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Translation elongation is a key step of protein synthesis, during which the nascent
polypeptide chain extends by one amino acid residue during one elongation cycle.
More and more data revealed that the elongation is a key regulatory node for
translational control in health and disease. During elongation, elongation factor Tu (EF-
Tu, eEF1A in eukaryotes) is used to deliver aminoacyl-tRNA (aa-tRNA) to the A-site of the
ribosome, and elongation factor G (EF-G, EF2 in eukaryotes and archaea) is used to
facilitate the translocation of the tRNA2-mRNA complex on the ribosome. Other elongation
factors, such as EF-Ts/eEF1B, EF-P/eIF5A, EF4, eEF3, SelB/EFsec, TetO/Tet(M), RelA
and BipA, have been found to affect the overall rate of elongation. Here, we made a
systematic review on the canonical and non-canonical functions and regulation of these
elongation factors. In particular, we discussed the close link between translational factors
and human diseases, and clarified how post-translational modifications control the activity
of translational factors in tumors.
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INTRODUCTION

With the development of structural biology, especially the rapid development of cryo-electron
microscopy (cryo-EM) (Benjin and Ling, 2019), the mechanism of intracellular protein translation
and its regulation have been gradually clarified. As described by the central dogma, translation is the
final stage of gene expression, during which the genetic information carried by an mRNA is
transformed into the amino acid sequence of a protein catalyzed by a ribosome (Voorhees and
Ramakrishnan, 2013). Translation is a highly dynamic and cyclic process, which is composed of four
steps: initiation, elongation, termination, and ribosome recycling (Figure 1). During translation
initiation, the ribosome, with an initiator fMet-tRNAfMet in the P-site, is assembled on mRNA with
the assistance of the three initiation factors (IF1-3). The ribosome complex is then ready to accept the
first elongator tRNA and form the first peptide bond, which marks the beginning of the next stage,
elongation. During elongation, an aa-tRNA enters the ribosome A-site with the help of EF-Tu. If
proper base-pairing between the three bases of the mRNA codon and those of the aa-tRNA
anticodon is established, the aa-tRNA is cognate, a peptide bond is formed with the peptide attached
to the tRNA in the P-site. The peptidyl-tRNA is then moved from the A-to the P-site, and the
deacylated tRNA in the P-site is moved to the E-site. The mRNA is coordinately translocated by one
codon. Termination occurs when the ribosome reaches a terminator codon in an mRNA. The
nascent peptide is hydrolyzed by the release factors (RF1/2) and dissociated from the ribosome. In
the end, the ribosome is split into two subunits by the concerted action of EF-G and RRF, releasing
the deacylated tRNA andmRNA, and preparing for a new round of translation initiation. This step is
called ribosome recycling.
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Translation elongation is a process of repeated decoding,
peptidyl transfer and tRNA2-mRNA translocation. It starts
with the binding of the second aminoacyl-tRNA at the A-site.
During elongation, an aa-tRNA is delivered to the ribosome as a
ternary complex (TC) with elongation factor Tu (EF-Tu) and
GTP (EF-Tu·GTP·aa-tRNA). Binding of cognate aa-tRNA to
mRNA in the A site of the ribosome induces the crucial and
generally conserved bases A1493, A1492 and G530 to flip out and
interact with the minor groove of the mRNA-tRNA duplex
(Schmeing and Ramakrishnan, 2009), which further induces a
domain closure in the 30S subunit (Ogle et al., 2002). 30S domain
closure makes the 30S shoulder towards the ternary complex
(Ogle and Ramakrishnan, 2005), leading to the stimulation of the
GTP hydrolysis by EF-Tu and acceleration of tRNA selection.
After decoding, EF-Tu dissociates from ribosome in the form of
EF-Tu·GDP, followed by the complete accommodation of aa-
tRNA into the A-site. EF-Tu·GDP is recycled to EF-Tu·GTP by
EF-Ts, a guanosine nucleotide-exchange factor, so as to
participate in multiple rounds of peptide chain elongation.
The next step is peptidyl transfer and peptide bond formation,
which is catalyzed by the peptidyl transfer center (PTC) of the
ribosome. During this stage, the nucleophilic α-amino group of
the aa-tRNA in the A-site attacks the carbonyl carbon of the
peptidyl-tRNA in the P-site, yielding a pre-translocation (PRE)
ribosome complex with a deacylated tRNA in the P-site and a
new, one residue longer peptidyl-tRNA in the A-site (Beringer
and Rodnina, 2007). The third stage is EF-G·GTP (eEF2·GTP in
eukaryotes) catalyzed translocation. Upon the addition of EF-G
into the pre-translocational ribosome (PRE) system, EF-G in
complexed with GTP facilitates movements of peptidyl-tRNA on
the 50S subunit, and shifts the classical pre-translocation state to
the hybrid state (Holtkamp et al., 2014a; Xie, 2016). And GTP

hydrolysis induces a strong conformational change of 30S subunit
within the 70S ribosome, allowing the movement of tRNA2-
mRNA by one codon length inside the ribosome, shifting the
tRNAs from A- and P-sites to P- and E-sites, respectively,
resulting in a post-translocational ribosome (POST) (Figure 2).

There is a complex set of protein factors including EF-Tu/
eEF1A, EF-G/eEF2, EF-P/eIF5A, and SelB/EFsec (Table 1),
involved in translation elongation. Although the fundamental
mechanism of the elongation cycle is very similar among three
domains of life, the molecular mechanism of the elongation
factors varies in different species. In the following, we will
introduce in more detail the functions and regulation of the
most important and well-studied canonical and non-canonical
translation elongation factors that function in different stages of
the elongation cycles of bacteria, archaea, and eukaryotes as well
as that of organelles, including mitochondria.

FACTORS INVOLVED IN AA-TRNA
INCORPORATION

EF-Tu and EF-Ts
EF-Tu is encoded by two genes tufA and tufB in E. coli (Jaskunas
et al., 1975), T. thermophilus (Satoh et al., 1991) and S.
typhimurium (Hughes, 1990). It is a universally conserved
GTPase in all species (Caldon and March, 2003). During
translation elongation, EF-Tu·GTP transports aa-tRNA to the
ribosome A-site in the form of the ternary complex
(Ramakrishnan, 2002). Upon binding of the ternary complex
to the ribosome, proper base pairing between the anticodon of aa-
tRNA and the mRNA codon within the 30S subunit decoding
region stimulates EF-Tu to hydrolyze GTP. After the hydrolysis

FIGURE 1 |Overview of bacterial translation cycle. aa-tRNA, aminoacyl-tRNA; EF, elongation factor; IF, initiation factor; RF, release factor; RRF, ribosome recycling
factor.

