantly improved 3-year
survival probability (13, 15). This led to FDA approval of
ipilimumab for the treatment of metastatic melanoma in 2011.

In 2014, a second class of immune checkpoint inhibitors,
PD-1 inhibitors, were FDA approved for use in patients with
unresectable or metastatic melanoma (72, 73). Similar to
ipilimumab, PD-1 inhibitors are also monoclonal antibodies
that de-repress T cell immunity, but they achieve this through
targeting the T cell inhibitory molecule, PD-1 (74). The discovery
that PD-1 was a negative regulator of anti-tumor immunity led
to a series of preclinical studies and clinical trials demonstrating
that blockade of PD-1 was an effective therapy for the treatment
May 2021 | Volume 12 | Article 661737
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of melanoma and other cancers (reviewed in 75, 76). In a seminal
phase III clinical trial (CheckMate-066), the PD-1 inhibitor,
nivolumab, significantly improved the overall rate of survival
(72.9% vs. 65.5%), and median PFS of melanoma patients (5.1
months vs. 2.2 months) compared to chemotherapy, and similar
to ipilimumab, promoted durable tumor control (14). Anti-PD-1
therapies also compared favorably to ipilimumab in regard to
both efficacy and tolerability (11, 12, 77). More recent trials have
shown superior anti-tumor efficacy with the dual combination of
CTLA-4 and PD-1 blockade in melanoma, suggesting concurrent
administration may be a beneficial therapeutic strategy; although
with increased risk of toxicities (11, 78, 79). Overall, the advent of
CTLA-4 and PD-1 immune checkpoint inhibitors dramatically
shifted the field of cancer therapeutics and prompted the
inclusion of immune evasion as a hallmark of cancer.

Mechanisms Underpinning the Efficacy of
Immune Checkpoint Blockade
CTLA-4 blockade has shown efficacy in a number of preclinical
tumor models (reviewed in 80). While the primary mechanism is
thought to be direct de-repression of CD8+ T cell activity by
blocking CTLA-4 antagonism of the T cell costimulatory
molecule CD28, recent studies have demonstrated that CTLA-
4 blockade has multiple anti-tumor effects, including the reversal
of T regulatory cell (Treg) mediated immunosuppression in the
tumor microenvironment (81). CTLA-4 is constitutively
expressed on Tregs and contributes to their regulatory and
immunosuppressive action through multiple mechanisms (82,
83). CTLA-4 expression on Tregs is much higher than that of
CD8+ T cells, and as a result, CTLA-4 antibodies bind Tregs in
high amounts and consequently promote their depletion via
natural killer (NK) cell-mediated antibody-dependent cellular
cytotoxicity (84). Notably, while CTLA-4 blockade has shown
efficacy in numerous mouse tumor models, this appears largely
dependent on the stage of disease and tumor burden (85). In
addition, less immunogenic cancers, including the B16
melanoma model, demonstrate limited responses (86).

Since the advent and ensuing success of anti-PD-1/PD-L1 as a
cancer immunotherapy, the mechanisms of action continue to be
explored. While originally thought to simply re-invigorate T cells
with high expression of PD-1 within the tumor microenvironment,
a recent study found that the success of anti-PD-1 therapy relied on
the clonal replacement of these cells through the recruitment of
new T cells into the tumor microenvironment (87). Indeed,
evidence suggests that myeloid-derived T cell chemoattractants
are required for anti-PD-1 efficacy (88, 89), further supporting the
importance of T cell recruitment for the success of this
immunotherapy. Furthermore, tumor infiltrating T cells exist
across a spectrum of functional and dysfunctional phenotypic
states, and it is proposed that these different states vary in their
capacity to respond anti-PD-1 therapy.

Following the profound success of ICB in a subset of
melanoma patients, thousands of clinical trials are now
underway to test the efficacy of these checkpoint inhibitors
either alone, or in combination with other anti-cancer agents,
for the treatment of melanoma and a range of other cancers.
Notably, utilizing existing therapeutics to sensitize tumors to ICB
Frontiers in Immunology | www.frontiersin.org 5
is a highly sought-after strategy. Indeed, the incorporation of ICB
with targeted therapies for the treatment of melanoma is an
emerging area of clinical interest given the considerable
immunomodulatory activity of targeted therapies that has been
observed in recent years. Such strategies, however, require a
thorough understanding of these immunomodulatory effects,
and this will be discussed in the following sections.
IMMUNOMODULATORY ACTIVITY OF
TARGETED THERAPIES

While the rationale behind targeted therapies is to inhibit
intrinsic mechanisms of tumorigenesis, many oncogenic
targets, including BRAF, MEK and CDK4/6, are also involved
in immune signaling pathways, in both malignant cells and
healthy immune cells. Indeed, there is now considerable
evidence implicating a role for host immunity in the efficacy of
these targeted therapies, which will be the focus of the
following sections.

