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Abstract: Using semi-automated software simplifies quantitative analysis of the visible burden of
disease on whole-body MRI diffusion-weighted images. To establish the intra- and inter-observer
reproducibility of apparent diffusion coefficient (ADC) measures, we retrospectively analyzed data
from 20 patients with bone metastases from breast (BCa; n = 10; aged 62.3 ± 14.8) or prostate cancer
(PCa; n = 10; aged 67.4 ± 9.0) who had undergone examinations at two timepoints, before and after
hormone-therapy. Four independent observers processed all images twice, first segmenting the
entire skeleton on diffusion-weighted images, and then isolating bone metastases via ADC histogram
thresholding (ADC: 650–1400 µm2/s). Dice Similarity, Bland-Altman method, and Intraclass Corre-
lation Coefficient were used to assess reproducibility. Inter-observer Dice similarity was moderate
(0.71) for women with BCa and poor (0.40) for men with PCa. Nonetheless, the limits of agreement of
the mean ADC were just ±6% for women with BCa and ±10% for men with PCa (mean ADCs: 941
and 999 µm2/s, respectively). Inter-observer Intraclass Correlation Coefficients of the ADC histogram
parameters were consistently greater in women with BCa than in men with PCa. While scope remains
for improving consistency of the volume segmented, the observer-dependent variability measured
in this study was appropriate to distinguish the clinically meaningful changes of ADC observed in
patients responding to therapy, as changes of at least 25% are of interest.

Keywords: WB-MRI; DWI; ADC; quantitative analysis; bone metastases; reproducibility

1. Introduction

Occurring in up to 70% of patients with advanced breast cancer (BCa) or prostate
cancer (PCa), bone metastases are frequently present in patients in therapy for these
tumours [1]. Precise and timely assessments of therapy response in metastatic BCa and PCa
are needed to ensure targeted therapies are administered efficiently [2,3]. The RECIST v1.1
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criteria commonly used for evaluating response to treatment, however, are inappropriate
for assessing the response of bone metastases, because bone-limited lesions are classified as
“unmeasurable” [4,5]. Whole-body MRI (WB-MRI) that includes WB diffusion-weighted
images (DWI) marks a paradigm shift in the assessment of treatment response of bone
metastases [6–8]: indeed, beyond volume changes visible on conventional imaging, WB-
MRI can also detect early functional changes via differences in apparent diffusion coefficient
(ADC) [9,10], a quantitative index of water motility obtained from DWI [11,12]. Unlike soft
tissue lesions [13], active bone lesions have higher ADC values than normal, fat-rich bone
marrow [14,15], but ADC values tend to increase for both soft tissues and malignant bone
lesions when there is substantial response to therapy due to an increased mobility of water
molecules accompanying cell death [16,17].

As a quantitative metric, each ADC measurement is subject to uncertainty related to
patient and experimental variability (physiological factors, scanner used, DWI acquisition
protocol and ADC computation method) as well as to the process of drawing regions of
interest from which to extract the values [18]. This last process is particularly challenging
in metastatic patients when multiple lesions are distributed in the skeleton. A recent
systematic analysis reported that ADC differences of at least 12% in repeated experiments
could be considered true changes [19], while the inter-observer variability of mean ADC in
bone metastases was about 7% and thus sufficiently low not to significantly reduce overall
sensitivity to clinically relevant ADC changes [20].

The potential of WB-MRI ADC histogram analysis for monitoring of bone disease has
been demonstrated but its clinical use is limited because segmentation can be influenced by
observer experience and is time-consuming to perform, even with semi-automation [20–24].
In response to these shortcomings, a streamlined semi-automatic technique for segmenting
distributed bone metastases has been developed that combines the optional calculation
of heavily diffusion-weighted images [25], with thresholds over the entire image volume,
manual editing, and finally, limitation of ADC values to the range of clinical interest.

The aim of this study was to determine the intra- and inter-observer reproducibility for
quantitative ADC values obtained through this semi-automated approach to segmentation
of bone metastases from WB-MRI by multiple observers with widely varying prior experi-
ence.

