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Abstract

Background: Advanced glycation end products (AGEs) have been related to the pathogenesis of cardiovascular diseases (CVD),
chronic kidney disease (CKD) and diabetes mellitus. We sought to investigate the binding capacity of sevelamer to both AGEs
and uremic serum in vitro and then test this pharmaceutical effect as a potential vascular anti-inflammatory strategy.

Methods: AGEs were prepared by albumin glycation and characterized by absorbance and electrophoresis. Human endothelial
cells were incubated in culture media containing AGEs and uremic serum with or without sevelamer. Receptor for advanced
glycation end product (RAGE) expression was evaluated through immunocytochemistry and western blot to explore the inter-
actions between AGEs and the endothelium. Inflammatory and endothelial dysfunction biomarkers, such as interleukin 6 (IL-
6) and IL-8, monocyte chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1) and serum amyloid A
(SAA) were also measured in cell supernatant. The chemotactic property of the supernatant was evaluated.

Results: AGEs significantly induced the expression of RAGE, inflammatory and endothelial activation biomarkers [IL-6,
(P<0.005); IL-8, MCP-1, PAI-1 and SAA (P<0.001)] and monocyte chemotaxis as compared with controls. In addition, AGEs
increased the levels of inflammatory biomarkers, which were observed after 6 h of endothelial cell incubation with uremic
serum [IL-6 (P<0.001) IL-8, MCP-1 and PAI-1 (P<0.05)]. On the other hand, after 6 h of endothelial cell treatment with seve-
lamer, RAGE expression (P<0.05) and levels of inflammatory biomarkers [IL-6 and IL-8 (P<0.001), MCP-1 (P<0.01), PAI-1
and SAA (P<0.005)] significantly decreased compared with the AGEs/uremic serum treatment alone.

Conclusions: Sevelamer decreased both endothelial expression of RAGE and endothelial dysfunction biomarkers, induced
by AGEs, and uremic serum. Further studies are necessary for a better understanding of the potential protective role of seve-
lamer on uremic serum and AGEs-mediated endothelial dysfunction.
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Introduction

Advanced glycation end-products (AGEs) are a heterogeneous
group of molecules such as sugars, lipids and nucleic acids,
formed by nonenzymatic glycosylation reactions through a com-
plex sequence of reactions referred to as the Maillard reactions
[1]. The most prevalent AGE in vivo is carboxymethyl-lysine, bet-
ter known as CML [2]. AGEs have a high renal clearance in the
body and the main form of excretion is through urine [3]. They
are considered medium-sized uremic toxins that accumulate in
the bloodstream of patients with chronic kidney disease (CKD).
Their its origin is endogenous, occurring mainly when the body is
exposed to high sugar levels, such as in diabetes [4].

The excessive intake of dietary AGEs has been linked to
endothelial dysfunction, insulin resistance and the progression
of atherosclerosis [5, 6]. Furthermore, recent studies have sug-
gested that the increased intake of AGEs leads to their accumu-
lation in the brain of diabetic and obese patients [7, 8] and thus
it contributes to cognitive decline in these patients [9]. To exert
their cellular effect, AGEs bind to cell surface receptors, such as
AGER1 or, most importantly, to the receptor for advanced glyca-
tion end products (RAGE) [10, 11]. The RAGE–AGEs linkage stim-
ulates several pro-inflammatory cytokines, including tumour
necrosis factor alpha (TNF-a), interleukin (IL)-6 and IL-8, as well
as profibrotic cytokines such as transforming growth factor beta
(TGF-b) [12] through activation of the transcription factor
nuclear factor kappa B (NF-jB), which in turn leads to gene
expression and release of pro-inflammatory molecules as well
as the release of reactive oxygen species (ROS) [13].
Furthermore, studies led by our group showed that endothelial
cell exposure to a uremic environment increases monocyte che-
moattractant protein-1 (MCP-1), IL-8 and vascular adhesion
molecule-1 (VCAM-1) expression, which suggests a relationship
between vascular injury, systemic inflammation and uremic
toxicity [14].