Immunomodulation by BRAF and MEK
Inhibitors
Tumors are notorious for evolving mechanisms to avoid immune
surveillance, and oncogenic BRAF in melanoma cells can induce
changes that facilitate tumor immune escape. For example,
activated MAPK/ERK signaling via oncogenic BRAF is associated
with tumor cell production of immunosuppressive cytokines
(VEGF, IL-6, IL-10) and downregulation of MHC I, which leads
to impairment of dendritic cell (DC) maturation, reduced T cell
recognition and recruitment of suppressive myeloid-derived
suppressor cells (MDSCs) and Tregs into the tumor
microenvironment (90–92) (Figure 2). Conversely, inhibition of
BRAF (BRAFi) is associated with significant immunological
changes in the tumor microenvironment that are generally
considered favorable for anti-tumor immunity. These changes
include increased tumor infiltrating lymphocytes (TILs) (93–95),
a higher ratio of cytotoxic T cells to regulatory T cells (93), up-
regulation of MHC expression on tumor cells and enhanced
presentation of melanoma-associated neo-antigens (91, 95, 96),
increased production of IFN-g and TNF-a (93) and reduced
production of immunosuppressive cytokines, such as IL-6, IL-10
and VEGF (90, 95) (Figure 2). Interestingly, resistance to BRAFi is
associated with a reversal of these immune-potentiating effects, with
a loss of TILs and induction of T cell exhaustion markers, including
PD-1, observed in tumors that have progressed on BRAFi (93, 94).

While BRAF inhibition can result in favorable changes in the
tumor immune microenvironment due to tumor intrinsic effects,
these inhibitors also have direct effects on lymphocytes and other
immune cells. In the absence of mutant BRAF, BRAFi has been
shown to paradoxically activate the MAPK/ERK pathway by
promoting RAF dimerization and dimer-dependent enzyme
transactivation in immune cells (97–99) (Figure 2). This
paradoxical activation has been observed in T cells (100), NK
cells (101) and macrophages (102). MAPK/ERK paradoxical
activation in T and NK cells is associated with a favorable
May 2021 | Volume 12 | Article 661737
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anti-tumor response due to the resulting increase in proliferation
of these cytotoxic lymphocytes. In contrast, paradoxical activation
in macrophages leads to the production of VEGF, which
promotes tumor growth and resistance to BRAF inhibition (102).

Unlike BRAFi, which are designed to selectively inhibit
oncogenic BRAF in melanoma, MEK inhibition (MEKi) is
designed to target wild type MEK, which is universal across
melanoma and other cell types. In cells with wild type BRAF, the
addition of a MEK inhibitor reduces BRAFi-induced MAPK/
ERK paradoxical activation (103). Early in vitro studies of the
effects of MEK inhibition on the immune system raised concerns
that that this inhibitor would dampen the immune response to
melanoma. Specifically, MEKi was shown to reduce T cell
proliferation, the percentage of cytokine-producing T cells,
antigen-specific T cell expansion and cross presentation by
DCs (104). However, clinical results of combined BRAF and
MEK inhibition were striking, not only due to significantly
enhanced progression free survival, but also because the
addition of a MEK inhibitor unexpectedly lowered the toxicity
profile compared to BRAF inhibitor monotherapy (103); a
phenomenon attributed to MEKi offsetting BRAFi-mediated
paradoxical ERK activation in normal cells (103). Interestingly,
MEKi also enhances the persistence of tumor infiltrating
immune cells, prolonging anti-tumor T cell immunity (105),
and may therefore delay or prevent the loss of T cells seen during
the development of BRAFi resistance. BRAFi also causes an
influx of regulatory T cells and myeloid suppressor cells into the
tumor, and the addition of a MEK inhibitor appears to reverse
Frontiers in Immunology | www.frontiersin.org 6
this, leading to a more favorable tumor microenvironment (106)
(Figure 2). Recently, dual BRAF and MEK inhibition was also
shown to induce anti-tumor immunity via the induction of
pyroptosis; a type of inflammatory cell death that promotes
DC activation and subsequent T cell immunity (107).
Interestingly, a number of melanoma patients treated with the
combination of BRAFi and MEKi have achieved durable and
ongoing tumor regression (7). Given the impact of these
inhibitors on the immune system, it is prudent to question
how much of this response is attributable to tumor-intrinsic
effects, and how much is dependent on a favorable shift in anti-
tumor immunity.