2. Materials and Methods
2.1. Population

The local ethics committee approved this retrospective single center study, and written
informed consent was obtained from the subjects for use of their data. Based on a power
analysis using the results of a previous study [20], 20 patients with two WB-MRI examina-
tions were included in the study. In order to obtain a homogeneous population from the
point of view of the therapy performed, patients were consecutively included if compliant
with these criteria: having undergone both a baseline WB-MRI examination prior to ini-
tiating therapy and a follow-up WB-MRI examination during first-line hormone therapy
following a radiological diagnosis of metastatic bone disease originating for women with
invasive ductal or lobular breast carcinoma and for men with prostatic adenocarcinoma
between January 2013 and March 2018. Both examinations were included in the study to
represent the range of examinations occurring in clinical routine. Patients who underwent
other metastases directed treatments (chemotherapy, radiotherapy, surgery) before the
follow-up study were excluded.
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2.2. WB-MRI Acquisition Protocol

The WB-MRI examinations were performed using a 1.5T MR scanner (MAGNETOM
Avantofit, Siemens Healthcare, Erlangen, Germany). The scanning protocol was MET-
RADS-P compliant [6]. In particular, DWI scans extended from the upper border of the
orbits to mid-thigh and consisted of four contiguous stations of 50 slices acquired in free-
breathing using a 2D single shot echo-planar imaging (SS-EPI) sequence. Over the course
of the study, two distinct shimming techniques and acquisition parameter sets (Table 1)
were used for the DWI scans without changes to the b-values applied. Initially, a single,
volumetric shim was determined for each station and applied for all slices within the
station. From June 2016 onwards, slice-specific shimming was performed within each
station using a prototype acquisition software provided by the machine vendor [26].

Table 1. Whole-body diffusion-weighted image acquisition protocols.

Station-Specific Shim Slice-Specific Shim

Sequence Diffusion-Weighted SS-EPI Diffusion-Weighted SS-EPI
Orientation Transversal Transversal

b-value (s/mm2) 50, 900 50, 900
Encoding mode 3-scan trace 3D-diagonal

Averages per b-value 6, 6 5, 15
Repetition Time (ms) 9000 6550

Echo Time (ms) 67 62
Fat Saturation STIR STIR

Inversion Time (ms) 180 180
Field of View (mm) 337 × 450 390 × 429

Slice thickness (mm) 5.0 5.0
Gap between slices (mm) 0.0 0.0

Voxel size (mm3) 1.8 × 1.8 × 5.0 1.6 × 1.6 × 5.0
Acquisition time (min) 22:00 15:02

SS-EPI = Single-Shot Echo-Planar Imaging, STIR = Short Tau Inversion Recovery.

2.3. Image Segmentation

The WB-MRI examination images were exported in DICOM format to a reporting
workstation. To allow independent evaluation of the baseline and follow-up examinations,
a distinct code was applied to each examination during anonymization. Segmentation of
bone metastases consisted of two sub-procedures.

First, bone marrow segmentation was performed using a semi-automatic approach
based on signal intensity thresholding of DWI images, previously described for the direct
segmentation of the visible bone metastases [22,25]. A software implementation of this
method (MR Total Tumor Load, Siemens Healthcare, Erlangen, Germany) was used, that
combined automatic pre-processing and computation of a volumetric ADC map (with
mono-exponential fitting); observers were required to select a signal intensity threshold
applied to a simulated high b-value image stack and manual editing to obtain a bone
marrow mask (Figure 1).
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Figure 1. Illustration of the semi-automatic method used for bone marrow segmentation. Bone seg-
mentation started with the observer interactively selecting a b-value for the calculation of a diffu-
sion-weighted image stack (computed b-value) that provided good visual contrast between bone 
and surrounding tissues in coronal inverted gray-scale maximum intensity projection (MIP). (a) The 
observer then interactively adjusted a threshold to isolate voxels having high signal intensity on the 
computed b-value image (i.e., darker on the inverted MIP) to incorporate as much bone as possible 
in the resulting mask (seen overlaid in blue on the inverted MIP of the computed b-value DWI stack). 
The initial mask thus included suspected hypercellular lesions and as much bone as possible, but 
inevitably also included some non-bone tissues, typically brain and spinal cord, spleen, male gon-
ads, breast implants, and sites of soft tissue inflammation or soft tissue lesions (e.g., the large soft 
tissue metastases along the right chest wall (arrow) and supraclavicular lymph nodes seen in this 
case of a 71-year-old woman with operated lobular carcinoma of the right breast, undergoing endo-
crine treatment). Manual editing was therefore performed to remove as much non-bone tissue as 
possible using a combination of: (b) full-depth cutting of ellipsoids (overlaid in red) positioned on 
the coronal MIP to eliminate brain, neck lymph nodes, soft tissues of the small pelvis, and as needed, 
spleen, kidneys, and lymph nodes not overlapping diseased bone, followed by (c) full-depth cutting 
of ellipsoids (overlaid in red) drawn on the sagittal MIP to eliminate soft tissues of the anterior neck, 
breast implants (if any), bowel, rectum, as well as inguinal and external iliac lymph nodes. If needed, 
(d,e,f) single-slice cutting of ellipsoids (overlaid in red) on individual axial, coronal or sagittal slices 
to eliminate soft tissues that projected over bone in the MIPs. Finally, the bone mask (g) was saved 
as a DICOM image stack. 