Sevelamer is a phosphate binder used in CKD patients to
control hyperphosphatemia. In addition to its effects on phos-
phate levels, sevelamer seems to have pleiotropic effects that
include a reduction of lipid levels and clearance of some uremic
toxins in the bloodstream [15, 16]. Clinical studies enrolling CKD
patients have shown that sevelamer may reduce serum levels
of some low-molecular-weight uremic toxins [17]. We have pre-
viously demonstrated that sevelamer reduces systemic inflam-
matory response both in an animal model of CKD and in
hemodialysis (HD) patients [18, 19]. Other studies have also
demonstrated that sevelamer may decrease systemic inflam-
mation in patients with CKD, as it reduces circulating levels of
uremic toxins such as AGEs [20] as well as indoxyl sulfate, and
p-cresol [17, 21]. Moreover, sevelamer can reduce the expression
of adhesion molecules intercellular adhesion molecule-1
(ICAM-1) and VCAM-1 (markers of vascular injury) consequently
it reduces circulating and cellular levels of AGEs, increases anti-
oxidant defense, and decreases circulating levels of pro-
oxidants molecules [22–24]. Taken together, these studies indi-
cate that sevelamer may help remove uremic toxins via
nondialytic process.

Thus, the present study aimed to investigate the potential
protective endothelial effects of sevelamer through its binding
capacity on other uremic toxins beyond phosphate, particularly
AGEs. The potential chelation effect of sevelamer on uremic
serum of patients with CKD was also investigated. Human
endothelial cells and monocytes were used to mimic the early
model of endothelial dysfunction. Hence we suggest a novel
approach for the use of sevelamer, which could hypothetically

contribute to the decrease in inflammatory cellular response
and, consequently, avoid the development of CVD in AGEs-
elevated pathologies such as CKD and diabetes.

Materials and methods
Patient selection

The patients were selected among 104 CKD patients on HD from
a single dialysis center in Curitiba, Brazil. After applying the
inclusion and exclusion criteria listed below, 26 patients were
enrolled in the study. The inclusion criteria were that all
patients had to be on chronic HD three times a week (3.5–4 h per
session), using polysulphone dialysis membranes and dialysate
with bicarbonate and calcium concentrations of 32 mEq/L and
3.5 mEq/L, respectively. The exclusion criteria were all patients
(i) undergoing HD sessions through a central venous catheter as
vascular access, (ii) with the presence of infectious disease or
severe chronic inflammation or malignancies, (iii) with active
liver disease, (iv) with autoimmune diseases, (v) using immuno-
suppressive or anti-inflammatory agents within the last
3 months prior to enrollment in the study and (vi) who have had
a cardiovascular event (i.e. myocardial infarction, unstable
angina, stroke or myocardial revascularization) within 3 months
before the study began. All patients signed an informed consent
agreeing to participate in the study. The protocol was approved
by the Ethics Committee in Human Research of the
Universidade Federal do Paran�a (CEP/SD: 974.079.10.07). For
comparison purposes, serum samples from healthy volunteers
(N¼ 10) were used as controls.

Clinical data collection

Clinical and demographic data were collected through inter-
views and physical examinations performed on the initial
assessment day and analysis of the medical records. The fol-
lowing data were collected: age, gender, race, comorbidities,
CKD etiology, time on dialysis and use of statins, aspirin or
cholecalciferol.

Collection of laboratory data

Blood samples were collected immediately before the first HD
session of the week, centrifuged and stored at �80�C. Serum lev-
els of total cholesterol, low-density lipoprotein (LDL) and high-
density lipoprotein (HDL) cholesterol fractions, triglycerides,
hemoglobin, albumin, calcium, phosphorus, parathyroid hor-
mone (PTH), alkaline phosphatase and C-reactive protein (CRP)
were measured in all patients.

