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In recent years, electroencephalograph (EEG) studies on speech comprehension have

been extended from a controlled paradigm to a natural paradigm. Under the hypothesis

that the brain can be approximated as a linear time-invariant system, the neural response

to natural speech has been investigated extensively using temporal response functions

(TRFs). However, most studies have modeled TRFs in the electrode space, which is a

mixture of brain sources and thus cannot fully reveal the functional mechanism underlying

speech comprehension. In this paper, we propose methods for investigating the brain

networks of natural speech comprehension using TRFs on the basis of EEG source

reconstruction. We first propose a functional hyper-alignment method with an additive

average method to reduce EEG noise. Then, we reconstruct neural sources within the

brain based on the EEG signals to estimate TRFs from speech stimuli to source areas,

and then investigate the brain networks in the neural source space on the basis of

the community detection method. To evaluate TRF-based brain networks, EEG data

were recorded in story listening tasks with normal speech and time-reversed speech.

To obtain reliable structures of brain networks, we detected TRF-based communities

from multiple scales. As a result, the proposed functional hyper-alignment method could

effectively reduce the noise caused by individual settings in an EEG experiment and thus

improve the accuracy of source reconstruction. The detected brain networks for normal

speech comprehension were clearly distinctive from those for non-semantically driven

(time-reversed speech) audio processing. Our result indicates that the proposed source

TRFs can reflect the cognitive processing of spoken language and that the multi-scale

community detection method is powerful for investigating brain networks.

Keywords: community detection, neural entrainment, temporal response function (TRF), source localization,

electroencephalography

1. INTRODUCTION

Speech comprehension is the acquisition of communicative information from speech sounds,
which links auditory stimuli and cognitive processes (Zhang et al., 2019). During speech
comprehension, low-level uninterrupted acoustic features are transferred to high-level linguistic
information, which in turn is integrated into meaningful sentences and also stories
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(Gaskell and Mirkovic, 2016). One of the main objectives of
auditory neuroscience is to investigate how the human brain
comprehends perceived speech. In past decades, researchers tried
to use isolated words or simple sentences to investigate speech
comprehension in the human brain. In those studies, subjects
were asked to participate in specific tasks such as identifying
whether the perceived word is a real word or a pseudoword
(Binder et al., 2009; Zhang et al., 2019), or assessing whether
a word in a sentence is congruent or incongruent with the
rest of the sentence (Chow and Phillips, 2013). With this kind
of well-designed paradigm, researchers can use a statistical
analysis method (such as t-tests, analysis-of-variance) to estimate
the mechanism of speech processing by comparing neural
behaviors between different conditions. For example, in an
experiment designed to study the N400 amplitude and word
expectancy, it was found that N400s to sensible and equally
low-cloze-probability completions of strongly constraining
sentences (e.g., The bill was due at the end of the hour) were
much larger than those to high-cloze-probability endings (The
bill was due at the end of the month) (Kutas and Federmeier,
2011). However, such a task is far away from human speech
comprehension in daily life. In recent years, studies have
extended the controlled experimental paradigm, from isolated
words or simple sentences to a more natural experimental
setting, such as listening to continuous speech with a complete
storyline (Brennan, 2016). Under the natural language paradigm,
previous studies treat the neural system as a linear time-invariant
(LTI) system. Although it is too rough to treat the complicated
neural system as an LTI system, the reversible properties of the
LTI system are helpful for evaluating the performance of the
linearized neural system. The impulse response of the neural
system is referred to as a temporal response function (TRF)
hereafter. The TRF can describe the neural response from a
speech stimulus, which can be represented by a speech envelope,
phoneme sequence, or a spectrogram, to a specific electrode
of the EEG setting, which is also called neural entrainment to
speech (Ding and Simon, 2012; Brodbeck et al., 2018b; Pan et al.,
2019). Many studies have proved that TRFs can reflect high-
level language processing to some extent, such as categorical
representations of phonemes (Liberto et al., 2015), perception
attention and speech comprehension processing (Broderick
et al., 2018; Weissbart et al., 2020), and lexical processing
(Brodbeck et al., 2018a). Because most language cognitive
processes occur within hundreds of milliseconds, high temporal
resolution electroencephalograph/magnetoencephalography
(EEG/MEG) techniques are often used for the natural spoken
language paradigm.

Although EEG/MEG is an effective, non-invasive technique
for investigating the neural mechanism behind auditory
processing, due to the low spatial resolution of EEG/MEG, most
previous studies investigate natural spoken language only in the
electrode/sensor space (Liberto et al., 2015; Broderick et al., 2018;
Etard and Reichenbach, 2019). Because the signal of an EEG
electrode is a mixture of many source components, previous
research cannot explain the cortical origins of the underlying
natural spoken language processes. With the development of
EEG signal processing, it has been proved that with enough

sensors or using an accurate individual head model with
reasonable conductivity values, EEG source localization may
be precise enough to reflect the cortical origins of language
processing (Klamer et al., 2015). In addition, as generators of
neural activity cannot unambiguously be interpreted from sensor
EEG data, which cannot provide useful information to explore
the underlying brain mechanism, study done in the source space
is beneficial to explicitly exploring brain functions in response to
continuous speech (Stropahl et al., 2018). Therefore, this study
investigates the neural responses to continuous speech on the
basis of sources reconstructed from EEG signals.

