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ABSTRACT
In the field of general medicine, class effects, or 
therapeutic interchangeability, have been declared for 
several families of drugs including statins, calcium 
channel blockers and ACE inhibitors. The existence of such 
class effects enables healthcare payers to negotiate for 
substantially lower drug prices, thereby reducing financial 
toxicity, both at an individual and societal levels. Until 
now, the existence of class effects in oncology has been 
considered rare. Here, we review evidence from clinical 
trials that supports the existence of class effects for 
several types of anticancer drugs. These class effects in 
oncology should be exploited to reduce healthcare costs.

INTRODUCTION
The high cost of anticancer drugs is a chal-
lenge for patients and healthcare payers that 
leads to financial toxicity and reduced access 
to effective treatment. Different tools have 
been developed in attempts to manage this 
problem, including formal health technology 
assessments such as cost-effectiveness anal-
yses and value frameworks such as the Euro-
pean Society of Medical Oncology Magnitude 
of Clinical Benefit Scale.1 2 Opportunities 
to reduce cost and increase access to effec-
tive treatments exist through interventional 
pharmacoeconomics, using strategies such 
as lower doses or less frequent schedules 
of certain drugs.3 4 A strategy that has been 
effective elsewhere in medicine but has been 
explored rarely in oncology, is recognition of 
pharmacological class effects and therapeutic 
interchangeability as a tool to promote price 
competition and allow for the substitution of 
less expensive drugs within a class.

When one purchases a car, there are 
models of different size and performance 
made by different manufacturers, allowing 
the customer to choose based partly on 
price. This competition ultimately drives 
down prices within a market. There are many 
examples where several anticancer drugs 
with the same mechanism of action have 
been approved, thus creating an opportunity 
for competition on price. We propose that 

similar economic decision-making should be 
applied in oncology and that it could have a 
substantial impact on drug spending. Such 
strategies have been used for supportive 
drugs such as antiemetics and bisphospho-
nates, but for anticancer agents they have 
largely been restricted to the development 
and use of generic and biosimilar drugs. In 
this article, we first explore class effects and 
how they have been applied for the treat-
ment of diseases other than cancer. We then 
demonstrate similar potential for relief of 
financial toxicity in oncology and improved 
access to effective treatment.

DEFINING DRUG CLASSES
While recognising that there is no uniformly 
accepted definition, the Evidence-Based 
Medicine Working Group defined a drug 
class as a group of drugs that share a similar 
structure and mechanism of action,5 and 
where there is clinical evidence to support 
interchangeability. McAlister et al organised 
clinical evidence into a hierarchy, where 
the highest evidence level required a direct 
comparison in a randomised control trial 
(RCT), and lower levels of evidence required 
cross-trial comparisons with a placebo.5

The Evidence-Based Medicine Working 
Group provides specific examples, one of 

WHAT THIS STUDY ADDS
	⇒ Several classes of anticancer drugs contain mem-
bers that provide similar outcomes in clinical trials, 
suggesting that they are interchangeable.

	⇒ Acceptance of interchangeability among members 
of a class of anticancer drugs could allow for con-
siderable savings in cost, and improved access to 
treatment.

HOW THIS STUDY MIGHT AFFECT RESEARCH 
PRACTICE OR POLICY

	⇒ Substitution of drugs in a class would allow sub-
stantial cost savings
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which is calcium channel blockers.5 Drugs in this class 
all contain dihydropyridine rings and block the voltage-
dependent calcium channels in cell membranes: the 
resulting clinical impact is to lower blood pressure. 
When different drug options exist within a class, barring 
a specific policy from the healthcare payer, the clinician 
will usually choose a specific drug based on what he/
she considers the most favourable efficacy to toxicity 
ratio. This opinion may or may not be based on robust 
data. Marketing campaigns by manufacturers may influ-
ence clinical decision-making, but healthcare payers and 
hospitals have often used this opportunity to negotiate 
lower prices within a class, with reimbursement for only 
the cheapest effective drug.