Immunomodulation by CDK4/6 Inhibitors
Until recently, the immunomodulatory effects of CDK4/6
inhibition (CDK4/6i) were entirely unexplored. This changed
rapidly in 2017 when a seminal study uncovered a role for
CDK4/6i in augmenting anti-tumor immunity (108), prompting
a spate of further studies in this area (109–112). Importantly,
using various syngeneic mouse models, many of these studies
showed that the efficacy of CDK4/6i is partially, or entirely
abrogated, when the immune system is compromised. The
immunomodulatory effects of CDK4/6i are multi-faceted and
complex, and still not fully understood. Proposed mechanisms
include both tumor-intrinsic effects, which indirectly modulate
immunity, as well as direct effects on cells of the immune system,
both of which likely contribute to significant remodeling of the
tumor immune microenvironment.
FIGURE 2 | Immunomodulation by oncogenic BRAF and inhibitors of BRAF and MEK in melanoma. (A) BRAFV600 promotes tumor progression through tumor-
intrinsic activation of MAPK/ERK signaling and increased production of immunosuppressive cytokines. MAPK/ERK signaling via oncogenic BRAFV600 is associated
with increased frequencies of Tregs and MDSCs in the tumor microenvironment. In T cells, RAF is not overactive and there is no aberrant MAPK/ERK signaling.
(B) BRAF and MEK inhibition blocks MAPK/ERK signaling in BRAFV600 tumor cells and induces immunogenic cell death. Inhibition of MAPK/ERK promotes the
upregulation of MHC I and expression of melanoma associated antigens by tumor cells and is associated with increased frequencies of T cells and pro-inflammatory
cytokines in the tumor microenvironment. BRAF inhibition is also associated with a reduction in intratumoral immunosuppressive cells including Tregs and MDSCs.
In T cells and other cells with wild type BRAF, BRAF inhibition promotes paradoxical MAPK/ERK activation through RAF dimerization and dimer-dependent enzyme
transactivation, enhancing the proliferation and survival of these cells. MDSC, myeloid derived suppressor cell; Treg, Regulatory T cell.
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Tumor-Intrinsic Immunomodulatory Effects of
CDK4/6 Inhibition
One of the most well-defined mechanisms by which CDK4/6i
augments anti-tumor immunity is through enhancing the
immunogenicity of tumor cells. Most notably, CDK4/6i
increases expression of antigen presenting genes (H2d1, H2k1,
B2m, Erap1, Tap1, Tap2) and surface expression of MHC I and
MHC II in several mouse and human breast and colon carcinoma
pre-clinical models (108, 109, 113) (Figure 3). Likewise, elevated
CCND1 expression (encoding the CDK4/6 binding partner, Cyclin
D1) is associated with lower expression of MHC I genes in breast
cancer patients (108, 114). Less is known about the effects of
CDK4/6 inhibition on melanoma cells, however, an increase in
MHC I in the mouse melanoma cell line B16-OVA in response to
CDK4/6 inhibition has been reported, which led to enhanced T
cell recognition in vitro (108), In breast cancer preclinical models
and patients, induction of tumor-intrinsic interferon signaling is
observed in response to CDK4/6i, which may enhance tumor
immunogenicity by promoting increased secretion of T cell
chemoattractants and expression of costimulatory genes (108)
(Figure 3). This increased interferon signaling is reportedly due
to suppression of DNAmethyltransferase, DNMT1, (an E2F target
gene), which reduces methylation of endogenous retroviral genes,
thereby promoting their expression and inducing viral mimicry
(108) (Figure 3).
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Interestingly, tumor immunogenicity in response to CDK4/6i
is not attributable to the induction of senescence. Cellular
senescence is a state of irreversible cell cycle arrest that
initiates a senescent-associated secretory phenotype (SASP),
typified by the secretion of pro-inflammatory cytokines that
recruit immune cells (109, 115, 116). While CDK4/6i increases
B-galactosidase staining (indicative of senescence), no other
SASP genes are induced, suggesting that senescence does not
contribute to CDK4/6i-induced tumor immunogenicity (108,
109). In addition to their immune-potentiating effects,
inhibitors of CDK4/6 can also dampen immunity via increased
expression of PD-L1 on tumor cells (109, 110, 112, 113). PD-L1
fluctuates throughout the cell cycle and is lowest during late G1-S
when CDK4/6 is most active (110). Inhibition of CDK4/6, or
likewise knocking out Cyclin D1 or overexpressing p16INK4A,
leads to increased PD-L1 expression in numerous cell lines and
preclinical tumor models, including B16 melanoma (109, 110,
112, 113).