More recent studies got some exciting results for both
speech production and speech perception based on EEG source
localization techniques (Stropahl et al., 2018; Zhang et al., 2019;
Janssen et al., 2020). However, most of them are based on event-
related potential (ERP) paradigm (Handy, 2005). In particular, in
the natural speech paradigm, stimuli are typically long segments
from lectures or stories and presented to subjects only once to
avoid a priming effect. There are two key problems that need
to be solved for single-trial paradigm before source localization.
First, It is acknowledged that the generated electrical fields
are easily contaminated by external noise (e.g., eye movement,
head movement) that occurs during the transmission from the
neural population to the top layer of the scalp through the
brain tissue and skull. If we reconstruct a source single from
a single trial and then fit TRFs to cortical sources directly, the
unexpected noise may affect the accuracy and interpretability
of source-based TRFs. In addition, most of the recent source
localization techniques are developed for the ERP paradigm
based on the assumption of spatiotemporal sparsity (Grech
et al., 2008; Pirondini et al., 2017; Mannepalli and Routray,
2018; Liu et al., 2019; Asadzadeh et al., 2020). However, the
natural speech paradigm does not allow for additive averaging
across repeated trials common in the source localization of
responses evoked from EEG. To solve the problem, we propose
using additive averaging across subjects to improve the accuracy
of source localization. Assuming that the brain functions for
speech processing are consistent across individuals, a similar
neural response can be expected from different subjects for the
same speech stimulus. In contrast, external noise, involuntary
breathing, and attentiveness differ from individual to individual,
and such noises can be suppressed by averaging the neural signals
of the same stimuli for all subjects. However, this is difficult due
to the lack of methods that account for subjects’ differences in
terms of the setup positions of the electrodes. Addressing this
problem well before averaging neural activities across multiple
subjects should result in more accurate source localization.

To do so, we first propose a functional hyper-alignment
method to reduce the mismatching caused by individual
experiment settings, and source reconstruction is then performed
on the basis of additive averaging over all subjects for each
trial. TRFs are then estimated independently for each localized
brain source; they are then related to one another by using
Pearson correlation to construct the whole brain functional
network. Previous research proved that the brain network can
be characterized by its community structure, and community
detection for functional brain networks has facilitated the
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understanding of the underlying brain organization and its
related cognitive function (Forbes et al., 2018). Therefore, we
use the community detection method to detect the community
structure of the brain networks underlying continuous speech
comprehension. We compared the community organization
between the understanding of a naturally told story and a time-
reversed story to study the brain mechanism related to semantic
processing underlying continuous speech comprehension.

2. METHODS

2.1. Noise Reduction by Additive Averaging
There aremany kinds of external noises caused by eyemovement,
heartbeat, electrical noise, and so on. They occur during the
transmission from the neural population to the scalp through the
brain tissue and skull and are mixed into EEG signals (Cohen,
2014). Supposing these noises are random, ERP analysis removes
these kinds of noises by applying an addition operation to a
number of trials for the same task, namely additive averaging.
Our study adopts an idea similar to that used in the ERP
technique to reduce noise, but we apply additive averaging to
EEG signals for the same stimulus material over all subjects
since subjects can listen to the same material only once. In our
previous study, we proved that additive averaging across subjects
can improve the accuracy of TRFs (Di Zhou et al., 2020).

To apply additive averaging across subjects, it is better to
calibrate the individual differences in the setup positions of
the electrodes. To tackle this problem, we propose a functional
hyper-alignment method for soft calibration. It uses a well-
designed spatial filter to align the setup positions of electrodes by
minimizing the distance of the signal features among the subjects.
Due to the lack of methods that account for subjects’ differences
in the setup stage of the electrodes, the position of an electrode
n for subject i may not be the same as that of subject j. Thus,
the additive average over the EEG data xi(t, n)(i = 1, 2, ..., I)
cannot be used to perform denoising properly, where I is the
subject number. For this reason, we propose using a functional
hyper-alignment method for eliminating this effect. The main
idea of the functional hyper-alignment is to rotate xi(t, n) and
xj(t, n) (i 6= j ∈ [1, 2, ..., I]) to maximize their correlation
among subjects. So far, several methods have been proposed
for this purpose, such as group task-related component analysis
(gTRCA) (Tanaka, 2020) and multi-set canonical correlation
analysis (MCCA) (de Cheveigné et al., 2019). We choose MCCA
to maximize the data correlation among subjects, which satisfies
the requirement of our study.

The goal of MCCA is to find projection vectors ω that
maximize the correlation between multiple data sets Xi,i =

1, 2..., I. The correlation ρ of all data sets can be calculated as the
ratio of the summations of the between-set covariance Vxixj over
the within-set covariance Vxixi ,

p(X̃1, X̃2, ..., X̃i, ..., X̃I) =
1

N − 1

∑I
i=1

∑I
j=1,i6=j ω

T
i Vxixjωj

∑I
i=1 ωT

i Vxixiωi

, (1)

where

Vxixj = (Xi − X̄i)
T(Xj − X̄j), (2)

Vxixi = (Xi − X̄i)
T(Xi − X̄i). (3)

X̄i, X̄j are the means for set i and set j. 1
N−1 ensures

that the correlation ρ scales between 0 and 1. Altogether,
the above equation can be summarized into a generalized
eigenvalue problem,

Bω = λRω, (4)

where

B =




O Vx1x2 · · · Vx1xI

Vx2x1 O · · · Vx2xI
...

...
. . .

...
VxIx1 VxIx2 · · · O


 ,R =




Vx1x1 O · · · O
O Vx2x2 · · · O
...

...
. . .

...
O O · · · VxIxI


 .

(5)
B is a matrix combining all between-set covariance Vxixj , and R is
a diagonal matrix that contains all within-set covariance Vxixi . ω
is a spatial vector set for an entire data set ω = [ωT

1 ,ω
T
2 , . . . ,ω

T
I ].

Finally, the spatial filter for aligning the positions of the
electrodes is reduced to solve the generalized eigenvalue problem.