In 2002, all American hospital pharmacies were 
invited to participate in a survey and over 90% of 
those responding reported having policies of ther-
apeutic interchange.6 These policies allow for auto-
matic switching within a drug class, where similar 
therapeutic benefits had been accepted by the institu-
tion and were prevalent in both private and teaching 
hospitals. Among a long list, drugs included in such 
policies were proton pump inhibitors, statins, cepha-
losporin antibiotics and ACE inhibitors. ACE inhibi-
tors decrease cardiovascular mortality in patients with 
heart failure due to left ventricular systolic dysfunc-
tion. It seems reasonable that therapeutic interchange 
programmes should be acceptable for cancer, given 
that such programmes are used in heart failure, also a 
disease with potentially fatal consequences.

LEVELS OF EVIDENCE TO DEMONSTRATE SIMILAR 
THERAPEUTIC EFFECTS IN ONCOLOGY
We have adapted the guidelines of the Evidence-Based 
Medicine Working Group to generate a set of criteria 
that would be sufficient to identify anticancer drugs 
within a class appropriate for substitutions. Most anti-
cancer drugs have not been compared with a placebo, 
but to prior drug(s) of a different class with lower 
efficacy or greater toxicity, and we have extended this 
hierarchy to include those comparisons (table 1). For 
anticancer drugs, the clinically relevant endpoints 
are overall survival (OS) and quality of life; possible 

surrogate endpoints such as progression-free survival 
(PFS) and response rate have poor correlation with 
these endpoints.7 8 Chemical structures are known, 
and their similarity is used to establish membership 
within a class. Each member of the class will have 
been approved (possibly for different treatment 
regimens or tumour types), and animal studies and 
phase 1 trials will have been performed to establish 
safety and to describe toxic side effects. Efficacy of 
each class member will have been demonstrated in at 
least one therapeutic scenario, and the major ques-
tion required for support of drug substitution is the 
required level of evidence in support of clinical inter-
changeability where a different member of the class 
has proven effective.

INTERCHANGEABILITY IN ONCOLOGY
There are at least two examples where clinical inter-
changeability of anticancer drugs has been widely 
accepted: non-steroidal aromatase inhibitors (AIs) 
for treatment of oestrogen receptor positive (ER+) 
breast cancer and gonadotropin-releasing hormone 
(GnRH) agonists for treatment of prostate cancer. 
The two non-steroidal AIs, anastrozole and letrozole, 
are triazole derivatives that differ in potency and in 
degree of aromatase inhibition.9 It is widely accepted 
that either can be used in clinical trials or clinical 
practice (eg, in drug combinations) that require use 
of an AI. There are four GnRH agonists in common 
clinical use for testosterone suppression in men with 
prostate cancer (or for inducing temporary meno-
pause in young women with breast cancer): buserelin, 
goserelin, leuprolide and triptorelin. Each is a nona-
peptide or deca-peptide analogue of GnRH (a deca-
peptide), and each is available in long-acting forms 
(3-monthly depot injections are widely used) that 
reduce serum testosterone to low levels in men. Many 
clinical trials for men with prostate cancer require 
them to be on androgen deprivation therapy, and 
either orchiectomy or any of these drugs are accept-
able. Level 2 evidence appears to have been sufficient 
to justify this interchangeability: members of the class 
were evaluated in different RCTs against alternative 

Table 1  A hierarchy of evidence to support membership of a class effect for anticancer drugs (adapted from McAlister et al5)

Level 1 Head-to-head RCT comparing drugs within a chemical class, with a clinically important endpoint.

Level 2 Head-to-head RCT comparing drugs within a chemical class, with a validated surrogate endpoint.
Comparison across RCTs of drugs within a chemical class that were each compared with a placebo or to a 
former standard. Endpoints may be clinically important or possible surrogates.

Level 3 Comparison of subgroup analyses across RCTs of drugs within a chemical class that were compared with 
placebo or to a former standard. The endpoints may be clinically important or possible surrogates.