T Cell-Intrinsic Effects of CDK4/6 Inhibition
While the majority of studies examining the immunomodulatory
activity of CDK4/6 inhibition focused on tumor-intrinsic effects
or effects on the tumor microenvironment more broadly,
a seminal article in 2018 reported on the direct impact of
CDK4/6 inhibition on T cells (111). In this study, Deng and
FIGURE 3 | Immunomodulatory effects of CDK4/6 inhibition. (A) CDK4/6 inhibition modulates anti-tumor immunity through multiple mechanisms. In tumors cells,
CDK4/6 inhibition leads to hypophosphorylated RB, which binds to and inhibits the activity of E2F transcription factors. Reduced E2F activity leads to an induction of
Type III interferons (IFN), resulting in paracrine IFN signaling and upregulation of MHC I. This induction of IFN is due to the suppression DNMT1, (an E2F target gene),
which reduces methylation of endogenous retroviral (ERV) genes, thereby promoting their expression and inducing viral mimicry. Hypophosphorylated RB also
promotes activation of NFkB and subsequent upregulation of T cell chemoattractants and PD-L1. (B) CDK4/6 inhibition also prevents PD-L1 degradation, further
enhancing PD-L1 protein expression on the cells surface. In T cells, NFAT activity is restrained by CDK4/6-mediated phosphorylation. Following CDK4/6 inhibition,
hypophosphorylated NFAT translocates to the nucleus and upregulates expression of effector genes. Compared to other lymphocyte populations, T regulatory cells
appear particularly susceptible to the anti-proliferative effects of CDK4/6 inhibition.
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colleagues hit CDK4/6 inhibitors in a small molecule screen
aimed at identifying enhancers of T cell activation, using IL-2
production as a readout, and subsequently identified NFAT as a
novel phosphorylation substrate of CDK6 in T cells (111). Upon
CDK4/6 inhibition, phosphorylation of NFAT is prevented,
leading to its de-repression and subsequent translocation to the
nucleus where it promotes the transcription of effector response
genes (111) (Figure 3). Indeed, increased NFAT signaling occurs
in tumors following CDK4/6 inhibition (109), and an increase in
IFNg production by T cells in response to CDK4/6 inhibition has
also been reported (108, 111). In addition to enhancing T cell
activation, NFAT transcription factors can also promote T cell
exhaustion. Interestingly however, exhaustion markers appear to
be decreased in T cells following CDK4/6 inhibition, though this
has not been fully explored (108, 111). In fact, the direct effects of
CDK4/6 inhibition on T cell phenotype and function is entirely
unknown. Given these cells are the primary effectors of anti-
tumor immunity and immunotherapies, this is an area of
considerable interest.

In addition to the regulation of NFAT, CDK4/6 may also play
a role in T cell proliferation, however the mechanisms are not
well defined. In human T cells, CDK4/6i has modest effects
on proliferation and no impact on viability in vitro (109).
Within the tumor microenvironment, the effects of CDK4/6i
on the T cell infiltrate appear to vary depending on the tumor
model and treatment schedule used. In MMTV-Erbb2 breast,
MC38 colon, and B16-F10 melanoma tumor models, CDK4/6
inhibition led to a decrease in total numbers of CD3+ tumor
infiltrating T cells, encompassing CD8+ T cells and Granzyme
B+ and IFNg+ cells (110). In contrast, in the CT26 colon
carcinoma model, CD3+ T cell numbers were relatively
unchanged following CDK4/6 inhibition (109). While some
studies have demonstrated an increase in the frequency of
CD3+ T cells in the immune compartment of tumors (108,
109), it is unclear whether this is a true increase in the number
of T cells, or simply a consequence of other immune populations
shifting. Overall, it appears that CDK4/6 inhibition leads to
less or equal absolute numbers of CD3+ T cells in the tumor
microenvironment (109, 110), suggesting a possible anti-
proliferative effect of CDK4/6i on these cells. Interestingly, in a
syngeneic breast cancer model, CDK4/6 inhibition led to a
significant reduction in the frequency and absolute number of
tumor-infiltrating CD4+CD25+ Tregs, while other T cell subsets
were unaffected (108), suggesting that Tregs are the most
susceptible T cell subset to the anti-proliferative effects of
CDK4/6i. This reduction in Tregs was attributed to cytostasis,
as no changes were observed in apoptosis or the production of
Tregs in the thymus (108).