2.2. Source Reconstruction Based on
Denoising EEG Data
After the denoising, the EEG data are used to estimate
their cortical source activations in the brain, namely source
reconstruction. In this study, the forward and reverse models for
source localization were calculated by the Brainstorm toolbox
(Tadel et al., 2011). The finite element method (FEM) as
implemented in DUNEuro was used to compute the forward
head model using Brainstorms default parameters with an MNI
MRI template (ICBM152) (Vorwerk et al., 2016; Schrader et al.,
2021). The FEM models provide more accurate results than
the spherical forward models and more realistic geometry and
tissue properties than the boundary element method (BEM)
methods (Gramfort et al., 2010). For source estimation, the
number of potential sources (grid on the cortex surface) is set
to 15,002. And the option of constrained dipole orientations was
selected, which means dipoles are oriented perpendicular to the
cortical surface (Tadel et al., 2011). We then apply the method
of standardized low-resolution electromagnetic tomography
(sLORETA) (Pascual-Marqui, 2002) to obtain plausible EEG
source estimates. Although the spatial resolution of sLORETA is
low, sLORETA can provide smooth and good localization with
few localization errors (Asadzadeh et al., 2020). Finally, according
to the Desikan-Killiany Atlas (DKA), the cortical surface is
divided into 68 anatomical regions of interest (ROIs) (Desikan
et al., 2006). The time series of each ROI is calculated from the
average value of all dipoles in the respective region. As a result,
we obtain a series of brain areas (sources) that are activated in
speech comprehension.
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2.3. Source-Based TRFs Estimation
To evaluate the brain functions explicitly, we calculate the TRFs
from speech input to sources in the brain cortex, instead of
the electrodes on the scalp. The mTRF toolbox (https://github.
com/mickcrosse/mTRF-Toolbox) is used to linearly map the
speech envelope and the neural response in the sources by
approximating the brain as an LTI system (Crosse et al., 2016).
Let r̂(τ ,ROIn) be the TRF of a brain region ROIn for an input
speech envelope s(t), the neural response signal x̂(t,ROIn) of the
source ROIn can be described as follows.

x̂(t,ROIn) =
∑

τ

r̂(τ ,ROIn)s(t − τ ) (6)

The range for τ is from 0 to 800ms in our study, as most common
ERP components in language research are within 800 ms (Beres,
2017). The broadband temporal speech envelopes of s(t) are
obtained from a gammatone filterbank followed by a power law
(Biesmans et al., 2016; Peng et al., 2018, 2021). For the modeling
process, the envelope is decimated to the same sampling rate as
the source signal, enabling us to relate its dynamics to the source.

Under the theory for the LTI system, the backward approach
can be modeled using a decoder r̂−1(τ ,ROIn), which is the
inverse function of r̂(τ ,ROIn). The optimal decoder r̂−1(τ ,ROIn)
is acquired by minimizing the MSE between the original and
predicted speech envelope, and n denotes the number of regions.
Thus, the input speech stimulus s(t) can be decoded from
the source neural signal x̂(t,ROIn) using the decoder function
r̂−1(τ ,ROIn). This can be expressed as follows.

s(t) =
∑

n

∑

τ

r̂−1(τ ,ROIn)x̂(t − τ ,ROIn) (7)

The encoder r̂(τ ,ROIn) and decoder r̂−1(τ ,ROIn) approach the
optimal values when iterating the above calculation.

2.4. Brain Network Analysis Based on
Community Detection Method
2.4.1. Construction of Preliminary Brain Network
The brain network can be characterized as a community
structure. Therefore, community detection is often used in
exploring the brain network during a given task (Jin et al., 2019).
To do so, we first need to define the nodes of the brain and links of
the network (Yu et al., 2018). In large-scale brain networks, nodes
usually represent brain regions, and links represent anatomical,
functional, or effective connections (Friston et al., 1994). The pre-
defined spatial regions of interest (ROIs) assessed by anatomical
atlases are one of the most popular methods for defining brain
nodes (Smith, 2012). This study uses the 68 nodes (brain region)
that were defined in the DKA, and it uses Pearson correlation to
describe the functional link among the nodes (Smith et al., 2013).
This would result in 2,278 (= C2

68) edges if linking all pairwise
nodes for each trial. Differing from the previous studies, the link
weights (temporal correlations) here are calculated using the TRF
of each node, but not the source neural signal. As a result, we
obtain a preliminary brain network that consists of all of the brain
regions and pairwise links with a weighted edge.

2.4.2. Community Detection in Functional Brain

Networks
Community detection divides the nodes of the preliminary
network into a number of non-overlapping clusters and then
detects the communities in a functional network by maximizing
the module quality metric Q (Newman and Girvan, 2004),
which is also called modularity. A higher value of modularity
represents that the detection approaches a more evident
community structure. Therefore, this algorithm provides not
only a community partition but also an index for evaluating
whether a network community structure is evident. Recent
studies have proposed that the negative correlation in the
functional connection matrix also possesses some physiological
significance, and correlated and anti-correlated brain activities
may signify cooperative and competitive interactions between
brain areas that subserve adaptive behaviors (Khambhati et al.,
2018; Zhang and Liu, 2021). Therefore, we used an optimized
community detection algorithm in the Brain Connectivity
Toolbox (Anwar et al., 2016) on a preliminary connection matrix
to detect the community structure of the functional connection
matrix for different densities, which takes into account both
positive and negative correlations in a network (Bolton et al.,
2018; Zhang and Liu, 2021). Since the density as a threshold
reflects how many edges are effective in a network, density
selection also has a significant impact on studying brain function
(Liu et al., 2011; Jrad et al., 2016; Jin et al., 2019). To determine
the brain networkmore accurately, this study uses different scales
to divide the brain network; thus, it can detect the optimal
communities of a brain network using different densities. While
running this algorithm, the default resolution parameter of γ

is set to 1, yielding modularity scores Qd and density Dt for
t = 0.01, 0.02, ...., 0.1, ...., 0.5, where t is the variation of density.