Level 4 Comparison of non-randomised studies, such as observational studies, using clinically important endpoints.

Clinically important endpoints are overall survival or quality of life. Possible surrogate endpoints are progression-free survival for advanced 
disease, disease-free survival for adjuvant therapy or response rate.
RCT, randomised controlled trial.
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Table 2  Types of cancer where at least two drugs within a class are approved, and where cross-trial results of RCTs with 
time-to-event endpoints can be compared

Drug group/trial name No. patients exp/cont. Deaths exp/cont HR (95% CI) for OS

Non-metastatic castrate resistant prostate cancer vs 
placebo

 � Enzalutamide (PROSPER)12 933/468 288/178 0.73 (0.61–0.89)

 � Apalutamide (SPARTAN)13 806/401 178/107 0.75 (0.59–0.96)

 � Darolutamide (ARAMIS)14 955/554 148/106 0.69 (0.53–0.88)

Metastatic hormone sensitive prostate cancer with ADT

 � Enzalutamide vs non-steroidal AI (ENZAMET)16 563/562 102/143 0.67 (0.52–0.86)

 � Apalutamide vs placebo (TITAN)15 525/527 83/117 0.67 (0.51–0.89)

 � Darolutamide vs placebo (ARASENS)17 651/655 229/304 0.68 (0.57–0.80)

Metastatic ER+breast cancer with fulvestrant vs placebo

 � Palbociclib (PALOMA-3)21 347/174 201/109 0.81 (0.64–1.03)

 � Ribociclib (MONALEESA-3)22 484/242 222/142 0.73 (0.59–0.90)

 � Abemaciclib (MONARCH-2)23 446/223 211/127 0.76 (0.61–0.95)

Metastatic ER+breast cancer first line with AI vs placebo

 � Palbociclib (PALOMA-2)25 444/222 Total 405 0.96 (0.78–1.18)

 � Ribociclib (MONALEESA-2)26 334/334 181/219 0.76 (0.63–0.93)

 � Abemaciclib (MONARCH-3)28 328/165 Total 252 0.75 (0.58–0.97)

first line Metastatic RCC: IO+TKI vs sunitinib

 � Avelumab+axitinib (JAVELIN)38 442/444 109/129 0.80 (0.62–1.03)

 � Pembrolizumab+axitinib (KEYNOTE-426)39 432/429 193/225 0.73 (0.60–0.88)

 � Nivolumab+cabozantinib (CHECKMATE-9ER)40 323/328 121/150 0.70 (0.55–0.90)

 � Pembrolizumab+lenvatinib (CLEAR)41 355/357 74/106 0.66 (0.49–0.88)

second-line metastatic NSCLC: IO vs docetaxel

 � Pembrolizumab; PD-L1>1% (KEYNOTE-010)49 690/343 584/309 0.70 (0.61–0.80)

 � Nivolumab; squamous without PDL1 selection 
(CHECKMATE 017)50

135/137 110/128 0.62 (0.47–0.80)

 � Nivolumab; non-Squamous without PDL1 selection 
(CHECKMATE 057)50

292/290 228/247 0.75 (0.63–0.91)

 � Atezolizumab; without PDL1 selection (POPLAR)51 144/143 121/120 0.76 (0.58–1.00)

 � Atezolizumab; without PDL1 selection (OAK)51 52 613/612 486/496 0.78 (0.68–0.89)

first line Metastatic NSCLC: IO vs CT

 � Pembrolizumab; PD-L1>50% (KEYNOTE-024)53 154/151 103/123 0.62 (0.48–0.81)

 � Pembrolizumab; PD-L1>50% (KEYNOTE-042)54 299/300 Total 356 0.69 (0.56–0.85)

 � Cemiplimab; PD-L1>50% (EMPOWER)55 283/280 Total 175 0.57 (0.42–0.77)

 � Atezolizumab; PD-L1 High (IMpower-110)56 107/98 Total 101 0.59 (0.40–0.89)