Frontiers in Molecular Biosciences | www.frontiersin.org January 2022 | Volume 8 | Article 8163982

Xu et al. Translation Elongation Factors

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


of GTP, the conformational change following the GTP hydrolysis
to GDP and a leaving phosphate group (Pi) leads to the
dissociation of EF-Tu from the ribosome and accommodation
of the aa-tRNA on the A-site for a peptidyl transfer (Rodnina
et al., 2005). The growing peptide chain extends by one amino
acid under the catalysis of the ribosome. Recycling of EF-Tu·GDP
to EF-Tu·GTP depends on EF-Ts, another elongation factor
encoded by the tsf gene (Wang et al., 1997). EF-Tu can be
reversibly phosphorylated on its serine and threonine residues,
and this modification has been founded in multiple organisms
including E. coli (Lippmann et al., 1993), Listeria monocytogenes
(Archambaud et al., 2005), Thermus thermophilus (Lippmann
et al., 1993), Streptococcus pneumoniae (Sun et al., 2010), Bacillus
subtilis (Lévine et al., 2006), Corynebacterium glutamicum (Bendt
et al., 2003), Mycoplasma pneumoniae (Schmidl et al., 2010),
Mycobacterium tuberculosis (Sajid et al., 2011), and Streptomyces
collinus (Mikulík and Zhulanova, 1995). Phosphorylation inhibits
the GTPase activity of EF-Tu and prevents its dissociation from
the ribosome (Pereira et al., 2015). Phosphorylated EF-Tu could
not bind with aa-tRNA or kirromycin (Hughes, 2013). It has been
reported that phosphorylation of EF-Tu plays a vital role in
bacterial dormancy, sporogenesis, virulence, and stress tolerance
(Archambaud et al., 2005; Holub et al., 2007; Misra et al., 2011;
Pereira et al., 2015). The exact physiological significance of EF-Tu

phosphorylation is still need to be clarified while phosphorylation
of EF1A in eukaryotes has been shown to be involved in
maintaining a proper elongation rate under various conditions
(Hughes, 2013).

eEF1A and eEF1B
The GTPase eEF1A, the homolog of EF-Tu in bacteria, is one of
the most widely expressed factors in eukaryotes (Schuller and
Green, 2018). Human eEF1A has 33% sequence identity with
bacterial EF-Tu (Cavallius et al., 1993). Similar to EF-Tu, another
guanine nucleotide-exchange factor eEF1B is required to
regenerate active eEF1A·GTP (Gromadski et al., 2007). In
lower eukaryotes, eEF1B contains a guanine nucleotide
exchange subunit eEF1Bα and a structural subunit eEF1Bγ,
while higher eukaryotes have another guanine nucleotide
exchange subunit eEF1Bδ (plants) or eIF1Bβ (mammals). The
mechanism of guanine-nucleotide exchange employed by eEF1B
is very different from that of EF-Ts (Rodnina and Wintermeyer,
2009). Upon binding of EF-Ts to EF-Tu, the switch I region of EF-
Tu is displaced by the C-terminal helix of EF-Ts. The switch II
region is moved upon binding due to pushing by subdomain N.
Altogether, these changes disrupt the coordination of the Mg2+

ion, leading to the dissociation of GDP. In contrast, eEF1Bα
interacts with domains 1 and 2 of eEF1A, disrupting the binding

FIGURE 2 | Schematic of the bacterial elongation cycle. EF-Tu delivers aa-tRNA to the A-site of the ribosome, where the ribosome decodes for the cognate tRNA.
After aa-tRNA is fully accommodated and peptide bond formation, EF-G facilitates translocation of the tRNA2-mRNA duplex, then the next round of elongation begins.

TABLE1 | Translation elongation factors among bacteria, archaea, eukaryotes and mitochondria.

Species aa-tRNA incorporation tRNA translocation Other translation elongation factors

Bacteria EF-Tu EF-Ts SelB EF-G EF4 EF-P — Tet(O)/(M) RelA BipA

Archaea aEF1A — — aEF2 — aIF5A — — — —

Eukaryotes eEF1A eEF1B EFsec eEF2 mtEF4 eIF5A eEF3 — — —

Mitochondria mtEF-Tu mtEF-Ts — mtEF-G1 mtEF4 — — — — —

None.
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pocket for Mg2+ and preventing the binding of the GDP to
eEF1A.

In humans, there are two eEF1A homologues, named eEF1A1
and eEF1A2 (coded by two genes: EEF1A1 and EEF1A2). The
sequences of eEF1A1 and eEF1A2 have 98% similarity and 92%
identity, but the expression patterns of the two proteins are
different (Tomlinson et al., 2005). eEF1A1 is ubiquitously
expressed, whereas the expression of eEF1A2 is switched-on in
adult life in specialized tissues such as skeletal muscle, cardio-
myocytes and neurons (Lee and Surh, 2009). Overexpression of
eEF1A2 has been reported to be linked with a variety of tumors
(Lee and Surh, 2009), and mutations in EEF1A2 are related to a
new type of epilepsy syndrome and intellectual disability (Inui
et al., 2016; Lam et al., 2016). In addition to its canonical
functions in transporting aa-tRNA to the ribosome, eEF1A is
found to be involved in cellular activities such as regulation of
cytoskeleton organization (Mateyak and Kinzy, 2010), protein
degradation mediated by the proteasome (Mateyak and Kinzy,
2010), viral replication and propagation (Li et al., 2009), nuclear
protein export (Khacho et al., 2008), signaling transduction
pathway concerning apoptosis and oncogenesis (Schulz et al.,
2014; Abbas et al., 2015) (Figure 3). eEF1A1 also plays an
important role in the process of heat shock stress response
(Vera et al., 2014). Single-cell transcriptomic analysis revealed
that the expression level of eEF1A1 in neurons was low and
changed with age in glial cells (Ximerakis et al., 2019). Therefore,
eEF1A may represent a potential candidate for lifespan
modulation (Skariah and Todd, 2020). In addition, eEF1A,
along with eEF2, has been shown to be related to
neurodegenerative disorders including Alzheimer disease (AD)
and Parkinson disease (PD) with an unknown mechanism. The

low expression levels of these factors in the brains of AD and PD
patients indicating defects in the efficiency or fidelity of
translation (Li et al., 2005; Vera et al., 2014; Garcia-Esparcia
et al., 2015; Beckelman et al., 2016; Skariah and Todd, 2020).
eEF1A has chaperone-like activity (Lukash et al., 2004) and may
also be involved in antiviral response by interaction with Sgt1, a
multifunctional protein (Novosylna et al., 2015).

Humans and yeast eEF1A are subjected to extensive
methylation modifications at multiple conserved lysine
residues (Hamey and Wilkins, 2018; Jakobsson et al., 2018;
Robichaud et al., 2019). Methylation modification is the
addition of 1∼3 (me1-me3) methyl groups to the side chains
of lysine residues. Up to now, several methylation sites and
corresponding methyltransferases of eEF1A have been
identified in humans and yeasts. For example, human
N6AMT2 (eEF1A-KMT1), METTL10 (eEF1A-KMT2),
METTL21B (eEF1A-KMT3), and eEF1A-KMT4 (gene name
EEF1AKMT4), which methylate eEF1A at K79 (me3), K318
(me3), K165 (me1/me2/me3), and K36 (me3), respectively
(Shimazu et al., 2014; Hamey et al., 2016; Jakobsson et al.,
2017; Malecki et al., 2017); In addition, two other methylation
sites (N terminus and K55) have been reported in human cells,
but the enzymes responsible for N-terminal trimethylation and
K55 dimethylation in human eEF1A still need to be identified
(Hamey et al., 2017). Saccharomyces cerevisiae Efm1, Efm4, Efm5,
Efm6, and Efm7, which methylate eEF1A at K30 (me1), K316
(me2), K79 (me3), K390 (me1), and N-terminal (me3) and K3
(partially me1 and me2) respectively (Lipson et al., 2010; Dzialo
et al., 2014; Jakobsson et al., 2015; Hamey et al., 2016). The
abundant lysine methylations of eEF1A and the existence of
multiple corresponding methyltransferases in various