2.4.3. Brain Network Selection
For community detection with different scales, it is important to
find the optimal functional brain networks from the scales. The
scale means the different thresholds which can sparse the brain
networks in different densities. On the basis of a previous study
(Jin et al., 2019), this study uses the variation of information
(VI) to evaluate the similarity of community structures with
different scales in functional brain networks. VI can compare two
community structures by means of their information exchange
loss and gain. VI can be described as

VI(X,Y) = H(X)+H(Y)− 2I(X;Y), (8)

where X and Y are two different community structures of the
brain network. H(X) and H(Y) are the entropy for X and Y ,
respectively. I(X;Y) is the mutual information between X and Y .

When VI is equal to zero, it represents the most stable
partition across densities (He et al., 2018). According to VI
values, we can obtain the most reasonable community partition
of functional brain networks. In addition to VI, this study also
uses cluster analysis on the different scales to find the best
discrimination for separating natural speech and time-reversed
speech in brain networks. Finally, we evaluate the selected

Frontiers in Computational Neuroscience | www.frontiersin.org 4 July 2022 | Volume 16 | Article 919215

https://github.com/mickcrosse/mTRF-Toolbox
https://github.com/mickcrosse/mTRF-Toolbox
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Zhou et al. Brain Network During Speech Comprehension

brain network using the current novel results of brain research
(Walenski et al., 2019).

3. EXPERIMENTS

3.1. Participants
Twenty-four healthy Mandarin Chinese speakers (mean ±

standard deviation age, 22 ± 2.4 years; nine males; right-
handed) were recruited from Tianjin University and Tianjin
University of Finance and Economics. The experiments were
conducted in accordance with theDeclaration of Helsinki (World
Medical Association, 2014) and were approved by the local ethics
committee. The subjects signed informed consent forms before
the experiment and were paid for their participation afterward.
All the subjects reported no history of hearing impairment or
neurological disorders.

3.2. Materials and Experimental Procedure
Subjects undertook 48 non-repetitive trials. Among them, 24
trials were short stories (around 60 s) with a complete storyline,
recorded by a male Chinese announcer in a soundproof room.
The other 24 trials were the same story segments but were time
reversed. All stimuli were mono speech with a 44.1 kHz sampling
rate, and the stimulus amplitudes were normalized to have the
same root mean square (RMS) intensity. The 48 trials were
randomly presented to the subjects. All speech segments were
also modified to truncate silence gaps to <0.5 s (Brodbeck et al.,
2018b).

The experiments were carried out in an electronically and
magnetically shielded soundproof room. Speech sounds were
presented to subjects through Etymotic Research ER-2 insert
earphones (Etymotic Research, Elk Grove Village, IL, USA) at a
suitable volume (around 65 dB). During each trial, subjects were
instructed to focus on a crosshair mark in the center of the screen
to minimize head movements and other bodily movements.
There was a 5 s interval between each trial, and the subjects were
given a 5 min break every 10 trials. After each story trial, subjects
were asked immediately to answer multiple-choice questions
about the content of the story to ensure that they focused on the
auditory task. We embedded unique tones in some trials to draw
more of the subjects’ attention to the reversed stimuli. Subjects
were requested to detect the tones and indicate how many times
they appeared after the trial. The EEG data corresponding to the
embedded tones was removed in further analysis.

3.3. EEG Data Acquisition and
Pre-processing
Scalp EEG signals were recorded with a 128-channel Neuroscan
SynAmps system (Neuroscan, USA) at a sampling rate of 1,000
Hz. Six of the channels were used for recording a vertical
electrooculogram (VEOG), a horizontal electrooculogram
(HEOG), and two mastoid signals. The impedance of each
electrode was kept below 5 k� during data acquisition. Three
subjects’ data were discarded in further analysis because they
did not give a proper answer to the multiple-choice questions
or the electrodes detached during the EEG data recording.
The raw EEG data were pre-processed using the EEGLAB

toolbox (https://sccn.ucsd.edu/eeglab/index.php) in MATLAB
(MathWorks) (Delorme and Makeig, 2004). This involved
removing sinusoidal (i.e., line) noise and bad channels (i.e., low-
frequency drifts, noisy channels, short-time bursts) and repairing
the data segments (Perrin et al., 1989; Plechawska-Wojcik et al.,
2018). Then, the EEG data was downsampled to 250 Hz, 1
Hz high-pass filtering was performed to remove linear drift,
and 40 Hz low-pass filtering was performed to remove power
frequency interference and high-frequency noise. Adaptive
mixture independent component analysis (AMICA) (Palmer
et al., 2012) and ICLabel (Pion-Tonachini et al., 2019) were used
to automatically identify and remove artifact components.

3.4. Overview of Proposed Approach
As mentioned above, we reasonably assume that brain functions
for processing the same speech material are consistent across
individuals; thus, consistent neural responses were expected for
all subjects to the same speech stimulus. In contrast, potential
noise, eye movement, involuntary breathing, and attentiveness
differ from individual to individual as well as the individual
electrode setting. To calibrate the electrode positions across
subjects, we used functional hyper-alignment and applied it to
the EEG data first. After the calibration, we suppressed the
random noises by additive averaging of the neural signals of
the same stimulus over all subjects. Then, the denoised EEG
singles were used to reconstruct the neural sources of EEG data
in the brain, and the TRFs for the neural sources were estimated.
Using the TRFs, we constructed a functional brain network of
natural speech processes on different scales. Finally, an optimal
functional brain network was decided on the basis of the VI of
the communities with the multiple scales. A flowchart for the
proposed approach is shown in Figure 1.