Second, the bone mask and the ADC map were saved as DICOM image stacks and 
used in calculating ADC histograms to isolate the metastases via ad hoc functions written 
in Python 3.7 (Python Software Foundation, Beaverton, OR, USA). In short, a lower 
threshold of 650 µm2/s and an upper threshold of 1400 µm2/s were applied to the masked 
regions of the ADC map to remove normal bone marrow [27–30] and necrotic disease [6] 
(Figure 2). For the remaining voxels, which were assumed to represent bone lesions, we 
calculated the segmentation volume (Volume), mean (Mean_ADC), standard deviation 
(Std_ADC), median (Median_ADC), 5th and 95th percentiles (5%_ADC and 95%_ADC), 
skewness (Skewness_ADC), kurtosis (Kurtosis_ADC), and histogram entropy (En-
tropy_ADC) from ADC histograms. Due to signal differences between the stations ob-
tained with the head/neck coil and the remaining body stations (acquired with anterior 
and posterior array coils), we limited our processing to the three body blocks covering 
from the upper thorax to the mid-thighs. 

Figure 1. Illustration of the semi-automatic method used for bone marrow segmentation. Bone
segmentation started with the observer interactively selecting a b-value for the calculation of a
diffusion-weighted image stack (computed b-value) that provided good visual contrast between
bone and surrounding tissues in coronal inverted gray-scale maximum intensity projection (MIP). (a)
The observer then interactively adjusted a threshold to isolate voxels having high signal intensity
on the computed b-value image (i.e., darker on the inverted MIP) to incorporate as much bone as
possible in the resulting mask (seen overlaid in blue on the inverted MIP of the computed b-value
DWI stack). The initial mask thus included suspected hypercellular lesions and as much bone as
possible, but inevitably also included some non-bone tissues, typically brain and spinal cord, spleen,
male gonads, breast implants, and sites of soft tissue inflammation or soft tissue lesions (e.g., the
large soft tissue metastases along the right chest wall (arrow) and supraclavicular lymph nodes seen
in this case of a 71-year-old woman with operated lobular carcinoma of the right breast, undergoing
endocrine treatment). Manual editing was therefore performed to remove as much non-bone tissue
as possible using a combination of: (b) full-depth cutting of ellipsoids (overlaid in red) positioned on
the coronal MIP to eliminate brain, neck lymph nodes, soft tissues of the small pelvis, and as needed,
spleen, kidneys, and lymph nodes not overlapping diseased bone, followed by (c) full-depth cutting
of ellipsoids (overlaid in red) drawn on the sagittal MIP to eliminate soft tissues of the anterior neck,
breast implants (if any), bowel, rectum, as well as inguinal and external iliac lymph nodes. If needed,
(d,e,f) single-slice cutting of ellipsoids (overlaid in red) on individual axial, coronal or sagittal slices
to eliminate soft tissues that projected over bone in the MIPs. Finally, the bone mask (g) was saved as
a DICOM image stack.