FIGURE 3 | Canonical and non-canonical functions of eEF1A. In addition to its canonical functions in transporting aa-tRNA, eEF1A is also involved in cytoskeleton
organization, protein degradation, viral replication and propagation, nuclear protein export, heat shock stress response, and signaling transduction pathway concerning
apoptosis and oncogenesis.
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eukaryotes made it clear that the lysine methylation of eEF1A has
important physiological significance. In METTL21B knockout
(KO) human cells, the expression of proteins involved in
cytoskeleton organization was downregulated, while the
expression of proteins related to large ribosomal subunit
biogenesis, mRNA turnover and rRNA processing were
upregulated (Hamey et al., 2017). Moreover, mammalian
METTL21B was found to be partially localized in the
centrosome, which may reveal a non-canonical function for
this protein (Malecki et al., 2017). In EEF1AKMT4 KO cells,
the global translation is changed and the translation speed of
codons for histidine (H), tryptophan (W), and asparagine (N)
was altered compared with wild-type cells (Jakobsson et al., 2017).
In EEF1AKMT1 KO cells, the expression of proteins related to
tRNA aminoacylation and nuclear exosome were downregulated,
while the expression of proteins related to ubiquitination
regulation and small-subunit processome were upregulated
(Hamey et al., 2017). Even though the physiological function
of K318 methylation of eEF1A has not been clarified in
mammalian, perhaps it can be speculated that K318
methylation may affect the replication of RNA virus and the
migration of neural crest based on the highly conservative of this
site between human and yeast (Shimazu et al., 2014). In yeast,
Efm4 is involved in vesicle transport processes including
secretory protein production, transfection and endocytosis
(Martín-Granados et al., 2008). Efm4 is also play a vital role
in Tombusvirus replication (Li et al., 2014). Similarly, the gene of
EFM5 was shown to be crucial for virus replication in yeast
(Kushner et al., 2003). In S. cerevisiae, EFM7 KO leads to
decreased replicative lifespan (Anderson et al., 2003), which
results from altered translation rate (Pan et al., 2007).
Methylation of eEF1A by Efm6 occurs in its domain III,
which is involved in protein translation and cytoskeleton
organization (Gross and Kinzy, 2005; Liu et al., 2006). Finally,
even though the five methyltransferases of eEF1A in S. cerevisiae
are not absolutely necessary to its viability, the precise regulation
of eEF1A function by distinct methyltransferases optimizes the
cell physiology (White et al., 2019). Besides methylation, the
lysine residues of eEF1A are also modified by acetylation,
sumoylation and ubiquitination, as well as phosphorylation of
tyrosine, threonine and serine residues (Hornbeck et al., 2012).

mtEF-Tu and mtEF-Ts
Eukaryotic cells, including those in animals and fungi, contain
two translation systems, one in the cytosol and the other in the
mitochondria. Mitochondria use their own translational system
to synthesize proteins for respiratory chain complexes. mtEFs
(mitochondrial translation elongation factors) are coded by the
nuclear genome, synthesized and transported into mitochondria.
These factors are more similar to their counterparts in bacteria
than those from the cytoplasm of eukaryotes. Genes encoding
mtEFs such as TUFM (mtEF-Tu), TFSM (mtEF-Ts), and
GFM1(mtEF-G1), have been reported with mutations in cases
causing down regulation of mitochondrial translation and early
fatality (Hughes, 2013).

mtEF-Tu consists of 409 amino acids, and is 55∼60% identical
to the homologous protein from bacteria. It was found that

mtEF-Tu folded into three main domains similar to EF-Tu.
One of the main differences is that the C-terminal of mtEF-Tu
has an 11 amino acids extension, which may interact with aa-
tRNA (Jeppesen et al., 2005). Early studies showed that, mtEF-Tu
was compatible with E. coli aa-tRNAs, whereas E. coli EF-Tu was
unable to catalyze polypeptide chain elongation when supplied
with mitochondrial aa-tRNAs (Kumazawa et al., 1991). This is
probably due to the incorrect positioning of the shorter
mitochondrial aa-tRNAs on the ribosome by bacterial EF-Tu,
which leads to the ineffective stimulation of the GTPase activity of
EF-Tu (Christian and Spremulli, 2012). Unlike EF-Tu, the
bacterial and mitochondrial EF-Ts show low (25∼30%)
sequence conservation. The most widely studied form of
mtEF-Ts comes from B. taurus. It consists of 283 amino acids,
with a mitochondrial import signal about 55 residues reside in the
N-terminal of the mature protein (Xin et al., 1995).

SelB
Selenocysteine (Sec) is a cysteine (Cys) residue analogue with a
selenium-containing selenol group in place of the sulfur-
containing thiol group in Cys. The selenium atom gives Sec
quite different properties from Cys. Sec utilization is scattered
across archaea (Mariotti et al., 2016) and bacteria (Zhang et al.,
2006). In eukaryotes, selenoproteins exist in some algae and
protozoa (Lobanov et al., 2009; Mariotti et al., 2015), and
most metazoans (Mariotti et al., 2012). Recently, Mariotti et al.
(2019) provided evidence for Sec usage in early-branching fungal
phyla. In mammals, Sec exists in enzymes associated with ROS
detoxification and hormone biosynthesis. It plays a vital role in
many biological processes including development, reproduction,
immune response, tumorigenesis, viral infections and
cardiovascular diseases (Carlson et al., 2006). The terminator
codon UGA behaves as the codon of Sec when the downstream of
UGA possesses a selenocysteine insertion sequence (Ose et al.,
2007). During the translation of selenoproteins such as
glutathione peroxidase and bacterial formate dehydrogenase,
SelB, a unique protein factor, is needed to deliver
selenocysteinyl-tRNASec containing a UCA anticodon to the
ribosome A-site to recognize UGA codon in proper position
of an mRNA (Böck et al., 1991). Incorporation of Sec is governed
by a unique mRNA hairpin that located 3′ near the Sec codon
(Yoshizawa et al., 2005). This hairpin structure associates with the
corresponding ternary complex that is composed of SelB, Sec-
specific aa-tRNA and GTP (Yoshizawa et al., 2005). It is assumed
that by this mechanism selenocysteinyl-tRNASec is delivered to
the ribosome.

FACTORS INVOLVED IN RIBOSOME
TRANSLOCATION

EF-G
EF-G, which is the third most conserved trGTPase among all
domains of life (Caldon and March, 2003), catalyzes the
translocation of A-site peptidyl-tRNA and P-site deacylated
tRNA to the P- and E-site, respectively (Ramakrishnan, 2002).
Translocation of tRNA2-mRNA during translation elongation is
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associated with EF-G triggered GTP hydrolysis and a series of
conformational changes of the ribosomes (Savelsbergh et al.,
2005). Recently, Holtkamp et al. (2014b) concluded that EF-G
integrates the energy regimes of a motor protein and a GTPase,
and promotes tRNA motion through the combined use of power
stroke and Brownian ratchet mechanisms. After GTP hydrolysis,
EF-G departs from the ribosome in the form of EF-G·GDP. EF-G
is the only canonical trGTPase that functions at two distinct
phases in bacterial translation (Ero et al., 2016). In addition to
facilitating translocation in elongation, it also plays an essential
role in ribosome recycling, during which EF-G·GTP works
together with RRF to split the post-termination complex
(PoTC) into two subunits (Song et al., 2020).