4. RESULTS

4.1. Accuracy for Source-Based TRFs
4.1.1. Evaluation With Results of Speech Envelope

Prediction
The accuracy of the backward prediction of stimulus input from
neural output is usually used for evaluating the performance of
TRFs (O’Sullivan et al., 2015; Das et al., 2020). Here, we use
the backward prediction approach to evaluate the performance
of the proposed functional hyper-alignment approach through
comparison with the traditional method with single-trial
estimation. For training processes, we used a leave-one-out cross-
validation procedure, where 23 trials were used for training,
and the remaining one was used for testing in each fold. The
prediction accuracy was described by the Pearson correlation
coefficient between the predicted speech envelopes and the
original ones. Figure 2 shows comparisons of the prediction
accuracies for the single-trial method without noise reduction
(O’Sullivan et al., 2015), the additive average method over the
subjects without functional hyper-alignment (Di Zhou et al.,
2020), and the functional hyper-alignment method combined
with the additive average method. For a fair comparison, the
correlation coefficient was first transformed into a z-value
by Fisher’s z transformation to satisfy a normal distribution
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FIGURE 1 | Flowchart of the data processing approaches in this study.

(Corey et al., 1998). Then, an analysis-of-variance (ANOVA)
of the z-values revealed a significant effect on the prediction
methods (F = 193.53, p < 0.001). The results of the
ANOVA demonstrated that the prediction accuracy of our
proposed method, the functional hyper-alignment method
combined with the additive average method, was the highest
among the three methods. A post-hoc test for the ANOVA
showed that the prediction accuracy was significantly improved
by the functional hyper-alignment method, compared with
the average without the functional hyper-alignment method
(F = 9.68, p < 0.005) and single-trial method (F =

400.78, p < 0.001). Therefore, the functional hyper-alignment
with the additive average method was used in the following
TRF estimation.

4.1.2. Evaluation by Comprehension Behaviors
To evaluate the behaviors of the different methods from a brain
function point of view, we used a distinct degree of the brain
networks in speech comprehension. We judged whether the
methods could or could not distinguish the brain network for
the normal speech listening task from that for the time-reversed
speech listening task since the latter one tackles non-semantic
audio sequences. The method with a higher distinct degree
between normal play and reverse play would be the bettermethod
for our study. Therefore, we estimated source-based TRFs using
the proposed method and the single-trial method, and we then
constructed functional brain networks based on the TRFs. The
link between two brain regions was expressed by a Pearson
correlation ranging from −1 to 1. The higher the correlation,

FIGURE 2 | Comparison of envelope prediction accuracies between functional

hyper-alignment method and other two methods.

the higher the similarity between the two brain regions, and
vice versa.

During the experiment, we asked the subjects to answer
multiple-choice questions about the story presented in the
listening task after each trial. The accuracy of the answers of
the question was 88.25 ± 4.62% for the normal speech, which
indicates that the subjects mostly comprehended it seriously. The
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FIGURE 3 | K-means clustering of t-SNE embedded distributions obtained by single-trial method (A) and proposed method (B).

speech intelligibility was also evaluated on a numerical rating
scale from 1 to 5 by the subjects, where “very easy to understand”
was scored 5, and “completely incomprehensible” was scored
1. The speech intelligibility was 4.74 ± 0.45 for the normally
played natural story but was 1.46 ± 0.81 for the time-reversed
one. This means that speech was not comprehended in the
time-reversed case since there was little semantic information.
For these reasons, functional brain networks are expected to
be separated into two clusters. One cluster is for semantically
driven brain activation, and the other is for non-semantically
driven audio processing. To clarify our expectation, we used t-
distributed stochastic neighbor embedding (t-SNE) (der Maaten
and Hinton, 2008) to visualize the brain networks in a two-
dimensional representation, and we verified whether or not
semantically driven brain activation was separable from non-
semantically driven activation. We first reshaped the connection
matrix with a size of 68×68 to a vector with 2,278 dimensions to
analyze the pairwise connections of all the brain nodes for each
trial. For 48 trials, we had a matrix with a size of 48 × 2,278,
and we applied t-SNE analysis to it. Finally, the results of the
t-SNE analysis were clustered by using the k-means algorithm
(Liberto et al., 2015). We set the cluster number to 2, and
we performed 1,000 k-means repetitions with random initial
states. A two-dimensional scatter of the semantically and non-
semantically driven brain networks is shown in Figure 3, where
the left panel is the result obtained with the single-trial method,
and the right panel is for the proposed method. One can see
that the functional connections based on our proposed method
show distinct clusters for natural and time-reversed speech, while
the single-trial method does not show any obvious clusters. The
F1-scores of the actual groupings and the k-means clusters were
calculated for all repetitions. The average F1-scores of 1,000
repetitions was 0.5 for the single-trial method (Figure 3A) and
0.93 (Figure 3B) for the proposed method. These results indicate
that a brain network based on our proposed method can reveal
high-level speech comprehension processing; however, that of the
single-trial TRF-based brain network cannot.

To address the differences in the brain networks between the
natural speech and time-reversed speech in detail, we investigated
the difference in the estimated TRFs between the two cases.
Figure 4 shows examples of the TRFs of the left superior

temporal sulcus (STS) and the left middle temporal gyrus (MTG)
for natural speech and time-reversed speech, where STS and
MTG are considered to correspond to speech comprehension
(Price, 2012). One can see that the patterns of the peaks and
troughs for STS (Figure 4A) show a significant difference at time
lags between 300 and 450 ms of the TRF (paired t-test, p =

5.2 × 10−5; effect size d = 1). In Figure 4B, the TRF patterns
for MTG show a significant difference between 150 and 450 ms
(paired t-test, p = 2.1× 10−14; effect size d= 2).