 � Durvalumab; PD-L1>25% (MYSTIC)57 163/162 108/128 0.76 (0.56–1.02)

first line metastatic NSCLC (without PDL1 biomarker): 
IO+CT vs CT

 � Pembrolizumab; non-squamous (KEYNOTE-189)58 410/206 Total 235 0.49 (0.38–0.64)

 � Pembrolizumab; squamous (KEYNOTE-407)59 278/281 225/248 0.71 (0.59–0.85)

 � Cemiplimab; all histologies (EMPOWER-lung)60 312/154 132/82 0.71 (0.53–0.93)

 � Atezolizumab; non-squamous (IMpower-130)61 451/228 226/131 0.79 (0.64–0.98)

 � Atezolizumab; squamous (IMpower-131)62 343/340 228/245 O.88 (0.73–1.05)

 � Atezolizumab; non-squamous; all pemetrexed 
(IMpower-132)63

292/286 137/154 0.86 (0.71–1.06)

Continued
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treatments such as tamoxifen (for AIs) or orchiec-
tomy (for GnRH agonists). It is important to note that 
National Comprehensive Cancer Network guidelines 
also recognise the existence of class effects for AIs and 
GNRH agonists.10

PROPOSED CLASS EFFECTS IN ONCOLOGY
We propose below additional opportunities for drug 
substitution within different classes of anticancer thera-
pies, we provide the clinical trial data related to the simi-
larity of clinical effects of proposed members of different 
classes of anticancer drugs. These data are summarised in 
table 2 and figures 1–3 demonstrate forest plots of the HRs 
to support these classes. While it is difficult to perform 
cross-trial comparisons, we have tried to select trials, and 
groups within trials, which are similar in inclusion and 
exclusion criteria. The examples that we provide are not 
a definitive list, rather some examples of class effects for 
consideration in the field of solid tumour oncology.

Androgen receptor inhibitors
Enzalutamide, apalutamide and darolutamide are struc-
turally similar second-generation antiandrogens that have 
provided similar levels of benefit to men with prostate 
cancer (table  2; figure  1A,B).11 Each of them has been 
shown in RCTs to delay appearance of metastases and 
improve OS in men with non-metastatic castrate-resistant 
prostate cancer and a PSA doubling time less than 10 
months when added to standard androgen-deprivation 
therapy (ADT).12–14 They each improve survival when 
added to ADT for men with hormone-sensitive prostate 
cancer.15–17 Effect sizes in these trials were similar, and 
the drugs are well tolerated by most men. There are 
differences in side effects with a low incidence of seizures 
and more fatigue in men taking enzalutamide, a rash 
in men taking apalutamide, and claims of less falls and 
fractures with darolutamide, which does not cross the 
blood–brain barrier.11 18 However, these differences are 
small, and after excluding the rare patient with a history 

Drug group/trial name No. patients exp/cont. Deaths exp/cont HR (95% CI) for OS

 � Atezolizumab; non-squamous: all bevacizumab 
(IMPower-150)64

359/337 179/197 0.78 (0.64–0.96)

First-line extensive stage SCLC (without PDL1 biomarker): 
IO+CT vs CT

 � Atezolizumab (IMpower-133)65 201/202 138/158 0.76 (0.60–0.95)

 � Durvalumab (CASPIAN)66 268/269 210/231 0.75 (0.62–0.91)

 � Pembrolizumab (KEYNOTE-604)67 228/225 169/188 0.80 (0.64–0.98)

Metastatic melanoma: PD1 blockade vs CTLA4 blockade

 � Pembrolizumab vs Ipilimumab (KEYNOTE-006)68 556/278 324/172 0.73 (0.61–0.88)

 � Nivolumab vs Ipilimumab (CHECKMATE-067)69 316/315 164/218 0.63 (0.52–0.76)

Metastatic head and neck cancer: IO vs CT

 � Pembrolizumab (second-line: KEYNOTE-40)70 247/248 181/207 0.80 (0.65–0.98)