In vitro experiments

Endothelial cell culture
An immortalized human endothelial cell line EA.hy926
(CRL-2922; ATCC, Manassas, VA) was used. The cells were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM) (Life
Technologies, Grand Island, NY, USA) supplemented with 10%
fetal bovine serum (FBS; Gibco, Grand Island, NY, USA) and
10 mg/mL of penicillin/streptomycin (Gibco) and maintained at
37�C in a humidified atmosphere containing 5% CO2.

U-937 cell culture
U-937 cells (CRL-1593.2; ATCC) were purchased from a commer-
cial tumor cell line. These cells are accepted as proxies for circu-
lating monocytes, which are difficult to obtain in satisfactory
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amounts from donors’ total blood. The U-937 cells were cultured
in RPMI 1640 (Gibco) supplemented with 10% FBS (Gibco), 100 U/
mL of penicillin and 50 mg/mL of streptomycin (Gibco). As the
cells grew in suspension, a ratio of 105 monocytes/mL was
maintained in the culture medium for 3 days. The cells were
kept in culture flasks and incubated at 37�C in a 5% CO2

atmosphere.

Synthesis and characterization of AGEs
AGEs and bovine serum albumin (BSA) (Sigma-Aldrich, St Louis,
MO, USA) were prepared as previously described [25]. In short,
AGEs and BSA were characterized by spectrophotometry
(Tecan, M€annedorf, Switzerland) by comparing the absorbance
at 330, 360, 400 and 420 nm, as previously described [26, 27]. For
cell treatment, AGEs and BSA were applied to the culture media
at 0.2 mg/mL. AGEs and BSA were also characterized by basic
protein polyacrylamide gel electrophoresis (PAGE). Then, 15 mg
of the sample was electrophoresed in 10% resolving gel at 100 V
for 4 h at room temperature with inverted poles and the bands
were visualized after Coomassie blue staining.

Endotoxin assay
To exclude endotoxin contamination of AGEs and BSA, a limu-
lus amebocyte lysate (LAL) assay test (Thermo Fisher Scientific,
Rockford, IL, USA) was performed according to the manufac-
turer’s recommendations. The absorbance was measured at
410 nm (Tecan) and all measurements were taken in duplicate.

Cell viability assay
Cell viability was assessed using the 3-[4,5-dimethyl-thiazol-2-
yl]-2,5-diphenyltetrazolium bromide (MTT) (Sigma-Aldrich)
assay according to Mosmann [28]. The endothelial cells were
plated in 96-wells culture plates at a density of 104 cells/well.
After 24 h of incubation, the medium was replaced and cells
were treated with BSA and AGEs with or without 3% sevelamer
for 24 h. All analyses were performed in triplicate.

Treatment of endothelial cells with AGEs, uremic pool and sevelamer
Endothelial cells were cultured at 106 cells/well in 96-well plates
as described and incubated at 37�C in a 5% CO2 atmosphere
overnight. For cell treatment, AGEs and BSA were diluted at a
concentration of 0.2 mg/mL in DMEM with or without 3% seve-
lamer. To prepare the uremic medium, serum from patients
was pooled. For this purpose, equal volumes of serum from all
patients (N¼ 26) were mixed to form a single uremic pool.
Subsequently the endothelial cells were incubated with uremic
medium (10% uremic pool) with or without 3% sevelamer.
Finally, the endothelial cell supernatants were recovered at 0
and 6 h by simple aspiration of the contents of the wells and
stored at �20�C for subsequent quantification of IL-6, IL-8, MCP-
1, plasminogen activator inhibitor-1 (PAI-1) and serum amyloid
A (SAA) as well as for the chemotaxis assay. Three experiments
were performed in triplicate for all cell culture models used.