According to Beres (2017), the difference in intervals between
150 and 450 ms plausibly corresponds to semantic processing
(N400) or syntactic processing (left-anterior negativity, LAN).
To verify whether the differences are related to speech
comprehension or not, we applied t-SNE and k-means again.
To do this, we segment the TRFs into four periods: 0 ∼ 150,
150 ∼ 300, 300 ∼ 450, and 450 ∼ 600 ms, and we applied k-
means to the amplitudes of the TRFs of the 68 brain regions
for each period, respectively. Figure 5 shows the clusters of each
period: 0 ∼ 150 ms (Figure 5A), 150 ∼ 300 ms (Figure 5B),
300 ∼ 450 ms (Figure 5C) and 450 ∼ 600 ms (Figure 5D).
According to the F1-score, one can see that the time between
150 ∼ 450 ms (Figure 5C) had the best clustering, which is
consistent with the common knowledge that N400 is concerned
with semantic processing.

4.2. Multi-Scale Community Detection
The investigation above was carried out with a brain network
with full connection. As we knew, different speech functions
have different brain network communities as speech planning,
semantic processing networks. Therefore, some edges in the
connection matrix may be invalid or noise for a specific speech
process. It is thus necessary to determine the optimal connection
matrix on the basis of the different thresholds of the connection.

As described in the section on our method, we analyze
the functional connection matrix using different densities, and
we investigate the functional brain network at multiple scales
(Jin et al., 2019). Figure 6 shows an illustration of the brain
connection matrix for four different densities.

When the modularity Q ranges from 0.3 to 0.8, in general, the
network contains community structures (Jin et al., 2019). The
modularity score Qd is around 0.64 at any density Dt for the
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FIGURE 4 | TRFs for natural and time-reversed speech for STS (A) and MTG (B).

FIGURE 5 | Clustering results for TRF amplitude in different time intervals: 0 ∼ 150 ms (A), 150 ∼ 300 ms (B), 300 ∼ 450 ms (C), 450 ∼ 600 ms (D).

FIGURE 6 | Functional brain connection matrix with different densities. Yellow denotes edge value 1, blue −1.

functional brain network based on our proposed method. This
implies that community detection is available for our data. In
addition to the modularity values, we introduce VI as monitoring
variables along with densities to explore the best community

division. Figure 7 shows the VI (Figure 7A) along with the
density. When the community structure approached a stable
situation, the VI value reached the minimum. At the same time,
we refer to the F1-score (Figure 7B).
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FIGURE 7 | VI (A) values and F1-score (B) for functional brain network with different density values.

FIGURE 8 | Best clustering results for multi-scale density.

Figure 7B shows the F1-score for k-means used to separate
natural and time-reversed speech at different densities of brain
networks. Altogether, it seems that the three conditions could
be satisfied when the density ranged from 0.136 to 0.143. In
this range, we could also obtain the best separation of the brain
networks for the natural speech and time-reversed speech, as
shown in Figure 8.

In terms of the above investigation, we finally determined the
optimal density value to be 0.14, and we obtained community
structures using the community detection method. As a result,
16 communities were discovered in the functional brain network
during natural speech comprehension, and 19 communities

were discovered for the audio processing of the time-reversed
speech. From the community detection results, we chose the
two largest communities for natural speech and time-reversed
speech, respectively, and show them in Table 1. Since the
common processing in both cases was audio signal processing,
the majority of the brain areas were the same for the natural
and time-reversed speech. In the first community, 14 brain
regions appeared in both cases simultaneously, including the
transverse temporal cortex, superior temporal gyrus, temporal
pole, and so on, which are related to auditory information
processing, phonological encoding, and lexical selection, as
well as syntactic and phrase level processing (Walenski et al.,
2019). It is interesting to note that some of the subjects
told us that the time-reversed speech sounded like a foreign
language. This implies that the subjects possibly recruited brain
resources to comprehend the audio sequences of the time-
reversed speech even though it had no semantic information.
For the normal speech, the subjects decoded the meaningful
information and carried out high-level cognitive processing,
whereas, for the time-reversed speech, brain areas such as
the caudal middle frontal gyrus and precuneus cortex were
not activated.

In previous research, the coupling of the auditory cortex
and frontal areas was reported, and this coupling increases
when speech has higher intelligibility (Park et al., 2015). They
hypothesized that top-down signals from the frontal brain areas
causally modulate the phases of brain oscillations in the auditory
cortex. To verify this hypothesis, we checked the TRFs of the pars

Frontiers in Computational Neuroscience | www.frontiersin.org 9 July 2022 | Volume 16 | Article 919215

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Zhou et al. Brain Network During Speech Comprehension

TABLE 1 | The detected brain network communities under the conditions of

natural and time-reversed speech.