 � Nivolumab (second-line: CHECKMATE-141)71 240/121 133/85 0.70 (0.51–0.96)

second line metastatic squamous oesophageal cancer: IO 
vs CT

 � Pembrolizumab (KEYNOTE-181)72 198/203 total 348 0.78 (0.63–0.96)

 � Nivolumab (ATTRACTION-3)73 210/209 160/173 0.77 (0.62–0.96)

First line metastatic squamous (no PDL1) oesophageal Ca: 
IO+CT vs CT

 � Pembrolizumab (KEYNOTE-590)74 373/376 571 0.72 (0.60–0.88)

 � Nivolumab (CHECKMATE-648)75 321/324 135/204 0.74 (0.58–0.96)

second line metastatic urothelial cancer: IO vs CT

 � Pembrolizumab (KEYNOTE-045)76 270/272 Total 334 0.73 (0.53–0.91)

 � Atezolizumab (IMvigor-211)77 467/464 324/350 0.87 (0.63–1.21)

First-line metastatic urothelial cancer: IO+CT vs CT

 � Pembrolizumab (KEYNOTE-361)78 351/352 245/263 0.86 (0.72–1.02)

 � Atezolizumab (IMpower-130)79 451/400 235/228 0.83 (0.69–1.00)

ADT, androgen deprivation therapy; AI, aromatase inhibitor; CT, chemotherapy; IO, immunotherapy; NSCLC, non-small cell lung cancer; OS, 
overall survival; RCC, renal cell carcinoma; SCLC, small cell lung cancer; TKI, tyrosine kinase inhibitor.

Table 2  Continued
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of seizures, choice of treatment can be made on the basis 
of cost, favouring enzalutamide, which will be available in 
generic form in USA from 2026, and is already available 
as a generic in India and some other countries.

Cyclin-dependent kinase 4/6 inhibitors
Palbociclib, ribociclib and abemaciclib are structurally 
similar CDK4/6 inhibitors, with small differences in 
binding to their CDK4/6 target.19 Marra and Curigliano 
have summarised similarities and differences in clin-
ical effects of these agents observed in earlier clinical 
trials.20 RCTs have shown that each drug leads to compa-
rable improvements in OS (compared with placebo) 
for women with metastatic ER+ breast cancer when 
given with fulvestrant after disease progression on prior 
hormonal therapy (table  2; figure  1C).20–23 Each drug 
has improved PFS compared with placebo when used 
with first-line hormonal therapy, with a significant effect 
(ribociclib), strong trend (abemaciclib) or minimal trend 

(palbociclib) to improve OS (figure 1D).24–28 A factor that 
confounds cross-comparison of OS in these trials is treat-
ment received by the control groups at time of disease 
progression. In the trials comparing first-line treatment 
of letrozole with palbociclib or ribociclib and placebo 
for advanced disease, only 27% and 34%, respectively, 
of controls received a subsequent CDK4/6 inhibitor.24 26 
Trials of adjuvant therapy have reported that abemaciclib 
and ribociclib but not palbociclib added to endocrine 
therapy leads to improvement in the primary endpoint of 
invasive disease-free survival.29–32 Differences in outcome 
from a cross-comparison of clinical trials might be due 
to inherent differences in the efficacy of these drugs, to 
statistical variation about a similar level of effect, to vari-
able bias arising from uneven dropout and informative 
censoring or to failure to provide optimal treatment at 
progression. Common side effects of these agents include 
fatigue, myelosuppression with consequent increase in 

Figure 1  Forest plots of drug classes for androgen receptor blockers for prostate cancer and CDK4/6 inhibitors for breast 
cancer. The size of the point estimate is a weighted measure of the number of participants in the trial relative to the number 
of participants in the smallest trial in each group. ADT, androgen-deprivation therapy; CDK, cyclin-dependent kinase; ER+, 
oestrogen receptor positive.
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infections (more common with palbociclib and ribo-
ciclib) and diarrhoea (more common with abemaci-
clib).20 33 34 Ribociclib produces QT prolongation in 
1%–3% of patients20 and should be avoided in women at 
increased risk of cardiotoxicity. At present, drug substitu-
tion seems justified for most women when these agents 
are used with fulvestrant after prior lines of hormonal 
therapy for metastatic disease.