Nuclear magnetic resonance
Spectra were obtained with a 1D31P nuclear magnetic resonance
(NMR) spectrometer (Avance III; Bruker, Billerica, MA, USA)
operating at 14.1 Tesla (600 MHz for 1H and 242 MHz for 31P)
equipped with a reverse pentanuclear observation probe of
5 mm field gradient z (QXI) axis. We evaluated the phosphate
concentration in samples containing phosphate (4 mM), with or
without 3% sevelamer, to validate in vitro the chelating effect of
sevelamer to phosphate. The samples were solubilized in 600 lL
of a solution of D2O:H2O (1:9 v/v) at 30�C. The 31P decoupled

spectra were obtained with a 30� angle, with a magnetization
window of 400 ppm and an acquisition time of 0.17 s. The relax-
ation time of 0.200 and 1024 transients was processed with the
help of the TopSpin program (Bruker, Karlsruhe, Germany)
applying exponential multiplication on the acquired free induc-
tion decays (FIDs). All analyses were performed in triplicate.

RAGE immunostaining
RAGE expression in cells treated with AGEs was as previously
described by Rempel et al. [27]. The images were captured using
an AxioImager Z2 light microscope (Carl Zeiss, Jena, Germany)
equipped with an automated scanner slide (Metasystems,
Altlussheim, Germany). All analyses were performed in
triplicate.

Western blot analysis
Growth-arrested cells cultured in 100-mm dishes were stimu-
lated for 24 h with BSA and AGEs at 0.2 mg/mL, with or without
3% sevelamer, as previously described [27]. RAGE antibody
(1:1000; Santa Cruz Biotechnology, Dallas, TX, USA) and horse-
radish peroxidase-conjugated sheep anti-rabbit IgG polyclonal
antibody (1:10000) (Sigma-Aldrich) were used as primary and
secondary antibodies, respectively. The reaction was visualized
by enhanced chemiluminescence western blotting reagents (GE
Health Care Life Sciences, Little Chalfont, UK). Band intensity
was analyzed using Image Studio Lite 5.0 (LI-COR
Biotechnology, Lincoln, NE, USA). All analyses were performed
in triplicate.

Biomarker assays (IL-6, IL-8, MCP-1, PAI-1 and SAA)
Endothelial supernatant levels of IL-6, IL-8, MCP-1, PAI-1 and
SAA were measured by the Luminex methodology in combina-
tion with the xPONENT 3.1 software package (Luminex, Austin,
TX, USA). The MAGPIX system (Darmstadt, Germany) with 14
markers was used following the manufacturer’s instructions
(adipokine human magnetic 14-plex panel for Luminex plat-
form). Results were expressed through a standard curve (in pg/
mL). All samples were analyzed at the same time under stand-
ardized experimental conditions and measurements were per-
formed in triplicate.

Monocyte migration assay
Cell migration assays were performed using modified Boyden
chambers with a 6.5-mm diameter, 10-mm thickness, porous (8.0
mm) polystyrene membrane separating the two chambers (GE
Healthcare Bio-Sciences, Westborough, MA, USA). Briefly, the
endothelial cells were treated with AGEs, with or without 3%
sevelamer, and the cell supernatant was added to the lower
compartment of the chamber to evaluate the chemoattractant
effect of this supernatant on the monocytes. Subsequently, 106

U-937 cells/mL were added to the top of the chamber over the
membrane. The cells were incubated at 37�C and 5% CO2 for
90 min. The chemoattractant ability of the supernatant (migra-
tion) was measured by counting the number of cells that were
in the lower chamber compartment with a Neubauer chamber.

Data analysis
Statistical analyses were performed using the statistical pack-
ages JMP (version 8.0; SAS Institute, Cary, NC) and SigmaStat
(version 3.5; Systat Software, Erkrath, Germany). The determi-
nation of significant differences was performed by either
Student’s t-test or analysis of variance (ANOVA) for parametric
data and Mann–Whitney and ANOVA on ranks for nonparamet-
ric data. The values were expressed as mean 6 standard error of
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the mean (SEM) of three or five independent experiments.
P< 0.05 was considered statistically significant.

Results

The main clinical and laboratory characteristics of the 26 patients
enrolled in the study are described in Tables 1 and 2, respectively.
The mean age was 52 6 2 years and 38% were male. Hypertensive
nephrosclerosis was the main cause of CKD and all patients in
the sample were hypertensive. Only 11% of the patients had dia-
betes mellitus as an associated disease. The patients were treated
with statins, aspirin and antihypertensive drugs in 30%, 43% and
100% of cases, respectively. The median values found for total
calcium, PTH, Kt/V, albumin and total cholesterol were within the
reference range for patients in stage 5 CKD.