The GTPase activity of EF-G involves two hydrophobic amino
acids Ile61 and Ile19 (E. coli numbers), which facilitate
approaching of His92 to GTP by forming an opened
hydrophobic gate. The water molecule promoted by His92
attacks the γ phosphate of GTP, resulting in an active state of
the GTPase center (Yamamoto et al., 2014). EF-G is extensively
modified by reversible phosphorylation. An early study reported
that E. coli EF-G can be phosphorylated by a serine/threonine
specific protein kinase (gp 0.7 PK) encoded by the T7 early gene
0.7 (Robertson et al., 1994). This gene was expressed early
following T7 infection, leading to rapid shutdown of host
RNAP at 4 min after infection, and soon thereafter, most
protein synthesis began to turn off gradually. Which
established favorable conditions for T7 phage growth
(McAllister and Barrett, 1977). And this modification may
help to increase the translation elongation rate of T7 late
genes that specify T7 virion assembly and structural proteins
(Robertson et al., 1994). Another in vivo and in vitro study in B.
subtilis showed that EF-G can be phosphorylated on at least one
threonine residue by a membrane Ser/Thr kinase PrkC and
dephosphorylated by phosphatase PrpC, and the dynamic
control of EF-G phosphorylation may play a regulatory role in
stationary-phase B. subtilis (Gaidenko et al., 2002). Later, Shah
and Dworkin (2010) proved that phosphorylation of EF-G by
PrkC in B. subtilis is in response to cell wall-derived
muropeptides. E. coli EF-G can also be modified at the lysine
residue essential for GTP binding by pyridoxal phosphate (PLP),
a selective, site-specific lysine reagent, leading to progressive loss
of the EF-G activity, and destruction of its interaction with 30S
subunits as well as a conformational change required for GTP
hydrolysis (Giovane et al., 1982). Although these effects have been
more widely studied, the physiological significance of
phosphorylated EF-G still needs to be elucidated (Hughes, 2013).

eEF2
eEF2 is the eukaryotic homolog of EF-G. When cells are starved
of nutrients, eEF2 is phosphorylated by the Ca2+-activated kinase
eEF2K, resulting in a lower binding affinity to the ribosome
(Carlberg et al., 1990). The activity of eEF2K is regulated by
nutrients through mTORC1 and AMPK (Kenney et al., 2014;
Proud, 2019). During translation elongation, the active eEF2K
can reduce termination read-through errors and codon-
anticodon mismatches, and promote more accurate
recognition of the start codon by reducing initiation at the

near-AUG codons (Xie et al., 2019). Interestingly, despite the
major role of eEF2’s phosphorylation in blocking whole protein
translation, its phosphorylation in neurons is associated with
elevated translation of Arc/Arg3.1 which plays a key role in
postsynaptic endocytosis (Park et al., 2008).

Diphthamide is another conserved modification in archaeal
and eukaryal eEF2, where a conserved histidine (H715 in
mammals; H699 in S. cerevisiae) at the eEF2 domain IV is
modified with diphthamide (Su et al., 2013; Schaffrath et al.,
2014). In eukaryotes, this modification event occurs through a
four-step pathway involving multiple proteins including Dph1-
Dph7 (Versées, 2015). Dph1/Dph2 is a [4Fe-4S] cluster-
containing heterodimeric protein complex, which is
responsible for catalyzing the first step of this modification
pathway. In S. cerevisiae, the highly conserved proteins Dph3
(or Kti11) and Kti13 form a heterodimer, which is involved in
eEF2 modification by acting as an electron donor for the Dph1/
Dph2 complex (Dong et al., 2014; Glatt et al., 2015).With the help
of Dph4/5/6/7, the diphthamide group was finally added to eEF2.
Moreover, Kti13 was reported to specifically binding with PIP2
(Di Paolo and De Camilli, 2006), which might contribute to the
regulation of the downstream eEF2 modification pathway
(Figure 4). Lack of the diphthamide modification is fatal to
mice due to severe developmental defects (Yu et al., 2014). It
is worth noting that yeast lacking Dph1, an enzyme needed for
diphthamide synthesis, grew normally, indicating that
diphthamide likely functions in translation fidelity but not a
basic mechanism of translation (Dever et al., 2018). Besides, some
mammalian cells can survive in the absence of diphthamide
(Stahl et al., 2015). However, related studies (Liu et al., 2012)
had shown that lacking diphthamide modification results in an
increase in the level of programmed -1 ribosomal frameshifting.
Considering its location in eEF2, it is reasonable to speculate that
diphthamide may enhance the eEF2 function by contacting with
RNA in the ribosomal decoding center, thus facilitating the
ribosomal translocation fidelity (Dever and Green, 2012).

Diphthamide of eEF2 can be further ADP-ribosylated by
diphtheria and cholera toxins, which catalyze the transfer of
ADP-ribose from nicotinamide adenine dinucleotide (NAD+)
to the diphthamide imidazole ring to yield ADP ribosyl
diphthamide (Argüelles et al., 2014). ADP-ribosylation
inactivates eEF2, hinders protein translation and damages cell
growth (Mateyak and Kinzy, 2013). Recently, it has been reported
that cells possess intrinsic abilities to modify the diphthamide
group by ADP-ribosylation, and this ability will improve under
certain stress conditions, causing the overall down-regulation of
protein synthesis at the cost of an increased translation of IRES-
containing mRNA that involved in the response of oxidative
stresses (Argüelles et al., 2014). However, the molecular
mechanism of how ADP-ribosylation impairs the function of
eEF2 has not been fully elucidated (Mateyak and Kinzy, 2013).

mtEF-G1 and mtEF-G2
In human mitochondria, the dual function of bacterial EF-G is
fulfilled by mtEF-G1 and mtEF-G2 (Tsuboi et al., 2009; Christian
and Spremulli, 2012). During mitochondrial translation
elongation, ribosome translocation was catalyzed by mtEF-G1.
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Previous studies revealed that mtEF-G1 has a strong tolerance to
fusidic acid, an antibiotic that inhibits EF-G release from the
ribosome without influencing on GTP hydrolysis and
translocation (Gao et al., 2009; Savelsbergh et al., 2009), while
the tolerance mechanism of mtEF-G1 to fusidic acid remains to
be understood (Christian and Spremulli, 2012). mtEF-G1 is active
not only with 55S mammalian mitochondrial ribosome but also
with 70S bacterial ribosome. In contrast, E. coli EF-G can’t work
with mitochondrial ribosomes (Chung and Spremulli, 1990).
mtEF-G2 mediates ribosome recycling in concert with human
mitochondrial RRF after termination (Achenbach and Nierhaus,
2015). However, it should be noted that overexpression of mtEF-
G2 can improve the translation of respiratory chain complexes
slightly in cells with mtEF-G1 mutation, indicating that mtEF-G2
perhaps plays a part in the translation elongation (Coenen et al.,
2004). Unlike ribosome recycling in bacteria, mtEF-G2 catalyzed
GTP hydrolysis is not essential for ribosome dissociation. Rather,
it seems to be necessary for the dissociation of mtRRF and mtEF-
G2 from ribosomes. Since mtEF-G2 represents a type of trGTPase
participating in ribosome recycling, it has been proposed to
rename this factor as mitochondrial ribosome recycling factor
2 (mtRRF2) (Tsuboi et al., 2009).