Epidermal growth factor receptor inhibitors
Erlotinib, gefitinib and osimertinib are small molecule 
selective inhibitors of EGFR used mainly in the treatment 
of epidermal growth factor receptor (EGFR)-mutated 
non-small cell lung cancer (NSCLC), while other 
drugs target multiple kinases including EGFR. There is 
evidence that outcomes using erlotinib or gefitinib are 
similar,35 and they are generally accepted as being inter-
changeable. Osimertinib led to improved PFS and OS 
when compared with investigator’s choice of erlotinib 

or gefitinib for treatment of EGFR-mutated NSCLC,36 
and should only be substituted by the older drugs if 
osimertinib is not available or affordable, as may occur 
in low-income and middle-income countries. Cetuximab 
and panitumumab are monoclonal antibodies that target 
EGFR used mainly for treatment of colorectal cancer. 
A head-to-head comparison of these agents in an RCT 
for chemotherapy-refractory KRAS wild-type colorectal 
cancer showed similar OS,37 providing level 1 evidence of 
a class effect in this disease.

Immunotherapy and tyrosine kinase inhibitors combinations 
in kidney cancer
Four trials have compared an immune checkpoint inhib-
itor (avelumab, pembrolizumab or nivolumab) plus a 
tyrosine kinase inhibitor (TKI) (axitinib, cabozantinib or 
lenvatinib) with sunitinib as first-line treatment of RCC 
and shown improved PFS and/or OS.38–41 The survival 
results are remarkably similar (table 2; figure 3).

Figure 2  Forest plots of drug classes in lung cancer. CT, chemotherapy; IO, immunotherapy; NSCLC, non-small cell lung 
cancer.
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Immune checkpoint inhibitors
Four monoclonal antibodies that target the 
programmed death receptor PD-1 are approved by 
the FDA: nivolumab and pembrolizumab are in wide 
clinical use, while cemiplimab and dostarlimab have a 
limited spectrum of approval. Other drugs targeting 
PD-1 are in development. The crystal structures of 
the approved drugs and their binding sites on PD-1 
are similar but not identical for pembrolizumab and 
nivolumab.42 43 Three inhibitors of PD-L1, the ligand 
of PD-1, are approved and used clinically (atezoli-
zumab, avelumab and durvalumab). These drugs 
also have similar but non-identical binding to their 
target.42 43 PD-1 and PD-L1 inhibitors are approved by 
the FDA and EMA for treatment of different states of 
progression of many cancers, both as monotherapy 
and in combination with other drugs, and sometimes 
dependent on PD-L1 score, which quantifies expres-
sion of PD-L1 on tumour cells and infiltrating lympho-
cytes. There have been no head-to-head comparisons 
of these drugs in RCTs that might provide level 1 
evidence of a class effect, and given the lack of moti-
vation by sponsors for such trials, we can realistically 
assume that they will never be done. Available cross-
comparisons of RCTs evaluating their use in similar 
clinical scenarios are summarised in table  2 and in 
figures 2 and 3. Most results of trials using different 
checkpoint inhibitors in similar clinical situations 

have given similar results, thereby providing support 
for a class effect. The limited exceptions appear attrib-
utable to subtle differences in design and conduct of 
the trials or to statistical variation in trial results that 
would be expected if any of them were repeated. The 
possibility of meaningful efficacy differences appears 
remote.