AGEs characterization

To verify AGE formation after albumin glycation, AGEs were
characterized by ultraviolet (UV) absorption (Figure 1A), as

previously described elsewhere [26, 27]. Figure 1B shows the
electrophoretic migration of AGEs by PAGE.

AGEs endotoxin levels

An LAL assay (Thermo Fisher Scientific) was performed to
exclude the possibility that AGE and BSA were contaminated by
endotoxins. The levels of endotoxins in BSA and AGEs were 1.65
and 1.04 EU/mL, respectively, which are not considered
relevant.

Cell viability assay

Endothelial cell viability was assessed by MTT. Endothelial cells
were cultured with BSA and AGEs at 0.2 mg/mL, with or without
3% sevelamer. Neither AGEs nor sevelamer had a significant
effect on cell viability (Figure 2).

NMR

To verify if the binding capacity of sevelamer was preserved
in vitro, the phosphate concentration on media samples con-
taining phosphate (4 mM) was evaluated with and without seve-
lamer (3%). A reduction in phosphate concentration in samples
treated with sevelamer was noted, confirming that its in vitro
chelating action was preserved (Figure 3).

Effect of AGEs on RAGE immunostaining and protein
expression

Endothelial cells were treated with AGEs and specifically
stained to detect this receptor. As shown in Figure 4, positive
staining was visualized in AGE-treated cells (Figure 4D).
Endothelial cells treated with either media alone (Figure 4A) or
BSA alone (Figure 4C) were used as negative controls (Figure 4B).
The staining was RAGE specific because the secondary antibody
alone did not produce any coloration (Figure 4B). Additionally,
to confirm and quantify the RAGE expression, we examined
whether AGEs induced an increase in RAGE protein levels by
western blot analysis. AGEs increased RAGE protein levels after
24 h of incubation (Figure 4E). However, a decrease in RAGE
expression was observed when endothelial cells were incubated
with AGEs and sevelamer.

Effect of AGEs, uremic serum and sevelamer on
biomarkers expression

IL-6, IL-8, MCP-1, PAI-1 and SAA expression increased signifi-
cantly in a time-dependent manner when the endothelial cells
were exposed to AGEs (Figure 5). However, when the cells were
exposed to the uremic serum pool for 0 and 6 h, only SAA did
not have a significant increase (Figure 6). In contrast,
a significant time-dependent decrease in the expression of
these biomarkers was observed in cells incubated with AGEs or
the uremic serum pool in the presence of sevelamer.
Nonetheless, sevelamer was not effective in reducing PAI-1 lev-
els after uremic serum treatment.

Monocyte migration assay

Figure 7 illustrates the effect of BSA and AGEs, with or without
sevelamer, on monocyte migration. Media alone (DMEM) was
used as a negative control to evaluate the spontaneous move-
ment of monocytes. MCP-1, IL-8 and MCP-1 with IL-8, known
chemoattractant molecules, were used as positive controls at
50 ng/mL. After 90 min of incubation, a significant increase in

Table 1. Main clinical characteristics of the study population

Parameters
Number of patients 26
Age (years) 52 6 2
Gender (% men) 38
Ethnicity (% Caucasian) 81

Comorbitidies (%)
Diabetes mellitus 11
Cardiovascuar diseases 15
Hypertension 100

Etiology of CKD (%)
Hypertensive nephrosclerosis 30
Diabetic nephropathy 11
Chronic glomerulonephritis 50
Other 9

Vitamin D (% used) 45
Statins (% used) 30
Aspirin (% used) 43
Antihypertensive agents (% used) 100
Time on dialysis (months) 17 6 3

Values expressed as mean 6 SD.