Second, the bone mask and the ADC map were saved as DICOM image stacks and
used in calculating ADC histograms to isolate the metastases via ad hoc functions written in
Python 3.7 (Python Software Foundation, Beaverton, OR, USA). In short, a lower threshold
of 650 µm2/s and an upper threshold of 1400 µm2/s were applied to the masked regions
of the ADC map to remove normal bone marrow [27–30] and necrotic disease [6] (Figure 2).
For the remaining voxels, which were assumed to represent bone lesions, we calculated the
segmentation volume (Volume), mean (Mean_ADC), standard deviation (Std_ADC), me-
dian (Median_ADC), 5th and 95th percentiles (5%_ADC and 95%_ADC), skewness (Skew-
ness_ADC), kurtosis (Kurtosis_ADC), and histogram entropy (Entropy_ADC) from ADC
histograms. Due to signal differences between the stations obtained with the head/neck
coil and the remaining body stations (acquired with anterior and posterior array coils),
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we limited our processing to the three body blocks covering from the upper thorax to the
mid-thighs.
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with BCa, and the Mann-Whitney test was used to compare measures. 

Figure 2. Extracting the bone metastases region of interest by applying apparent diffusion coefficient
(ADC) thresholds to the bone marrow mask. Lesion segmentation started with the bone mask (a)
seen overlaid on a coronal inverted gray-scale maximum intensity correction (MIP) being used to
produce an ADC histogram (b) from the ADC data. The histogram was divided into three categories
on the basis of two thresholds: below 650 µm2/s corresponding to normal bone (yellow band),
between 650 µm2/s and 1400 µm2/s corresponding to lesions (red band), and above 1400 µm2/s
corresponding to necrotic lesion or cyst (green band). The normal bone and bone lesion voxels
identified in this way were then colorized as yellow and red, respectively, and overlaid on the coronal
inverted gray-scale MIP (c) to show the localization of healthy bone and active disease. For two
lesions (arrow and arrowhead in (c)), axial high b-value diffusion-weighted images and the resulting
separation of bone marrow (in yellow) from metastases (in red) shows: a lesion of the posterior arc of
the 10th right rib (arrow in (c–e)); a lesion of the lumbosacral spine involving transverse process and
part of the vertebral body (arrowhead in (c,f,g)). Some residual soft tissues having ADC values in the
considered range were included in the final evaluation (e.g., spinal cord in (e)).

2.4. Observers

Four independent observers segmented each of the 40 DWI scans and repeated the
process at least three weeks later, in a separate reading session, to minimize recall bias.
None of the observers had prior experience in reporting WB-MRI. Two observers, a biomed-
ical engineer experienced in image processing (Obs1_MASKED) and a radiologist with
eight years of experience (Obs3_MASKED) had relevant background expertise in medi-
cal image processing, while the other two—a radiology resident (Obs2_MASKED) and a
student radiology technologist (Obs4_MASKED)—were relatively inexperienced in image
processing methods.

2.5. Statistical Analysis

The computed b-values and thresholds chosen by the observers for segmentation, and
the time required to complete each segmentation were recorded. The similarity between
segmentations was expressed using the Dice Similarity Coefficient (DSC) [31]. Associations
between DSC and factors potentially influencing segmentation similarity were assessed
using factorial ANOVA and Spearman’s coefficient (ρs) for categorical and continuous
variables, respectively. The factors considered were patient sex, age, treatment status at the
time of WB-MRI (baseline or follow-up examination), number of MET-RADS-P skeletal
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regions with metastases, and shimming technique [6]. In light of a strong effect of sex,
subsequent analyses were performed separately for men with PCa and women with BCa,
and the Mann-Whitney test was used to compare measures.

The distribution of Mean_ADC and of the other histogram parameter values was
expressed as their average across readers. Measures of the second reading session were
considered in order to minimize the learning curve effect for the first segmentation.

The Bland-Altman method [32,33] was used to evaluate intra-observer (comparing
the first and second segmentations for each observer), and inter-observer (comparing
pairs of readers within each of the two reading sessions) reproducibility of Mean_ADC.
Dependence of absolute differences on the mean of measurements was assessed using
Kendall’s tau (τb), and the mean intra- and inter-observer bias and 95% limits of agreement
were determined. The correlation between the volume of segmentation and the variability
of Mean_ADC (mean difference among intra-observer and inter-observer measurements)
was evaluated with Spearman’s correlation coefficient.