OTHER ELONGATION FACTORS

EF4
EF4 (LepA) was originally identified in E. coli in 1985 (March and
Inouye, 1985). The high conservation of EF4 in bacteria suggests
its functional importance (Margus et al., 2007). Nierhaus and co-
workers reported that cell membranes behave as EF4 reservoir
pool, releasing it to the cytoplasm under certain conditions such
as elevated intracellular Mg2+ concentrations or low temperature,
leading to an increased rate of translation and efficient folding of
newly synthesized peptides (Pech et al., 2011; Yamamoto et al.,
2014). Functional studies showed that EF4 knockout affects
bacterial growth under conditions of high Mg2+ concentration

(Pech et al., 2011) or low pH (Yang et al., 2014). In S. cerevisiae,
lacking EF4 (Guf1) results in growth defects under conditions of
starvation and low temperature, and decreased expression of
cytochrome oxidase (Bauerschmitt et al., 2008). Besides, EF4
knockout E. coli cells showed a decreased translation rate and
slow ribosome maturation at unfavorable conditions (Yang et al.,
2014). Overexpression of EF4 in E. coli seriously affects the
growth of cells (Qin et al., 2006), while EF4 knockout cells
showed no obvious phenotype under culture conditions of rich
LB medium (Shoji et al., 2010). Therefore, EF4 may contribute to
the cell survival under adverse conditions, but the physiological
role of the protein remains unclear.

A previous study proposed that EF4 acts as a ‘back-translocase’
that has a unique property of recognizing ribosomes with
mistranslocated tRNAs and back-translocating them via GTP
hydrolysis during elongation cycle (Qin et al., 2006). However,
several subsequent studies could not confirm that EF4 did have
this biochemical activity (Liu et al., 2010; Balakrishnan et al.,
2014; Gibbs and Fredrick, 2018). Cooperman and coworkers have
done the most detailed biochemical characterization of EF4,
studying its effect on both PRE and POST state complexes
(Liu et al., 2010; Liu et al., 2011). They found that the
addition of EF4 to POST can promote movement of tRNA
with respect to the 50S subunit but does not catalyze back-
translocation. Notably, Cooperman also showed that the EF4
preferentially engages the PRE complex, and competes with EF-G
rather than EF-Tu ternary complex to influence elongation. In
vitro kinetic measurements showed that EF4-dependent back
translocation proceeds through a four-stage kinetic route
(POST→I1→I2→I3→PRE), not just a reversal of translocation
but exist three intermediate states, and the rate of reverse codon-
anticodon movement observed in the presence of EF4 is virtually
identical to that seen in its absence (Liu et al., 2010), in line with
the independent work led by Fredrick and coworkers, whose
ribosome profiling results revealed that EF4 contributes mainly to
the initiation phase of translation in E. coli (Balakrishnan et al.,
2014). This is consistent with a recent physiological study

FIGURE 4 | Schematic of the diphtamide modification of eEF2. The first step in this modification pathway is catalyzed by [4Fe-4S] cluster-containing protein
complex Dph1/Dph2; with the help of Dph4/5/6/7. Dph3/Kti13 heterodimer act as electron donor for Dph1/Dph2 complex. It has been reported that diphtamide group of
EF2 can further be ADP-ribosylated by the bacterial diphtheria toxin, leading to a global inhibition of protein synthesis as well as an upregulated translation of mRNAs
associated with oxidative stress response.
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suggesting EF4 contributes to biogenesis of the 30S subunit,
immature 30S particles will accumulate in cells lacking EF4
(Gibbs et al., 2017).

In summary, although the major role of EF4 is to facilitate
bacteria in response to some stresses and affect protein
synthesis in general, still some important issues concerning
EF4 need to be resolved: What is the mechanism of EF4 release
from the membrane into the cytoplasm? What is the real
physiological substrate of EF4? How to reasonably explain
the contradiction between the high conservation of EF4 and
the obvious lack of phenotype in its deletion mutants
(Figure 5)?

mtEF4
mtEF4 is the homologue of bacterial EF4 in eukaryotic
mitochondria. It consists of 651 residues with a
mitochondrial-targeting signal in their N termini (Gao et al.,
2016). mtEF4 is located in the mitochondrial matrix, close to the
inner membrane (Bauerschmitt et al., 2008). mtEF4 binds to the
ribosome in a GTP-dependent manner which is similar to that of
bacterial EF4. It promotes the translation of mitochondrial
proteins under non optimal conditions (Bauerschmitt et al.,
2008). mtEF4 also plays a quality control role in the
biogenesis of mitochondrial respiratory chain complexes.
Previous studies showed that mtEF4 knockout induces
respiratory chain defects as well as apoptosis, whereas
overexpression of the protein stimulates cancer development
(Zhu et al., 2018). mtEF4 ablation in mice results in testis-
specific disorder of oxidative phosphorylation, and its deletion
facilitated mitochondrial protein translation in the expense of
synthesis unstable proteins (Gao et al., 2016). Increased
expression of mtEF4 in multiple cancers suggested that mtEF4
probably facilitates tumorigenesis through an unbalanced
regulation of mitochondrial activities and cellular redox (Zhu

et al., 2018). Therefore, the proper level of mtEF4 in cell is
requisite for the assembly of functional respiratory chain
complexes as well as mitochondrial protein synthesis.

EF-P and eIF5A
Bacterial EF-P (elongation factor P) is a homolog of eukaryotic
and archaeal initiation factor 5A(e/aIF5A) (Kyrpides and Woese,
1998). It binds to the interface of the ribosome subunits and
facilitates peptide bond formation through interactions with the
P-site tRNA (Glick and Ganoza, 1975; Blaha et al., 2009). efp, the
coding gene of EF-P, has been found throughout the bacteria
(Hughes, 2013). It was reported that EF-P participates in the
regulation of cell viability, growth, motility, virulence (Ude,
2013), and tolerance to multiple stresses including several
classes of antibiotics, detergents, nutrient-limiting conditions
and diverse growth inhibitors (Navarre et al., 2010; Zou et al.,
2012). The ribosome needs the help of EF-P when successive
prolines are incorporated into the nascent peptide chain
(Rodnina, 2018). Without EF-P, the ribosome would stagnate
at polyproline stretches, while the addition of EF-P could
alleviate the translation stalling (Doerfel et al., 2013). EF-P is
often subject to post-translational modification by PoxA
catalyzed adding of a (R)-β-lysine to Lys34 (termed
lysinylation) in bacteria like E. coli (Peil et al., 2012), S.
enterica (Hersch et al., 2013) and S. typhimurium (Navarre
et al., 2010; Zou et al., 2011), which could improve the catalytic
activity of EF-P both in vitro and in vivo (Navarre et al., 2010;
Park et al., 2012). β-lysylated EF-P also undergoes further
hydroxylation, a second post-translational modification of
this factor, but the function of hydroxylation does not seem
to be critical for EF-P (Peil et al., 2012; Bullwinkle et al., 2013).
In addition to the post-translational modifications mentioned
above, other modifications of EF-P had been identified in other
bacteria. For example, rhamnosylation of Arg32 in S. oneidensis,