Given the scarcity of studies that have investigated the direct
effects of CDK4/6 inhibition on T cells, the role of CDK4 and
CDK6 in these cells can be gleaned from studies that have
utilized transgenic mice deficient for these kinases. Indeed, T
cells from CDK6-null mice demonstrate a significant delay in
proliferation and RB phosphorylation following mitogenic
stimulation, indicating an important role for CDK6 in T cell
proliferation following activation (117). Early studies also hinted
at a role for CDK4 in T cell proliferation, as low levels of CDK4
Frontiers in Immunology | www.frontiersin.org 8
expression correlated with reduced T cell proliferation (118).
However, thymocytes from CDK4-/- bone marrow chimeric mice
show no defects in proliferation or cytokine production (119),
though interestingly, CDK4-/- mice had underdeveloped
thymuses and significantly increased numbers of CD8/CD4
negative thymocytes (119). A decrease in thymic mass and an
increase in CD4+CD8+ thymocytes has also be observed in
response to CDK4/6 inhibition (108), suggesting CDK4 may
play a role in T cell development and maturation.
TARGETED THERAPY AND IMMUNE
CHECKPOINT BLOCKADE
COMBINATIONS

The prospect of combining targeted therapies with ICB, either
concurrently or consecutively, for the treatment of melanoma is
attractive for two main reasons. Firstly, the clinical response
profiles of these therapies are distinct, in that targeted therapies
provide short-term benefits for a majority of patients, while ICB
provides long-term benefits for a minority of patients. Assuming
an additive effect, this combination strategy therefore has the
potential to both increase the number of patients that respond
clinically and extend the therapeutic benefit for some. Secondly,
given the profound impact targeted therapies have on anti-tumor
immunity, these drugs may synergize with ICB by creating a
tumor microenvironment that is more conducive to supporting a
clinically beneficial long-term response to immunotherapy. Pre-
clinical studies and clinical trials examining MAPK/ERK- or
CDK4/6-targeted therapy in combination with ICB will be
discussed in the following sections.

Combining MAPK/ERK-Targeted Therapy
With Immune Checkpoint Blockade
A number of pre-clinical studies have shown promising results
from combining BRAF or BRAF and MEK inhibition with ICB
for the treatment of melanoma. In mouse models of BRAFV600

melanoma, blockade of either PD-1 or PD-L1 synergized with
BRAF inhibitor monotherapy (93) or dual inhibition of BRAF
and MEK (106, 120, 121). This effect was dependent on CD8+ T
cells (121), and attributed to increased numbers and function of
tumor infiltrating lymphocytes seen in response to the
combination (93). Additionally, resistance to BRAF inhibitors
is associated with increased expression of PD-L1 by tumor cells,
further suggesting PD-1 blockade would synergize with BRAF
inhibition (122). Surprisingly, preclinical studies examining the
efficacy of MAPK/ERK inhibition with CTLA-4 blockade in
melanoma are lacking. Interestingly however, CTLA-4
blockade synergizes with BRAF inhibition in BRAF-wildtype
colon carcinoma and fibrosarcoma mouse models (123); an effect
attributed to the expansion of antigen specific T cells resulting
from BRAFi-induced paradoxical activation of MAPK/ERK
(123). Additionally, continual treatment of BRAFi- or BRAFi/
MEKi-resistant tumors with BRAFi renders tumor cells more
susceptible to killing by cytotoxic lymphocytes through
transiently enhancing uptake of the T cell cytotoxic molecule,
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granzyme B (124). Notably, these studies suggest that the
combined benefits of BRAF inhibition with T cell-directed
immunotherapies may extend beyond BRAF-mutant or
BRAFi-sensitive cancers.