Intra- and inter-observer reproducibility of the other ADC histogram statistics were
measured using Intraclass Correlation Coefficients (ICC) with 95% confidence intervals,
calculating absolute concordance using a two-way model with mixed effects and single mea-
surements [34]. For both DSC and ICC, the following classification scale was used to evalu-
ate similarity/reproducibility: poor (DSC/ICC < 0.50), modest (0.50 ≤ DSC/ICC < 0.75),
good (0.75 ≤ DSC/ICC < 0.90), and excellent (DSC/ICC ≥ 0.90). We considered results
of p < 0.05 significant and analyses were performed with the R software package (R 2018,
version 3.5.1, Vienna, Austria).

3. Results
3.1. Population

Of the 378 BCa and 437 PCa patients who underwent WB-MRI in the study period
(Figure 3), 10 women with BCa and 10 men with PCa met the inclusion criteria. Clinical
and demographic characteristics of the patients are summarized in Table 2.
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Figure 3. Diagram of the patient selection workflow. Of the 815 patients who had undergone
whole-body MRI (WB-MRI) in our institution during the study period, 20 patients, 10 men with
prostate cancer (PCa) and 10 women with breast cancer (BCa), satisfied the inclusion criteria of
having undergone more than one WB-MRI, and being on first-line hormonal therapy.
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Table 2. A summary of clinical and demographical information.

Men with PCa Women with BCa

Patients

Number 10 10
Age at baseline (years) 1 67.4 (51–77) 62.3 (31–76)
No. of skeletal regions with
metastasis 1 3.7 (2–6) 5.0 (3–6)

Type of primary tumour
Prostatic adenocarcinoma 10 0
Invasive ductal breast cancer 0 3
Invasive lobular breast cancer 0 7

No. of patients with
metastasis for each

skeletal region

Skull 0 2
Spine (cervical) 3 9
Spine (thorax) 6 7
Spine (lumbosacral) 8 9
Thorax 7 8
Pelvis 9 10
Limbs 4 7

Other sites of disease

Lymph nodes 60% (6/10) 50% (5/10)
Visceral 0% (0/10) 40% (4/10)
Local disease 50% (5/10) 10% (1/10)
Other (muscles) 0% (0/10) 10% (1/10)

WB-MRI examinations

Observation period 17/01/14–29/05/17 03/09/15–09/11/17
No. baseline/follow-up 10/10 10/10
Days between baseline and
follow-up 1

213.8 (90–373) 197.9 (109–291)

No. with
station-/slice-specific shim

8/12 15/5

WB-MRI = Whole-Body MRI, PCa = Prostate cancer, BCa = Breast cancer, 1 Mean (range).

Follow-up examinations were performed an average 206 days after the baseline
examination (range: 90–373 days). Of the 40 WB-MRI examinations analyzed, 23 were
acquired using station-based shimming (15 BCa and 8 PCa patients), and 17 with slice-
specific shimming (5 BCa and 12 PCa patients).

3.2. Segmentation Settings and Duration

The time between the first and the second reading sessions ranged from three to four
weeks across the four observers. A summary of the settings used, and times required
for evaluation is given in Table S1 (Supplementary Material). Between the observers,
the average b-values used for the computed b-value image ranged from 994 ± 23 to
1057 ± 67 s/mm2, with an overall mean of 1012 s/mm2. The threshold signal intensity for
initial segmentation ranged from 32.5 ± 20.5 to 47.3 ± 41.6 with an overall mean of 41.

The time required to perform a segmentation ranged from 4 to 38 min. For the expe-
rienced observers (Obs 1, Obs 3), the average segmentation time across all examinations
was about 11 min shorter (12 vs. 23 min) and the range of times for individual patients
narrower (4 to 28 min vs. 8 to 38 min) than for the inexperienced observers (Obs 2, Obs 4).
On average, the observers were 2.1 ± 0.4 min faster in the second segmentation session.

3.3. Factors Influencing Segmentation Similarity

Patient sex was significantly associated with mean intra-observer DSC values (p < 0.0001),
which were greater for women with BCa (Figure S1, Supplementary Material). A smaller, but
still significant association was also seen with respect to the shimming technique used (p < 0.01),
with station-based shimming tending to yield a higher DSC. Treatment (baseline vs. follow-up
examination) had no effect (p = 0.81). A moderate positive correlation between DSC and number
of skeletal regions with metastases (ρs = 0.58, p < 0.0001) was also noted.