FIGURE 5 | Various functions of EF4 and the issues still need to be resolved.
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P. aeruginosa, N. gonorrhoeae, B. pertussis and N. meningitidis,
which is closely related to bacterial fitness, pathogenicity and
viability (Lassak et al., 2015; Rajkovic et al., 2015; Yanagisawa
et al., 2016; Hummels and Kearns, 2020); 5-
aminopentanolylation of Lys32 in B. subtilis, which can
regulate the synthesis of diprolyl motifs of specific proteins
needed for swarming motility (Rajkovic et al., 2016). There are
hundreds of polyproline-containing peptides and proteins with
different functions in all organisms, indicating EF-P (e/aIF5A)
is necessary for the regulation of expression levels in various
pathways.

eIF5A was firstly reported to promote the first peptide bond
formation and was denoted as an initiation factor (Kemper et al.,
1976). In archaea and eukaryotes, a conserved lysine located at
the eIF5A domain I (Kim et al., 1998) is modified to hypusine
post-translationally. Synthesis of hypusine is catalyzed by two
consecutive enzymatic reactions involving deoxyhypusine
synthase (DHPS) and deoxyhypusine hydroxylase (DOHH)
(Park et al., 2010). Hydroxyl radical probing experiments
revealed that the binding site of eIF5A on the ribosome is
adjacent to the E-site, and the hypusine group is in proximity
to the acceptor arm of the P-site tRNA (Gutierrez, 2013). An early
study showed that unmodified eIF5A is unable to catalyze the
formation of methionyl-puromycin (Park et al., 1991). Depletion
of eIF5A leads to dysregulated translation initiation (Manjunath
et al., 2019), elongation/termination (Schuller et al., 2017), and an
increase in ribosomal transit times (Henderson and Hershey,
2011). In the absence of cycloheximide, inhibition of an eIF5A
mutant that is sensitive to temperature leads to polysome
accumulation (Saini et al., 2009), indicating eIF5A plays a
vital role in the elongation phase. Moreover, if eIF5A is
present, ribosome stalling will be restored when multiple
prolines are to be incorporated in vitro. eIF5A depletion
leads to defects in the synthesis of polyproline-containing
proteins (Gutierrez, 2013), and ribosome stalling at
tripeptides such as RDK, DVG, DDG, DDP, PDP and DNP
(Schuller et al., 2017). Therefore, like EF-P in bacteria, eIF5A is
considered to promote peptide transfer and improve the
translation efficiency of poor substrates like proline
(Gutierrez, 2013) (Figure 6). eIF5A was also found to play a
role in the start codon selection during translation initiation.
Depletion of eIF5A enhances upstream translation within 5′

UTRs across yeast and human transcriptomes (Manjunath
et al., 2019).

eEF3-Fungal Specific Elongation Factor
eEF3, a third elongation factor which was reported to be
important for the protein translation and viability in higher
fungi including yeast and P. carinii (Triana-Alonso et al.,
1995). eEF3 from S. cerevisiae is composed of 1,044 amino
acids and the coding gene of this factor is YEF-3 (Qin et al.,
1990). The crystal structure of S. cerevisiae eEF3 revealed that it is
composed of a HEAT domain, two ATPase domains, a four-helix
bundle, and a chromodomain (Andersen et al., 2006). It has a
ribosome-dependent ATPase and GTPase (Dasmahapatra and
Chakraburtty, 1981). eEF3 is mainly associated with cytosolic
polysomes, and is needed for peptide bond formation (Kapp and
Lorsch, 2004). The existence of eEF3 exclusively in fungi may be
the most striking exception to the highly conserved translation
elongation. It was reported that eEF2 and eEF1 from yeast can
work with mammalian ribosomes to promote translation. In
contrast, eEF2 and eEF1 from mammalian could function with
yeast ribosomes only when eEF3 is present (Skogerson and
Engelhardt, 1977), indicating eEF3 is required for yeast
ribosome translation. Cryo-EM structures revealed that eEF3
has a new binding site close to the ribosome E-site, with the
chromodomain stabilizing L1 stalk to facilitate tRNA release,
which is consistent with the model that eEF3may aid E-site tRNA
release following translocation (Andersen et al., 2006).

The question that still needs to be answered is why do fungal
ribosomes require eEF3 to promote E-site tRNA release and
A-site occupancy while other ribosomes do not? Rodnina et al.
(1994) reported that 80S from several higher eukaryotes can
hydrolyse ATP and GTP without protein factors. This inherent
ATPase activity functions as eEF3, promoting the dissociation of
deacylated tRNA at the ribosome E-site (El’skaya et al., 1997), and
cognate tRNA binding at the ribosome A-site seems to stimulate
this activity in turn (Rodnina et al., 1994). Nevertheless, no
homologues of fungal eEF3 have been found in mammalian
cells. It is worth noting that a crystal structure of S. cerevisiae
80S contains an additional non-ribosomal protein, Stm1, which
bound to the 40S subunit and precludedmRNA entry by placing a
α-helix to the mRNA tunnel (Ben-Shem et al., 2011). In yeast,
deletion of stm1 leads to increased binding affinity of eEF3 to

FIGURE 6 |Mechanism of EF-P/eIF5A in alleviating ribosome stalling at polyproline stretches. Accomodation of the third consecutive Pro-tRNAPro into the A-site of
translating ribosome leads to stalling. EF-P/eIF5A binds to a location between E- and P-sites of the stalled ribosome after E-site tRNA is dissociated, stimulating rapid
proline-proline peptide bond formation. Translation can resume following dissociation of EF-P/eIF5A and binding of the next aa-tRNA.
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ribosomes, whereas up-regulation of eEF3 expression in cells
lacking Stm1 leads to growth defect and elevated anisomycin (a
translation inhibitor) sensitivity. Moreover, a high level of Stm1
in ribosomes displays reduced eEF3 binding. Therefore, it can be
concluded that Stm1 and eEF3 may jointly promote the
elongation cycle (Van Dyke et al., 2009). Even though the
characteristics of bacterial ribosome structures do not suggest the
need for another elongation factor (Dever and Green, 2012), E. coli
has an ATPase RbbA, which can bind to the ribosome and
stimulates protein translation in vitro, and displays multiple
biochemical properties similar to that of eEF3 (Kiel and Ganoza,
2001). More studies concerning biochemistry, structural biology
and high resolution fluorescence imaging are required to fully reveal
the function of eEF3 and to resolve its specific needs in fungi
translation elongation (Dever and Green, 2012).