Retrospective clinical data can provide insight into the
potential efficacy of combining targeted therapy and ICB.
Indeed, retrospective analysis from two clinical studies found
that patients who progressed on BRAFi and MEKi, and
subsequently went on to receive anti-PD-1 or anti-CTLA-4
therapy, had poor overall response rates (125, 126), possibly
due to the loss of TILs associated with resistance to MAPK/ERK
inhibition (93, 94). However, there are case reports where anti-
CTLA-4 therapy has shown efficacy after BRAF inhibition (93,
127). Whether prior BRAF inhibition induced sensitivity to anti-
CTLA-4 therapy, or whether these tumors were inherently
sensitive to begin with was unclear.

Despite the conflicting data from these retrospective cases, the
success of this combination in pre-clinical studies led to the
initiation of several clinical trials designed to prospectively assess
the efficacy of combined MAPK/ERK targeted therapy and ICB
(reviewed in 128–130). Early phase safety trials of MAPK/ERK
inhibitors co-administered with anti-CTLA-4 therapy
demonstrated significant toxicities (131–133). Interestingly,
toxicity was associated with the addition of trametinib (MEKi),
and appeared worse for vemurafenib (BRAFi) than dabrafenib
(BRAFi) (133), highlighting the need to consider specific drug-
related adverse events in the design of combination therapies.
BRAF/MEK-targeted therapies in combination with anti-PD-1 or
anti-PD-L1 therapies have shown better overall toxicity profiles
than that of anti-CTLA-4 therapy, however trial results have been
variable. A randomized phase III trial (IMspire170) examining the
benefit of adding a MEK inhibitor to PD-L1 blockade showed
disappointing results, with the combination of cobimetinib
(MEKi) and atezolizumab (anti-PD-L1) failing to increase PFS
compared to pembrolizumab (anti-PD-1) alone (134). Trials
examining the triplet combination of dual BRAF/MEK-targeted
therapy and PD-(L)1 blockade have been more encouraging. Of
note, in the phase II trial, KEYNOTE-022, dual dabrafenib/
trametinib plus pembrolizumab showed a numerical increase in
PFS compared to dabrafenib/trametinib plus placebo (16 vs.10.3
months); however, this did not reach statistical significance (135,
136). More recently, two seminal phase III trials of triplet BRAF/
MEK/PD-(L)1 therapy (COMBI-I and TRILOGY IMspire150)
yielded conflicting results (137–139). The primary outcome
measured in both trials was investigator-assessed PFS comparing
dual BRAFi/MEKi/PD-(L)1 versus BRAFi/MEKi/placebo, and
while IMspire150 successfully met its primary endpoint,
COMBI-I failed to do so. Similar to the KEYNOTE-022 trial,
results from COMBI-I were nonetheless encouraging,
demonstrating a trend in increased PFS with the addition of the
PD-1 inhibitor, spartalizumab, to dabrafenib/trametinib (16.2 vs
12 months) (139), but falling short of statistical significance. In
contrast, IMspire150 reported a statistical benefit with the addition
of the PD-L1 inhibitor, atezolizumab, to dual vemurafenib/
cobimetinib (15.1 vs. 10.6 months) (137). The details and results
of these trials are summarized in Table 1.
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The overall design of the COMBI-I and IMspire150 trials
were similar, drawing into question the conflicting results of the
primary outcome from these two trials. A key difference was the
use of a run-in cycle of BRAFi/MEKi prior to the addition of ICB
in the IMspire150 trial, compared to upfront administration of
the triplet synchronously in the COMBI-I trial (137, 139). Given
the profound immunomodulatory effects of BRAFi/MEKi
described above, this run-in may alter tumor susceptibility to
subsequent ICB dosing. Also of note, the PD-1 inhibitor,
sparatlizumab, used in COMBI-I, is a newly developed
monoclonal antibody. While it is unlikely this inhibitor is less
efficacious than other PD-(L)1 inhibitors, it has not yet proven
efficacious in clinical trials, and thus its utility in combination
therapies should be interpreted with caution. An additional
consideration in these trials is the baseline characteristics of
patients undergoing therapy. For example, factors such as
elevated lactate dehydrogenase and greater number of disease
sites at baseline predicts worse overall prognosis for patients
treated with targeted therapy (140). Patients with poorer
prognosis in this regard may demonstrate superior benefit
from the addition of anti-PD-(L)1 therapy, compared to those
with baseline characteristics associated with better responses to
dual BRAF/MEK-targeted therapy. Notably, patients in the dual
BRAFi/MEKi arm of COMBI-I did better than those in the dual
arm of IMspire150 (12 vs 10.6 months), potentially due to a
lower proportion of patients in the COMBI-I trial with more
than three disease sites at baseline (45% in COMBI-I vs. 56% in
IMspire150; (Table 1) (137, 139). Indeed, a higher PFS in the
dual BRAFi/MEKi arm of COMBI-I compared to IMspire150
may have been a determining factor differentiating the statistical
outcomes of these trials.