Diagnostics 2021, 11, 499 8 of 14

3.4. Distribution of Quantitative Parameters Values

In women with BCa, the average Mean_ADC measurement of the four observers was
936.6 ± 101.9 µm2/s at baseline, and 945.4 ± 91.3 µm2/s at follow-up WB-MRI. Similar
values were found in men with PCa, for whom Mean_ADC was 963.5 ± 91.5 µm2/s and
1033.5 ± 84.1 µm2/s at baseline and follow-up, respectively. The Table S2 (Supplementary
Material) shows the distribution of average values, at baseline and follow-up, for the other
quantitative histogram parameters.

3.5. Intra- and Inter-Observer Reproducibility Analysis

Overall, the mean intra-observer DSC value was modest (0.67) but was significantly
higher in women with BCa than in men with PCa (good: 0.78 vs. modest: 0.55, p < 0.0001).

For women with BCa, the intra-observer Bland-Altman bias and limits of agreement
of Mean_ADC were 0.5% (−5.2%, 6.0%) for an average measure of 942.9 µm2/s, and for
men with PCa, they were 0.5% (−9.0%, 9.9%) and 1000.8 µm2/s. No significant correlation
was found between the volume of lesion segmented and the variability of Mean_ADC
in women with BCa (ρs =−0.35, p = 0.13), or in men with PCa (ρs = 0.15, p = 0.50). In
women with BCa, the intra-observer ICC for Mean_ADC showed excellent agreement
(95% CI, 0.90–0.98), while in men with PCa, it was modest to excellent (95% CI, 0.63–0.92).
Across the parameters considered, the intra-observer ICCs tended to be greater, and the
95% confidence intervals narrower, for women with BCa than for men with PCa.

Results of the intra- and inter-observer reproducibility analyses are summarized in
Table 3. Detailed information regarding DSC, Bland Altman bias and limits of agreement
and ICC are reported, respectively, in Tables S3–S5 (Supplementary Material). Neither
intra- nor inter-observer differences in ADC showed relevant dependence on mean ADC
(τb = 0.12 with p = 0.27 and τb = −0.34 with p < 0.01).

Table 3. Summary of observer-dependent reproducibility metrics.

Women with BCa
(n = 20)

Men with PCa
(n = 20)

Intra-observer
DSC mean ± std dev 0.78 ± 0.14 0.55 ± 0.21

BA (Mean_ADC) bias (LoA) 0.5% (−5.2%, 6.0%) 0.5% (−9.0%, 9.9%)
ICC (Mean_ADC) estimate (95% CI) 0.96 (0.90–0.98) 0.82 (0.63–0.92)

Inter-observer
(2nd reading)

DSC mean ± std dev 0.71 ± 0.16 0.40 ± 0.19
BA (Mean_ADC) bias (LoA) 1.2% (−6.0%, 5.1%) 3.3% (−9.9%, 9.6%)
ICC (Mean_ADC) estimate (95% CI) 0.96 (0.91–0.98) 0.79 (0.60–0.91)

BCa = breast cancer, PCa = prostate cancer, DSC = Dice Similarity Coefficient, BA = Bland-Altman, LoA = Limits of
Agreement, ICC = Intraclass Correlation Coefficients, Mean_ADC = mean of apparent diffusion coefficient distri-
bution.

Overall, the mean inter-observer DSC showed modest segmentation similarity (0.52
and 0.55 for first and second reading respectively). The DSC values were significantly
higher in women with BCa (0.67 for the first reading and 0.71 for the second) than in men
with PCa (p < 0.0001), where poor similarity was observed (0.37 and 0.40). Inter-observer
bias and limits of agreement of Mean_ADC in the second reading session for women with
BCa and men with PCa were, respectively, 1.2% (−6.0%, 5.1%) and 3.3% (−9.9%, 9.6%), for
average measures of 941.0 µm2/s and 998.5 µm2/s (Figure 4).
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Figure 4. Bland-Altman plots of inter-observer mean apparent diffusion coefficient (ADC) measures of bone lesions. Each
plot represents the percentage difference between the measures of a pair of observers compared to the average of their
measures in the second reading session. In our cohort, (a) excellent reproducibility was observed in women with breast
cancer, with bias and 95% limits of agreement below ±2.5% and ±8.5%, respectively. (b) Higher variability was observed in
men with prostate cancer, with bias and 95% limits of agreement below ±6% and ±16%, respectively.