Community Natural speech Time-reversed speech

1 L_Caudal anterior-cingulate cortex L_Caudal anterior-cingulate cortex

R_Caudal anterior-cingulate cortex R_Caudal anterior-cingulate cortex

R_Fusiform gyrus R_Fusiform gyrus

R_Insula cortex R_Insula cortex

L_Pars opercularis L_Pars opercularis

L_Pars triangularis L_Pars triangularis

L_Posterior-cingulate cortex L_Posterior-cingulate cortex

R_Posterior-cingulate cortex R_Posterior-cingulate cortex

L_Precentral gyrus L_Precentral gyrus

L_Superior temporal gyrus L_Superior temporal gyrus

L_Temporal pole L_Temporal pole

R_Temporal pole R_Temporal pole

L_Transverse temporal cortex L_Transverse temporal cortex

R_Transverse temporal cortex R_Transverse temporal cortex

L_Caudal middle frontal gyrus L_Inferior temporal gyrus

R_Caudal middle frontal gyrus L_Medial orbital frontal cortex

L_Cuneus cortex R_Pars triangularis

L_Insula cortex L_Rostral anterior cingulate cortex

L_Lateral occipital cortex R_Rostral middle frontal gyrus

L_Precuneus cortex

R_Precuneus cortex

2 R_Superior temporal sulcus R_Superior temporal sulcus

L_Entorhinal cortex L_Entorhinal cortex

L_Fusiform gyrus L_Fusiform gyrus

R_Inferior parietal cortex R_Inferior parietal cortex

L_Middle temporal gyrus L_Middle temporal gyrus

R_Middle temporal gyrus R_Middle temporal gyrus

R_Parahippocampal gyrus R_Parahippocampal gyrus

L_Paracentral lobule L_Paracentral lobule

R_Pars opercularis R_Pars opercularis

L_Postcentral gyrus L_Postcentral gyrus

R_Postcentral gyrus R_Postcentral gyrus

R_Precentral gyrus R_Precentral gyrus

L_Superior frontal gyrus L_Superior frontal gyrus

L_Superior parietal cortex L_Superior parietal cortex

R_Superior parietal cortex R_Superior parietal cortex

L_Supramarginal gyrus L_Supramarginal gyrus

R_Supramarginal gyrus R_Supramarginal gyrus

R_Entorhinal cortex R_Isthmus-cingulate cortex

R_Inferior temporal gyrus L_Lateral orbital frontal cortex

L_Parahippocampal gyrus R_Lateral orbital frontal cortex

L_Superior temporal sulcus R_Paracentral lobule

L_Pars orbitalis

R_Rostral anterior cingulate cortex

L_Rostral middle frontal gyrus

R_Superior frontal gyrus

R_Superior temporal gyrus

The different brain regions in the communities were highlighted.

opercularis in the frontal area and the primary auditory cortex
(transverse temporal cortex), and we show them in Figure 9.
One can see that the coupling between the frontal area and
primary auditory was stronger for the natural speech than the
time-reversed speech, where the correlation coefficient was 0.65

for the natural speech but 0.23 for the time-reversed speech. In
particular, the coupling rapidly decreased after 400 ms for the
time-reversed speech. This may indicate that high-level language
brain areas were not recruited in the audio processing for
the time-reversed speech because it was not comprehended by
the subjects.

Furthermore, we attempted to investigate how much the
brain networks could be separated on the basis of community
detection. The results are shown in Figure 10. The brain
networks for the normal and time-reversed speech were clearly
separated into two independent clusters for both communities
1 and 2.

5. DISCUSSION

5.1. Proposed Approach Extends Cognitive
Understanding of TRFs to Brain Source
Space
TRFs have been used to reflect functional roles for the
cognitive processing of speech (Liberto et al., 2015; Broderick
et al., 2018), but their estimation is predominantly limited
to the electrode/sensor space. The cortical origins of the
underlying speech processing are still not clear. Although
recent electrocorticography (ECoG) studies provide some
exciting results for the cortical origins of speech processing
(Anumanchipalli et al., 2019; Zhang et al., 2021), such
intracranial electrography is not friendly for healthy people, and
it is also hard to investigate the whole-brain distribution of
the sources due to its limited spatial range. As the accuracy
of EEG source reconstruction has been improved, in this
paper, we proposed an approach to extending TRFs from
the electrode space to the source space by using a source
reconstruction method. Source-based TRFs can reflect the
cortical origins of the underlying natural spoken language
processes. Then, we used the source-based TRFs to investigate
the brain network during speech comprehension on the basis
of community detection. The contributions of this paper are
as follows. First, we proposed an approach to perform source
localization for the single-trial natural speech paradigm. For
accurate source localization results, we introduced a functional
hyper-alignment method combined with additive averaging over
all subjects. From the accuracy of speech envelope prediction,
our proposed approach showed good performance. Second,
from the clustering results of natural speech and time-reversed
speech, the source TRFs based on our method can be used in
revealing the cognitive mechanism for natural speech processing.
Third, the findings obtained with our approach are highly
consistent with previous meta-analysis of natural language
processing (see Section More Regions Recruited in Brain
Network Communities Under Natural Speech Paradigm). To the
best of our knowledge, this is the first study that tries to use
community detection to address the EEG-based brain network
during natural speech comprehension task. As a result, our
approach can be a reasonable way of performing community
detection for complex natural speech processing tasks using EEG
in the future.
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FIGURE 9 | Coupling between frontal area (red color) and auditory cortex (blue color) for natural speech (A) and time-reversed speech (B).

FIGURE 10 | Clustering results for two communities. (A) Community 1, (B) Community 2.

5.2. Neural Response to Speech Envelope
Reflects High-Level Semantic Processing
In previous research, some contrary results regarding the neural
entrainment to speech envelope were reported. For example,
the speech envelope is usually considered to be related to low-
level acoustic features such as the syllable boundary, while
some studies reported that the neural entrainment to speech
envelope was stronger when speech was easy to understand
(Park et al., 2015; Vanthornhout et al., 2018). They considered a
high-level top-down prediction mechanism driving the coupling
between neural signal and speech envelope more strongly
during intelligible speech perception than unintelligible speech
perception. However, some other studies state that there was no
difference in the neural entrainment to speech envelope between
accessible and inaccessible speech (Howard and Poeppel, 2010;
Millman et al., 2015; Zoefel and VanRullen, 2016). Here, we have
enough evidence to speculate that the opposite may be caused
by unexpected noises in the neural signal. The TRF-based brain
network is a kind of supervised network structure. In this study,
it is only related to the speech envelope. From the clustering
results of Figure 3, the cognitive-level difference between an
intelligible speech envelope and unintelligible speech envelope is
affected by unexpected noises. However, after the noise reduction

by the proposed method, this kind of semantic-driven speech
envelope can be separated from non-semantic driven sound.
From Figure 4, the TRFs for STS and MTG showed the typical
semantic processing components around 400 ms in the natural
speech condition, and from the community results, we found that
the middle temporal gyri, left inferior frontal gyrus, and auditory
cortex are in the same community, which may indicate a top-
down predictionmechanism for improving the coupling between
neural responses and speech envelopes.