Tet(O) and Tet(M)
The tetracycline resistance proteins (Tet), which protect the
bacterial ribosome from binding the antibiotic tetracycline, are
another class of ribosome-associated GTPases (Margus et al.,
2007). They are also called ribosomal protection proteins (RPPs).
They are cytoplasmic proteins that display homology with the
elongation factors EF-Tu and EF-G (Hughes, 2013). They bind to
the ribosome, hydrolyze GTP and cause the release of tetracycline
from the ribosome (Connell et al., 2003). RPPs are paralogs of
elongation factors, and the best characterized and widely
distributed RPPs are Tet(M) and Tet(O) (Hughes, 2013). Both
Tet(M) and Tet(O) have ribosome-dependent GTPase activity,
the hydrolysis of GTP providing the energy for the ribosomal
conformational changes (Connell et al., 2003). Direct competition
experiments showed that the ribosome binding site of Tet(M) is
overlapping with that of EF-G (Dantley et al., 1998). To clarify the
mechanism of the tetracycline resistance, Burdett purified Tet(M)
protein (Burdett, 1991) and investigated its effects on several
reactions that occur during protein translation (Burdett, 1996).
The author found that Tet(M) could alleviate the inhibition of
tetracycline on factor-dependent tRNA binding, and significantly
reduce the affinity of ribosomes for tetracycline in the presence of
GTP. Adding Tet(M) to the ribosome-tetracycline complex will
replace the bound tetracycline. Therefore, the dissociation of
tetracycline from the ribosome promoted by Tet(M) is GTP
dependent. Structures of 70S·Tet(O) complex revealed that
Tet(O) really looks like EF-G and binds to the ribosome with
an identical site (Spahn et al., 2001). In 2013, Li et al. identified the
Tet(O) binding site on the ribosome, which involves three unique
loops in Tet(O) domain IV (Li et al., 2013). The single glycine
substitution of the residues in these loops leads to loss of
tetracycline resistance.

RelA
In order to adapt to the changes in environment conditions,
pathogens have evolved a variety of mechanisms to respond to
various stresses, the most important of which is called stringent
response (SR) (Winther et al., 2018). SR is a nearly universal
mechanism mediated by pppGpp and ppGpp (Steinchen and
Bange, 2016). Seeing that SR is related to metabolic regulation,
biofilm formation, virulence gene expression (Yang et al., 2020),

stress, antibiotic resistance, as well as the formation ability of
bacteria retention (Hauryliuk et al., 2015), therefore, the signal
pathway becomes a target for designing effective antibacterial
agents (Kushwaha et al., 2019). The intracellular levels of pppGpp
and ppGpp (collectively referred to as (p)ppGpp) are controlled
by RelA/SpoT Homologue (RSH) proteins, which synthetize (p)
ppGpp by transferring the pyrophosphate group of ATPs onto
the 3′ of GDP or GTP, and degrade (p)ppGpp by removing the 3′
pyrophosphate moiety. It interacts with the ribosome to sense
environmental pressure and leads to an adaptive response of
pathogens. When pathogens encounter stresses like nutrition
deficiency, deacylated tRNA binds to the empty ribosome
A-site to form the so-called “starving” ribosome, triggering the
(p)ppGpp synthetic activity of RelA (Haseltine and Block, 1973).
At this time, RelA catalyzes the production of AMP and ppGpp or
pppGpp from ATP and GDP or GTP, respectively (Wendrich
et al., 2002), and the SR reaction is triggered.

Under stressed conditions, ppGpp, as a “global transcriptional
regulator”, can up regulate the expression of many genes at the
transcriptional level, and the concentration of intracellular ppGpp
is largely determined by relA gene. Therefore, the function of relA
gene in cell physiology is mainly reflected in controlling the
concentration of intracellular ppGpp. Studies have shown that
(P)ppGpp can change the physiology of bacteria from rapid growth
to slow growth, so as to allow them to survive under harsh
conditions (Hauryliuk et al., 2015). In E. coli, (P)ppGpp
combines with RNA polymerase, up-regulating the expression
of metabolic enzyme genes, especially amino acid biosynthesis
genes, while reducing the transcription of tRNA, rRNA, ribosomal
protein, translation factor and synthase genes (Barker et al., 2001;
Lemke et al., 2011; Ross et al., 2016). Other main effects include
activating the stress factor δE and inhibiting cell wall synthesis
(Costanzo et al., 2008). It was found that more than 30% of the
genes in E. coli were differentially expressed by (P)ppGpp,
including the up regulation of SR related genes and the down
regulation of macromolecular structure related genes under
isoleucine starvation conditions (Traxler et al., 2008). Several
models have been proposed for the molecular mechanism of SR
(Sanchez-Vazquez et al., 2019). It is reported that (P)ppGpp
directly binds to RNAP with RNAP binding protein dksA,
which destroys the stability of its open complex. On the other
hand, (P)ppGpp indirectly regulates gene expression by δ
competition (Sanchez-Vazquez et al., 2019). It is worth noting
that almost all bacterial pathogens need SR, otherwise they cannot
survive and infect the host during stress conditions.

BPI-Inducible Protein A
BPI-inducible protein A (BipA) is a highly conserved ribosome-
dependent trGTPase that regulates multiple cellular processes
including bacterial attachment and effacement, motility,
virulence gene expression, avoidance of host defenses. In
addition, BipA is also associated with temperature, symbiosis,
antimicrobial resistance and biofilm formation (Overhage et al.,
2007; deLivron and Robinson, 2008; Neidig et al., 2013). BipA is
widespread in most of the bacteria and plants (Margus et al.,
2007) and is similar to EF4 and EF-G except for a unique
C-terminal domain (Neidig et al., 2013; Kumar et al., 2015).
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Despite its conservation in bacteria, BipA was regarded as an
essential factor only in adverse growth conditions such as low pH
and temperature, nutrient deprivation, and other stresses
(Starosta et al., 2014). Mutations in BipA leads to multiple
phenotypes including cold sensitivity (Pfennig and Flower,
2001), hypermotility (Farris et al., 1998), decreased capsule
synthesis (Rowe et al., 2000), increased sensitivity to
chloramphenicol (Duo et al., 2008), and reduced pathogenicity
(Grant et al., 2003). Moreover, it also participated in regulating
some mRNAs translation under stresses (Ero et al., 2016).
Interestingly, deLivron reported that BipA has two different
binding modes to the ribosome. It is associated with 70S in
the form of GTP-bound under normal cellular conditions,
whereas it interacts with 30S subunit under stress conditions
(deLivron and Robinson, 2008). Therefore, they speculated that
there exist two ribosome·BipA complexes that affect the response
of bacteria to environmental conditions (deLivron and Robinson,
2008). Moreover, there is a growing body of evidence that BipA
also functions in the 50S ribosomal subunit biogenesis
(Choudhury and Flower, 2015; Del Peso Santos et al., 2021).
Choi et al. (2019) reported that BipA is vital for 50S biogenesis at a
low temperature, whose expression is involved in the incorporation
of L6 protein. The exogenous expression of the L20 coding gene
rplT can partially repair the defects in rRNA processing and
ribosomal assembly, and then restore the growth of bipA-
deficient strains at low temperatures. So, the authors speculated
that BipA and L20 may play a coordinating role in proper
ribosomal assembly under cold-shock conditions. Another study
led by Fredrick (Gibbs et al., 2020) demonstrated the flexible nature
of the 50S assembly process. They also found GTP hydrolysis was
crucial to the function of BipA.