In the inter-observer analysis, the lesion volume and variability of Mean_ADC were
not correlated: though a weak negative trend was observed in women with BCa (ρs = −0.42,
p = 0.07), it was not seen in men with PCa (ρs = −0.16, p = 0.49). The inter-observer ICC
for Mean_ADC showed excellent reproducibility in women with BCa (95% CI, 0.91–0.98),
as opposed to the modest to excellent reproducibility obtained in men with PCa (95% CI,
0.60–0.91). The inter-observer ICC analysis of the other histogram statistics showed greater
reproducibility and narrower 95% confidence intervals, for women with BCa than for men
with PCa (Figure 5).
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Figure 5. Graphical representation of the inter-observer Intraclass Correlation Coefficients (ICC) with
lower and upper limits of the 95% confidence intervals calculated for parameters derived from the
apparent diffusion coefficient histogram. The population is divided by sex (blue: men with prostate
cancer, red: women with breast cancer), back-slashes and forward slashes represent the estimated
ICC values for men and women, respectively. For our cohort, the intervals were narrower and ICC
values nearer to 1 in women, indicating greater reproducibility than in men.

4. Discussion

Prior studies have demonstrated the ability of WB-MRI-based ADC measurements
to monitor treatment response in patients with metastatic bone disease [20]. However,
available approaches to segmentation of bone metastases are dependent on radiological
expertise and are too time consuming for realistic clinical use [22]. As a precursor to the
use of WB-MRI in the monitoring of treatment in metastatic disease, we examined the
intra- and inter-observer reproducibility of metastatic bone lesion segmentation and of
the corresponding ADC values obtained using a semi-automated tool for segmenting
dispersed skeletal lesions, by observers with diverse clinical expertise.

Our process starts with segmentation of bone, for which the b-values chosen to provide
optimal contrast between bone marrow and soft tissues on the calculated diffusion weighted
image were close to 1000 s/mm2 across the cohort of patients. Blackledge et al. [25] found
similar b-values yielded simulated images (median: 1070 s/mm2, range: 715–1660 s/mm2)
that were optimal for direct lesion segmentation. Both results point to the optimal b-value
for segmentation being different from that recommended for acquisition in the MET-RADS-
P and MY-RADS guidelines (800 s/mm2) where scan time and contrast to noise must be
accommodated [6,35]. This is not a significant obstacle as the calculation of a higher b-value
image for use in segmentation can readily be obtained via a mono-exponential calculation.

The second step in the segmentation process involved the selection of a threshold
based on the calculated b-value image. Due to a lack of standardization of the MRI signal
intensities, this threshold is likely to depend on acquisition settings, field-strength, and
system hardware. Normalization of the DWI signal intensities by the muscle signal intensity
has been proposed as a strategy for threshold selection that is independent of the diffusion
MRI acquisition settings (e.g., gain settings, b-value gradient, coil and fat-suppression
method) [27].
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The two more experienced observers took an average of 12 min (range 4–28 min)
to complete each segmentation, while the less experienced observers averaged 23 min.
These times compare favourably with the roughly 30 min reported by Blackledge et al. [22],
for segmentation of metastases by experienced observers. Achieving segmentation in
a clinically acceptable time is a key obstacle to be overcome for the use of quantitative
WB-MRI in monitoring treatment response in bone metastases.

In assessing factors that influence segmentation similarity, as indicated by the mean
intra-observer DSC values, we found that patient sex had a particularly strong effect, with
higher DSC values being seen in women with BCa than in men with PCa (0.78 vs. 0.55). We
attribute this difference to hyperintensity of bone marrow on diffusion-weighted images in
women, a feature observed in previous studies [36,37]. If the marrow is hyperintense, the
threshold applied to the high b-value images allows a cleaner separation from other tissues,
and thus requires less manual editing. This makes semi-automatic segmentation of bone
marrow particularly suitable for women, while additional post-processing would be required
in men to achieve matching levels of segmentation similarity [38]. Shimming technique had a
small but significant effect on DSC values. This likely relates to different signal-to-noise ratios
in the diffusion-weighted images due to the difference in shim quality, but has not been found
to result in significant differences in ADC values [26,39]. We have therefore incorporated data
obtained using both shim techniques in this study to evaluate the variability related to the
observers performing the analysis on each image independently.