TOXICITY DIFFERENCES
There are sometimes different toxicity profiles among 
drugs within a class, even when efficacy appears to be 
similar. For example, unlike other androgen receptor 
inhibitors, darolutamide does not cross the blood–brain 
barrier, and perhaps should be the preferred drug in 
patients with a history of seizures. Ribociclib appears to 
cause more QT prolongation than the other CDK4/6 
inhibitors palbociclib and abemaciclib, and perhaps 
should be avoided in patients with a history of cardiac 
disease. These differences in toxicity do not exclude 
definition of a class effect. Rather, some patients should 
not be considered for drug substitution. Thus, for men 
with prostate cancer, a class effect would allow the payer 
to decide which androgen receptor inhibitor should be 
used, except for the rare patient with a history of seizures. 
Also, some patients may develop a drug-specific toxicity 
and may need to be prescribed another drug within the 
class. An example could be an infusion reaction that 

Figure 3  Forest plots of drug classes in oesophageal cancer, melanoma, head and neck and kidney cancer. CT, 
chemotherapy; IO, immunotherapy; TKI, tyrosine kinase inhibitor.
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develops with cetuximab, and thus the need to transfer 
to panitumumab. These approaches would achieve two 
important goals—enabling clinically appropriate medical 
care, with substantial cost reduction for most patients.

DRUG PRICING: A POLICY PROPOSAL
Many anticancer drugs have similar efficacy to others 
in a class but this has not led to price competition in 
most countries, particularly in the USA; pricing of new 
drugs is set at a very similar level to competitors of the 
same class.44–46 However, substantial price reductions 
are obtained when national authorities negotiate with 
companies for approval of their drugs to be funded by 
public health services, such as with the National Health 
Service of the UK. The Inflation Reduction Act in the 
USA will allow future negotiations between Medicare and 
pharmaceutical companies to lower drug prices, although 
anticancer drugs are not among those selected for initial 
negotiation.47 It is likely that price reductions could also 
be obtained if national or subnational groups with high 
purchasing power negotiated with companies to provide 
preference (with defined exceptions) for use of a drug 
within a given class within their jurisdiction.

Additional policy manoeuvres are required to stimulate 
price competition, and we propose the following:
1.	 In different regions of the world, round table panels 

with both payers and providers be created to define 
potential class effects in different fields of oncology.

2.	 The panels should discuss drugs and classes in specific 
diseases.

3.	 The panels should define subgroups of patients, for 
whom a declared class effect would not apply.

4.	 The panels should discuss toxicities that would justify 
transferring between drugs within a class.

5.	 Once decisions are agreed between payers and provid-
ers regarding specific drug classes and clinical scenari-
os, payers would be free to negotiate with manufactur-
ers regarding price. Following such negotiations, clear 
details should be distributed to the clinical community 
regarding which drugs are preferred.

6.	 To reduce confusion and bureaucracy among clini-
cians, the price negotiating process should occur in-
frequently—perhaps every 3 years for a specific indi-
cation.

7.	 In single-payer systems, this should be a relatively sim-
ple process. In multipayer systems (such as the USA), 
a national consortium could be created to define rel-
evant drug classes, following which, individual payers 
could negotiate with manufacturers separately.

CONCLUSIONS AND FUTURE CONSIDERATIONS
There is considerable evidence to support class effects 
and therapeutic interchangeability among several fami-
lies of anticancer drugs. These classes should be reviewed 
by payers and providers, leading to tendering processes 
to gain substantial price discounts. This process can lead 

to major reductions in financial toxicity, both at a society 
and individual level.

Anecdotal reports suggest that such approaches can 
lead to discounts of up to 30%, and from a health system 
perspective, this can translate to many millions of Euros 
or dollars. Until now, price negotiation on the basis of 
class effects has rarely been undertaken for cancer drugs, 
although the Norwegian healthcare system has adopted 
such an approach.48 In Norway, there is a process similar 
to our policy proposal, where payers and providers meet 
in order to develop consensus about how to find the most 
appropriate solution, in order to satisfy the needs of all 
stakeholders. The opportunity to exploit class effects in 
oncology should be explored more deeply by healthcare 
systems around the world.
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