Table 2. Main laboratory characteristics of the study population

Cholesterol (mg/dL) 180 (108–248)
Low-density lipoprotein cholesterol (mg/dL) 106 (42–176)
High-density lipoprotein cholesterol (mg/dL) 44 (21–80)
Triglycerides (mg/dL) 150 (73–240)
Hemoglobin (g/dL) 11.5 (10.8–12.0)
Albumin (g/dL) 3.9 (3.3–4.7)
Calcium (mg/dL) 9.0 (7.6–10.3)
Phosphate (mg/dL) 6.7 (4.1–9.6)
PTH (pg/ml) 446 (11–1666)
Alkaline phosphatase (UI/L) 149 (65–602)
Kt/V 1.5 (1.1–1.8)
CRP (mg/ml) 4.9 6 4.8
IL-6 (pg/ml) 6.7 6 8.1
IL-8 (pg/ml) 128.2 6 206.2
SDF-1 (pg/ml) 2625.9 6 1288.6

Values expressed as mean 6 SEM or median (25th-75th percentiles). SDF-1, stro-

mal cell-derived factor-1.
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cell migration was noted in the media enriched with MCP-1
(254.2 6 46.8%; P< 0.05) and in the supernatant of the endothe-
lial cells treated with AGEs (402.3 6 163.8%; P< 0.01) compared
with the negative controls (DMEM alone, taken as 100%).
Conversely, the sevelamer-enriched supernatant led to a signifi-
cant decrease in cell migration induced by AGE-enriched media

(402.3 6 163.8 versus 33.3 6 7.4%; P< 0.005) and BSA-enriched
media (277.7 6 70.87 versus 62.5 6 4.1%; P< 0.05).

Discussion

Vascular inflammation plays a crucial role in the development
of CVD complications and comorbidities in CKD [29, 30]. AGEs
are a heterogeneous group of compounds responsible for the
activation of inflammatory responses, causing deleterious
effects on vascular tissue [31]. Moreover, AGEs may accumulate
in arteries, thus increasing the risk of endothelial dysfunction
and atherosclerosis progression [5, 32].

Sevelamer is a phosphate binder with potential pleiotropic
effects used in CKD patients for hyperphosphatemia treatment
[33]. In addition, sevelamer may decrease the circulating levels
of uremic toxins [24], which reduces the possibility of uremic-
related cardiovascular complications such as atherosclerosis
[34]. In this context, Nikolov et al. [35] demonstrated that seve-
lamer combined with lanthanum carbonate leads to a decrease
in serum phosphate, vascular calcification and atherosclerosis
in mice with CKD.

The administration of sevelamer for 3 weeks reduced the cir-
culating levels of CML, methylglyoxal (MG), phosphatemia and
lipid levels in diabetic HD patients, which resulted in a reduc-
tion in inflammatory biomarkers and oxidative stress [36].
Interestingly, some studies on HD and pre-dialysis patients and
recent meta-analysis studies have suggested that sevelamer
use was associated with lower all-cause mortality compared
with calcium-based binders [37–39], suggesting a potential
advantage of the former binder over the latter.

To the best of our knowledge, this is the first in vitro demon-
stration using endothelial cells in which sevelamer reduced sys-
temic and vascular inflammation. The reduction of
inflammation was evaluated through the decreased expression
of RAGE, inflammatory biomarkers (IL-6, IL-8, MCP-1 PAI-1 and
SAA) and monocyte migration induced by AGEs. Taken together,
these findings suggest a possible role of sevelamer in attenuat-
ing inflammatory pathways stimulated by uremic serum and
AGEs. Exposure of the endothelium to uremic toxins leads to a
series of changes in vascular homeostasis and its functions [39].
We demonstrated previously—using this same model—that

Fig. 1. To characterize AGEs, the samples were subjected to electrophoresis and absorbance reading. (A) Absorption spectra of AGEs and BSA at 330, 360, 400 and

420 nm. Data are expressed as mean 6 SEM of three independent experiments. (B) Electrophoretic migration of AGEs by PAGE. Samples were electrophoresed using

10% PAGE for 4 h at 100 V. Gel represents two separate experiments.