Taking the inter-observer 95% limits of agreement of Mean_ADC in bone metastases
as representative of observer performance, changes of 6% in women with BCa and 10% in
men with PCa could be considered beyond the observer-related variability. These values
are similar to the 7% reported by Blackledge et al. [20], who used a more time-consuming
approach to segmenting bone metastases. These differences suggest that, with this method,
a better sensitivity to ADC change in metastases can be expected for women with BCa than
for men with PCa.

On top of the observer-related variability documented here, test-retest experimental
variability needs to be considered to establish the magnitude of change in ADC that must
occur before it can be unequivocally detected. Winfield et al. reported that mean ADC
increases of >12% could be considered real changes in repeated experiments [19]. It is
reasonable therefore, to expect that the test-retest variability of WB-MRI for ADC of bone
metastases will be clinically acceptable as the MET-RADS-P and MY-RADS guidelines
indicate that increases in Mean_ADC values induced by therapy should be at least 25%
between baseline and follow-up in case of “likely” response, and at least 40% in case of
“very likely” response [6,35].

Blackledge et al. [20] reported excellent reproducibility not only for mean ADC, but
also for metastatic volume parameters, consistent with the results of Perez-Lopez et al. [23].
While our results were similar for reproducibility of mean and median ADC, reproducibility
of the segmentation volume was lower, yielding poor-modest DSC values. The variability
of the lesion volumes and of the DSC values on the other hand, likely reflects the remaining
subjectivity in the initial segmentation and in the manual elimination of residual soft tissues.
This variability limits the clinical applicability of volume-related measures obtained with
this method, particularly for evaluating men with PCa. Future studies should seek to
reduce the variability of volume among readers while improving the repeatability of
disease segmentation. The relative immunity of the ADC values in the face of variable
lesion volume, suggests that the use of the thresholds for isolating the metastases imposes
a degree of robustness in terms of ADC values, making this parameter an interesting
complementary tool to radiological evaluation.

The small sample size and single center nature of our study are limitations that
may restrict generalizability to our work. In addition, there was no ground truth for
the segmentation of metastases (e.g., manual segmentation performed by a radiologist
experienced in WB-MRI), and consequently we cannot comment on segmentation accuracy.
Furthermore, we have addressed only the issues of intra and inter-observer reproducibility.
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Having found robust ADC value extraction, it is reasonable to pursue a test-retest study
to establish the magnitude of change that can be detected with confidence. Finally, two
different shimming techniques (station- and slice-specific) were used during the observation
period: other studies have found the difference in ADC values between these techniques to
be small, but their inclusion may have inflated the observer-related variability.

5. Conclusions

While scope remains for improving the consistency of the volume of bone metas-
tases segmented, the segmentation method evaluated in this study demonstrates good
to excellent levels of intra- and inter-observer reproducibility in measuring mean ADC,
particularly for women with BCa. Noting that, according to MET-RADS-P and MY-RADS
guidelines, the cut-off for clinically meaningful changes in mean ADC in patients who
respond to therapy is at least 25%, the observer-dependent variability with the proposed
approach is acceptable. Although observer-dependent variability was greater in men with
PCa, the technique is likely to still be adequate for detecting responses to therapy at higher
mean ADC change thresholds.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-441
8/11/3/499/s1, Figure S1: Effect of sex, treatment status, and shimming technique on Dice Similarity
Coefficients (DSC), Table S1: Segmentation settings and duration, Table S2: Distribution descriptors
of parameters measured in the second reading, Table S3: Summary tables of intra-observer (on-
diagonal) and inter-observer (off-diagonal) mean Dice Similarity Coefficients (DSC) by reading,
Table S4: Summary of intra- and inter- observer Bland-Altman analysis results (bias and limits of
agreement) for mean apparent diffusion coefficient (ADC) as percentages of the mean of the measures,
Table S5 Intra- and inter-observer Intra-class Correlation Coefficients (ICC).
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