5.3. More Regions Recruited in Brain
Network Communities Under Natural
Speech Paradigm
The natural speech results show less left-lateralization than seen
under the traditional paradigm. For over a century, it has been
thought that the frontal and temporoparietal regions of the
left hemisphere are crucial for speech processes. However, in
the natural language paradigm, it has been shown that daily
speech comprehension involves bilateral networks, not only left-
lateralization in traditional studies (Jung-Beeman, 2005; Huth
et al., 2016; Tang et al., 2017; Hamilton et al., 2018). The natural
language paradigm reveals more widespread responses to the
speech comprehension process, not only to language-specific
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FIGURE 11 | Cortical regions in Desikan-Killiany cortical atlas for community 1 (A) and community 2 (B).

areas such as Wernicke’s and Broca’s (Lerner et al., 2011; Simony
et al., 2016).

On the basis of our results, we see a high consistency
with previous speech processing research. We illustrate our
community results for natural speech in Figure 11, which
references the DKA surface. One can see that the brain areas
that are activated in community 1 include the primary auditory
cortex (transverse temporal), inferior frontal gyrus (IFG, which
includes pars opercularis and pars triangularis), and insula
cortex, which are related to phrase structure building and lexical
selection, the middle frontal gyrus and precentral gyrus, which
are related to phonological decoding, the temporal pole, which
is related to semantic processing, the superior temporal gyrus,
which is related to phonological encoding, word recognition, and
syntactic processing, and the cingulate cortex, which is related
to sentence comprehension (see meta-analysis in Walenski
et al., 2019). In addition to these areas, the occipital cortex is
also activated. Although the task in our experiment is speech
perception, some studies have reported the importance of natural

speech perception in the visual cortex (Micheli et al., 2020;
Brandman et al., 2021).

In addition, long-time story comprehension also involves
various cognitive processes such as memory, attention, and
information integration. In our case, the precuneus, posterior-
cingulate cortex (PCC), prefrontal cortex, and temporal pole
are the main brain areas of the default mode network (DMN),
which accumulates and integrates information over hundreds of
seconds with our intrinsic information of memories during story
perception (Simony et al., 2016; Yeshurun et al., 2021). And the
activation in the fusiform gyrus, insula cortex, superior temporal
gyrus, temporal pole, and lateral occipital cortex may be related
to auditory attention process, because the similar regions are
reported in a previous auditory attention task (Alho et al., 2015).

In community 2, the brain areas that were activated
included the middle temporal gyrus and fusiform cortex,
which are related to lexical-semantic processing, the superior
frontal gyrus (supplementary motor area), which is related
to effortful comprehension and phonological decoding, and
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the supramarginal gyrus and parahippocampal gyrus, which
are related to sentence-level processing. The parietal cortex is
considered to be involved in both auditory and visual sentence
comprehension. Additionally, the banks of the superior temporal
sulcus and postcentral gyrus are important in complex sentence-
level processing (Vigneau et al., 2006; Matchin and Hickok,
2016). Some research has reported that the paracentral lobule
is activated more in 3-year-old than toddlers in the speech
perception task, and it is pointed out that this area is important
for language acquisition (Redcay et al., 2008). In addition, the
entorhinal cortex is considered to be a high-level brain area
for speech perception, and it has a direct connection with
the auditory cortex; however, deafness may alter the brain’s
connectivity between the auditory cortex and entorhinal cortex
(Kral et al., 2016).

We compared the difference in the community results
between the natural and time-reversed speech. The activation for
natural speech in community 1 was mainly the brain areas for the
auditory attention (Salmi et al., 2009; Alho et al., 2015). However,
in the time-reversed case, subjects hardly paid attention to the
unintelligible speech the whole time without any positive top-
down feedback. Therefore, the attention related regions were not
activated in the time-reversed condition. Because of top-down
processing, subjects were easily able to predict the following
words or contexts for the natural speech, they used fewer brain
resources for processing the upcoming speech stream, and only
few auditory brain areas were activated for the natural speech
condition in community 2. On the contrary, subjects used
more brain resources for processing the time-reversed speech,
especially in the frontal brain areas in the left hemisphere and
even more brain areas in the right hemisphere.

6. CONCLUSION

In this paper, we proposed a functional hyper-alignment method
with the additive average method to reduce the noises caused
by individual physiological activities and/or electrode settings
for subjects. Instead of using raw EEG signals, we reconstructed
brain sources for estimating the temporal response functions
in order to be able to study the brain networks underlying
natural speech comprehension. The preliminary brain network
was the pairwise connection of the brain areas, where links
were defined by the correlation coefficient of the TRFs between

paired areas. A multi-scale community detection was applied
to the preliminary brain networks obtained from a natural
speech comprehension task and time-reversed speech processing
task to explore functional brain network communities. The
results showed two clearly distinguishable functional network
communities for semantically driven speech processing and
for non-semantically driven (time-reversed speech) audio
processing. The functional brain network can be explained on
the basis of the achievements of past research. It was also verified
that the multi-scale community detection method is suitable for
source reconstruction-based brain network studies.
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