Fig. 2. The effect of AGEs and sevelamer on endothelial cell viability. Endothelial

cells were cultured with BSA and AGEs with or without sevelamer for 24 h and

then treated with MTT for 3 h. The cell viability was determined by measuring

the absorbance at 570 nm. The viability of untreated control cells was taken as

100%. Data are expressed as mean 6 SEM of three independent experiments.

Fig. 3. The effect of sevelamer (Sev) in samples with a phosphate (Pi) concentra-

tion of 4 mM with or without sevelamer. (A) Solution with 4 mM Pi; (B) solution

containing 4 mM PiþSev (3%). Three independent experiments were performed.
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uremic plasma activates inflammatory pathways by inducing
the production of chemokines and adhesion molecules, usually
present in early events of atherosclerosis in CKD patients [14,
40]. We also observed, using endothelial cells and monocytes
treated with AGEs, that both cells were activated by AGEs via
RAGE through protein kinase C beta pathway, producing MCP-1
and VCAM-1 [27]. In addition, AGEs impaired the production of
nitric oxide (NO), in part by NO synthase downregulation by
increasing both mRNA degradation [41] and nicotinamide
adenine dinucleotide phosphate oxidase expression, which sug-
gests a link between AGEs and endothelial dysfunction [42].
Thus there is growing interest among the scientific community
in developing ways to minimize the deleterious effects of ure-
mic toxins, such as AGEs.

The involvement of RAGE on endothelial cell activation after
AGE exposure was previously demonstrated [13, 27]. In contrast,
we found a significant decrease in RAGE expression in the pres-
ence of sevelamer, which indirectly suggests that this chelator
can act by binding in vitro to AGEs, therefore reducing the
expression of RAGE. This finding was also observed in a study
by Yubero-Serrano et al. [24] in patients with type 2 diabetes
mellitus in which sevelamer reduced the circulating levels of
AGEs. Other studies have also demonstrated the pleiotropic
binding capacity of sevelamer in the reduction of circulatory
levels of p-cresol and AGEs [18, 20].

Our study demonstrated that the longer the exposure of
endothelial cells to both AGEs and uremic serum, the more sys-
temic (IL-6 and SAA) and vascular (IL-8, MCP-1 and PAI-1)

Fig. 4. The effect of AGEs on RAGE expression in endothelial cells. Endothelial cells were treated with BSA and AGEs (0.2 mg/mL) or untreated (control) for 24 h and

stained for RAGE by immunocytochemistry. Panels show (A) control cells (untreated cells), (B) secondary antibody alone, (C) BSA and (D) AGEs. Magnification: 200x. (E)

Endothelial cells were stimulated with AGEs or BSA (0.2 mg/mL), with or without sevelamer (Sev.) (3%) for 24 h. Immunoblotting for b-actin was used as the protein-

loading control. RAGE levels were quantified as the ratio to b-actin by densitometry. Data are expressed as mean 6 SEM of four independent experiments. *P< 0.05,

AGEs versus AGEsþSev.; ***P< 0.005, AGEs versus controls.
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biomarkers are expressed. These results further confirm the
link between vascular activation, systemic inflammation and
uremic toxicity [2, 14]. Recent studies have implicated a causal
role of SAA as a pro-inflammatory and pro-thrombotic mediator
in the pathogenesis of atherosclerosis [43]. Moreover, others
have shown that SAA is a potent pro-atherogenic chemokine on
the endothelium, inducing the expression of cytokines and

adhesion molecules such as IL-6, IL-8, MCP-1, ICAM-1, VCAM-1
and tissue factor [40, 44, 45]. Furthermore, AGEs increase the
endothelial cell levels of mRNA coding for PAI-1 mediated by
RAGE [46]. Our results demonstrated that sevelamer led to a sig-
nificant decrease in the expression of IL-6, IL-8, MCP-1, PAI-1
and SAA, molecules related to systemic and vascular inflamma-
tion and induced by AGEs and uremic serum, suggesting a