While the primary outcome measured in IMspire150 and
COMBI-I was investigator-assessed PFS, IMspire150 also
included assessment of PFS by an independent review
committee. Notably, in contrast to the investigator assessment,
independent review determined there was no statistically
significant increase in PFS upon the addition of atezolizumab
to vemurafenib/cobimetinib (16.1 vs 12.3 months) (137).
Interestingly, the IMspire150 results from the independent
assessment align with those from the COMBI-I trial. As such,
the conflicting results in these trials may be due more to
statistical design and analysis of the trial, rather than
differences in the clinical outcome of the combinations.
Encouragingly, toxicities were manageable in both trials and
the consistent numerical increase in PFS is promising.
Adjustments in dose and schedule, or alternative targeted
therapy/ICB combinations, may therefore have potential to
improve outcomes, and many further clinical trials are ongoing
in this space (NCT02224781, NCT04511013, NCT03554083,
NCT04310397, NCT02910700). Further, the capacity for
BRAF/MEK-targeted therapies to enhance immunotherapies
other than ICB, such as high-dose IL-2, oncolytic viral
therapies and adoptive cell therapy, including CAR-T cell
therapy, requires further exploration in the clinic. Such
approaches have shown promise in preclinical and small-scale
clinical studies, and may present additional avenues for the
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utility of BRAF/MEK inhibitors as immunotherapy adjuvants
(106, 124, 141, 142).

Combining CDK4/6 Inhibition With Immune
Checkpoint Blockade
The recently discovered immunomodulatory activity of CDK4/6i
have made it an attractive potential adjuvant for T cell directed
immunotherapies . Indeed, CDK4/6 inhibitors have
demonstrated synergy with blockade of the PD-1/PD-L1 axis
in a number of preclinical models (108–111), prompting
evaluation of this combination therapy in clinical trials. Pre-
clinically, this combination is particularly efficacious against
CT26 colon carcinoma cells (108–110), which interestingly
harbor a Cdkn2a deletion and expresses functional RB (143,
144), likely rendering it highly sensitive to the tumor-intrinsic
immunomodulatory effects of CDK4/6 inhibition. In this model,
the most efficacious schedule was treatment with a CDK4/6
inhibitor daily from days 6-34, with anti-PD-L1 antibody
administration on days 13, 20 & 27 (109). The resulting anti-
tumor efficacy of this combination schedule was attributed to
CDK4/6 inhibition promoting and maintaining a T cell inflamed
microenvironment (109). Efficacy of this combination has been
Frontiers in Immunology | www.frontiersin.org 10
demonstrated in a number of other pre-clinical models,
including MC38 colon carcinoma (109, 110), MMTV-Her2
breast cancer (108), EMT6 (109), as well as AT3-OVA breast
cancer with the addition of a PI3K inhibitor (113). Interestingly,
CDK4/6 inhibition promotes PD-L1 surface expression on
tumor cells through both RB-dependent and RB-independent
mechanisms (110, 112). This suggests that CDK4/6i-induced
effects on tumor PD-L1 expression, and subsequent synergy with
anti-PD1/PD-L1 therapy, may also be relevant for RB-deficient
tumor types.

As CDK4/6 inhibitors and PD-1/PD-L1 checkpoint inhibitors
are already developed for clinical use, the combination of these
two therapies has been able to rapidly enter clinical trials. In light
of encouraging pre-clinical data, several clinical trials are now
underway to examine the safety and efficacy of this combination.
These trials are being conducted predominantly in ER+ breast
cancer, as well as other advanced solid tumors (NCT04075604,
NCT02778685, NCT04118036, NCT03147287, NCT03294694,
NCT02791334). As this combination is new to the clinic,
examining the toxicity profile will be a crucial first step and
results from these trials are eagerly anticipated. In the interim,
the immunomodulatory effects of CDK4/6 inhibitors are still
TABLE 1 | Design, results and key features of major clinical trials evaluating BRAF/MEK/PD-(L)1 triple combination therapy.