Fig. 5. The effect of AGEs on systemic inflammatory biomarker production (IL-6 and SAA) and vascular inflammatory biomarker (IL-8, MCP-1 and PAI-1) production by

endothelial cells. Endothelial cells were incubated with AGEs or BSA (0.2 mg/mL), with or without sevelamer (Sev.) (3%), for 0 and 6 h. Data are expressed as mean

6 SEM of three independent experiments. (A) IL-6: ***P<0.005, AGEs 0 h versus AGEs 6 h; ****P<0.001, AGEs 6 h versus AGEsþSev. 6 h. (B) SAA: *P<0.05, BSA 0 h versus

BSA 6 h; ***P<0.005, AGEs 6 h versus AGEsþSev. 6 h; ****P<0.001, AGEs 0 h versus AGEs 6 h. (C) IL-8: *P<0.05, control 0 versus control 6; ***P<0.005, BSA 0 h versus BSA

6 h; ****P<0.001, AGEs 6 h versus AGEsþSev. 6 h, AGEs 0 h versus AGEs 6 h. (D) MCP-1: *P<0.05, BSA 6 versus BSAþSev. 6 h; **P<0.01, AGEs 6 h versus AGEsþSev. 6 h;

***P<0.005, control 6 h versus control 0 h, BSA 0 h versus BSA 6 h; ****P<0.001, AGEs 6 h versus AGEs 0 h, AGEs 6 h versus control. (E) PAI: ***P<0.005, AGEs 6 h versus

AGEsþSev. 6 h; ****P<0.001, control 0 h versus control 6 h, BSA 0 h versus BSA 6 h, AGEs 0 h versus AGEs 6 h. ### P<0.005, AGEs 6 h versus control 0 h.
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potential protective role of sevelamer on endothelium dysfunc-
tion beyond its classic effect via phosphate binding. On the
other hand, sevelamer was not effective in reducing PAI-1 levels
after uremic serum treatment, suggesting that the high serum
levels of PAI-1 found in CKD patients [47] may be due to activa-
tion of other pathways different from the ones activated by
phosphate and AGEs.

Finally, the cell migration assay was performed to mimic the
early events of atherosclerosis development. Our findings reveal
that the binding capacity of sevelamer to AGEs reduced monocyte
migration, suggesting a possible early effect of sevelamer in pre-
venting monocyte recruitment and attachment to the endothe-
lium (thus all the activation of pathways) and finally plaque
formation. Taken together, these findings suggest that sevelamer
has a protective effect by binding nonspecifically to uremic serum
and AGEs and therefore reduces the expression of inflammatory
biomarkers present in the atherosclerosis process.

One of the limitations of our project is that it was not possi-
ble to measure the AGE levels in vitro by the NMR technique
because it lacks the sensitivity and specificity to detect which
specific molecule of the heterogeneous group of AGEs was
bound to sevelamer. To overcome this limitation, the measure-
ments of RAGE and inflammatory biomarker expression were
used to indirectly assess sevelamer’s action on reducing inflam-
mation mediated by AGEs. Additionally, even though U-937
cells are commonly used as a model of monocytes, it would also
be interesting to investigate the effect of AGEs and sevelamer in
other cell lines, such as THP-1, or in monocytes extracted from
the peripheral blood of CKD patients.

Conclusion

In conclusion, this study demonstrates, in vitro, that the anti-
inflammatory effects of sevelamer on endothelial cells and
monocytes may be due not only to its classic effect on phos-
phate, but also to its binding capacity to AGEs and possibly
other uremic toxins. Sevelamer might be considered a thera-
peutic option to reduce the high AGE levels observed in patho-
logical conditions such as CKD and perhaps diabetes, regardless
of the presence of hyperphosphatemia. In the future, clinical
studies should be designed to validate the potential capacity of
sevelamer to decrease systemic AGEs and uremic serum con-
centrations. Thus it is hypothesized that this clinical treatment
could provide a beneficial effect on vascular function, yielding
relevant clinical outcomes.
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