KEYNOTE-022 COMBI-I IMspire150

Trial ID NCT02130466 NCT02967692 NCT02908672
Reference (136) (139) (137)
Trial type Double blind, randomized, placebo-

controlled, Phase I/II
Double blind, randomized, placebo-

controlled, Phase III
Double blind, randomized, placebo-

controlled, Phase III
Therapeutic Pembrolizumab

(Keytruda®)
Dabrafenib
(TAFINLAR®)

Trametinib
(Mekinist®)

Spartalizumab Dabrafenib
(TAFINLAR®)

Trametinib
(Mekinist®)

Atezolizumab
(TECENTRIQ®)

Vemurafenib
(Zelbolraf®)

Cobimetinib
(COTELLIC®)

Target PD-1 BRAF MEK PD-1 BRAF MEK PD-L1 BRAF MEK
Schedule Triplet used up front Triplet used up front One cycle run-in with vemurafenib +

cobimetinib only, followed by triplet in
subsequent cycles

Cohort Patients with previously untreated
BRAFV600 melanoma (unresectable, locally

advanced or metastatic)

Patients with previously untreated
BRAFV600 melanoma (unresectable,

locally advanced or metastatic)

Patients with previously untreated BRAFV600
melanoma (unresectable, locally advanced or

metastatic)

Primary outcome
assessed

Investigator-assessed PFS Investigator-assessed PFS Investigator-assessed PFS

Trial arms Pembrolizumab +
dabrafenib + trametinib

Placebo +
dabrafenib +
trametinib

Spartalizumab +
dabrafenib +
trametinib

Placebo +
dabrafenib +
trametinib

Atezolizumab +
vemurafenib +
cobimetinib

Placebo +
vemurafenib +
cobimetinib

Number of patients 60 60 267 265 256 258
Median follow up (months) 9.6 27.2 18.9

PFS (months) 16 10.3 16.2 12 15.1 10.6
HR, 0.66 [95% CI,0.40-10.7]; p= 0.043

Not significant
HR, 0.82 [95% CI, 0.655-1.027]; p=0.042

Not significant
HR, 0.78 [95% CI, 0.63-0.97]; p=0·025

Significant
ORR (%) 63.3 71.7 68.5 64.2 66.3 65
CRR (%) 18.3 13.3 20 18 15.7 17.1
Tx-related adverse events
requiring discontinuation
(%)

25 15 12 8 13 16

Baseline characteristics (% of patients)
Elevated LDH 45 43.3 ~40 33 33
Metastasis stage M1c 81.7 63.3 ~60 57 63
Disease at >2-3 sites 63.3 (>2) 53.3 (>2) ~45 (>3) 56 (>3) 56 (>3)
Previously treated for CNS
metastases

1.7 1.7 2 3
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being elucidated and additional pre-clinical studies are required
to better understand how to most effectively use CDK4/6
inhibitors to boost anti-tumor immunity.
CONCLUSION

The past decade has seen a rapid rise in the introduction of modern
therapies that have transformed treatment outcomes for patients
with melanoma. Dominating this landscape has been the
development of small-molecule targeted therapies and ICB for the
treatment of unresectable or metastatic melanoma. Individually,
both targeted therapies and ICB continue to produce remarkable
clinical responses in melanoma patients, but the challenge is to
overcome the caveats that arise from acquired resistance and poor
response rates to these therapies. As a result, numerous clinical trials
are underway to explore new targeted therapy combinations, such
as BRAF, MEK and CDK4/6 inhibition, as well as combination
targeted therapy and ICB approaches, designed with the aim of
capitalizing on the distinct mechanistic modes of action of these
therapies. As these latter combinations enter the clinic, it is
imperative that we continue to investigate the complex and
time-dependent immunomodulatory effects of targeted therapies
and develop a thorough understanding of how these agents impact
on the tumor immune microenvironment and anti-tumor
immune responses. It is clear targeted therapies have dynamic
multi-faceted effects on anti-tumor immunity, both indirectly via
interruption of tumor intrinsic pathways that modulate immune
responses, and directly through modulating these signaling
pathways within immune cells themselves. Our appreciation of
Frontiers in Immunology | www.frontiersin.org 11
the complexities of the immune composition of tumors is growing
rapidly in an era of advanced single cell and high-throughput
multi-omic technology, providing us with new understanding of
the immune subsets required for optimal responses to ICB. The
goal now is to incorporate this evolving knowledge to gain a
deeper understanding of how targeted therapies influence these
immune cell subsets, and identify how this can be exploited to
augment anti-tumor immunity and responses to ICB. Such
knowledge is essential to facilitate the rational design of
combinations and scheduling regimes of targeted and immune-
based therapies that maximize positive outcomes for patients.
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