ELONGATION FACTORS AND
TUMORIGENESIS

Recently, more and more elongation factors have been reported
to function as oncoproteins or tumor promoters in cancer cells

(Table 2). Elevated levels of protein synthesis are a critical feature
of tumor cells. Alterations in protein synthesis can increase the
overall translation rate and stimulate the translation of certain
mRNAs to facilitate tumorigenesis, oncological progress, and
survival.

eEF1A and Tumorigenesis
eEF1A is overexpressed in malignancies such as ovarian tumors.
It can be inactivated by cytotoxic and anti-adipogenic ternatin
and its derivatives (Carelli et al., 2015), with unclear mechanisms.
Mutation in domain III of eEF1A hinders the binding of ternatin
and confers resistance to its cytotoxic effects (Carelli et al., 2015).
Cancers driven by the activation of PI3K-AKT axis are sensitive
to the inhibitors of eEF1A (Lee and Surh, 2009). eEF1A1 was
reported to be increased in the periphery of mammary cancer
compared with the central region (Zhu et al., 2003), and the levels
of eEF1A1 in neoplastic are relatively higher than in normal tissue
(Lee and Surh, 2009). eEF1A2, an isoform of eEF1A, functions as
cancer protein via a variety of mechanisms, such as facilitating
cell invasion and migration by up-regulating MMP-9 and
stimulating AKT in pancreatic tumors (Xu et al., 2013). It can
accelerate proliferation and block apoptosis via down-regulating
caspase 3 in prostate cancer tissues (Sun et al., 2014). Previous
studies showed that the expression levels of eEF1A2 are elevated
(Anand et al., 2002; Lee and Surh, 2009) and their genes (genomic
region: 20q13) are amplified in a high proportion of solid tumors,
such as ovarian (Iwabuchi et al., 1995) and breast cancers
(Kallioniemi et al., 1994). For malignancy in the blood system,
eEF1A2 is also up-regulated in cells of multiple myeloma (Losada
et al., 2016). Therefore, eEF1A2 can be used as a diagnostic
marker and target for some breast tumours (Tomlinson et al.,
2005) and hematological malignancies (Shan et al., 2020).

Besides phosphorylation, other post-translational
modifications on elongation factors have been found to be
essential for tumorigenesis. Recently, it was reported that
lysine 55 of eEF1A is dimethylated (eEF1AK55me2) by
METTL13 (Methyltransferase-like 13), resulting in an increase
of the inherent GTPase activity of eEF1A (Liu et al., 2019). This

TABLE 2 | Alterations of translation elongation factors in human cancer.

Elongation factors Observed modification Association with cancer

eIF5A1 Increased expression eIF5A is highly overexpressed in patients with glioblastoma (Preukschas et al., 2012). eIF5A1 is a diagnostic marker of
vulvar intraepithelial neoplasia (Cracchiolo et al., 2004). eIF5A1 is upregulated in colorectal adenoma (Lam et al., 2010)

eIF5A2 Increased expression eIF5A2 is amplified in ovarian carcinoma (Guan et al., 2001) and is associated with metastatic progression in colorectal
cancers (Xie et al., 2008)
Gain of EIF5A2 results in recurrence of hepatocellular carcinoma (Chen et al., 2000)
Ectopic expression of EIF5A2 causes tumorigenesis in naked mice (Guan et al., 2004)
Overexpression of eIF5A2 results in local invasion of non-small-cell lung cancer (He et al., 2011)

eEF1A1 Increased expression eEF1A1 was upregulated in the infiltrating edge of invasive breast cancers (Zhu et al., 2003)
Dimethylation of eEF1A is upregulated and can serve as a diagnostic marker for poor outcomes in lung and pancreatic
cancer (Liu et al., 2019)

eEF1A2 Increased expression eEF1A2 is distributed in 30% of ovarian cancers, and 26% of cancers with amplifications near the EEF1A2
eEF1A2 acts as an oncoprotein which is upregulated in 67% of breast cancers (Tomlinson et al., 2005)

eEF2 Increased expression eEF2 is overexpressed in most of colorectal and gastric tumors and promotes cancer growth in vivo and in vitro
(Nakamura et al., 2009)
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modification of eEF1A was utilized by RAS signal cascade to
promote translational output and facilitate carcinogenesis
(Figure 7). Therefore, METTL13-eEF1AK55me2 signal
pathway is vital for tumors to cope with increased
translational demand, and METTL13 inhibition might be an
effective way to do targeted intervention for RAS driven cancers.

eEF2 and Tumorigenesis
eEF2 plays an essential role in many biological processes
including cell cycle (Hizli et al., 2013) and genotoxic stress
(Kruiswijk et al., 2012). Previous studies have shown that eEF2

is overexpressed in various tumors. Translation of eEF2 was up-
regulated in most of colorectal (91.7%) and gastric (92.9%)
tumors, leading to the elevation of in vivo tumorigenicity
(Nakamura et al., 2009). Therefore, eEF2 is a potential target
for tumor immunotherapy in multiple cancers (Oji et al., 2014).

Under conditions of energy depletion or nutrient deprivation,
tumor cells redistribute energy resources through weakening
overall translation, while translating specific mRNAs to cope
with stresses and fight for survival. AMPK, a sensor of energy,
exists in a variety of tumors. When AMPK is activated, it can
stimulate eEF2K, which further inhibits eEF2 activity by
phosphorylating the Thr56 of eEF2. Inhibition of eEF2 leads
to slowing down of protein translation (Proud, 2015), and
prevents tumor cells from growing under nutritional
deficiency (Leprivier et al., 2013) (Figure 8). Therefore, eEF2K
is a negative regulator of protein synthesis (Wang et al., 2017),
and inhibition of eEF2K activity may have therapeutic
significance in preventing the survival of tumor cells and
recovering protein translation.

eEF2K is an atypical kinase, and plays an important role in the
migration and survival of tumor cells. It is overexpressed in
glioblastoma (Leprivier et al., 2013), medulloblastoma,
mammary cancer (Liu et al., 2014) and pancreatic tumor
(Ashour et al., 2014). eEF2K is activated by stresses such as
nutrition deficiency, hypoxia (Moore et al., 2015), acidosis (Xie
et al., 2015) and cellular energy depletion (Browne et al., 2004).
Inhibiting eEF2K decreases the invasion and migration of tumor
cells, while deletion of eEF2 or eEF2K overexpression promotes
wound healing and invasion. These results indicated that eEF2K
has a protective function in tumor cells and therefore can be used
as a molecular target to prevent cancer metastasis (Xie et al.,
2018). Nevertheless, a recent study showed that eEF2K can

FIGURE 7 |Methylation of eEF1A and the role of eEF1AK55me2 mediated translational control in tumorigenesis. Expression of METTL13 and eEF1AK55me2 are
upregulated in cancer, and negatively correlate with the survival of pancreatic and lung cancer patient. Increased METTL13 and eEF1AK55me2 promotes Ras-driven
tumorigenesis in vivo.

FIGURE 8 | Regulation mechanism of eEF2 phosphorylation
modification in cancer cells.
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protect cells under stress conditions and make tumor cells adapt
to stresses (Leprivier et al., 2013). Therefore, stimulating eEF2K-
eEF2 axis to suppress tumor requires serious assessment, and
more in-depth studies are required to comprehensively evaluate
its effectiveness from a treatment perspective (Knight et al., 2020).

eIF5A and Tumorigenesis
eIF5A is involved in the invasive and/or metastatic processes of
several types of human cancer (Mathews and Hershey, 2015).
There are two subtypes of eIF5A in mammals, both of which were
modified with hypusine on the same lysine (Clement et al., 2003).
eIF5A1 is widely distributed in rapidly proliferating cells while
eIF5A2 is expressed in a tissue-specific manner and is almost
undetectable in most cases (Clement et al., 2006). It was found
that both eIF5A1 and eIF5A2 are associated with several
malignancies (Mathews and Hershey, 2015). Interestingly, the
expression of eIF5A1 and eIF5A2, along with DOHH and DHPS,
are increased in multiple tumors (Nakanishi and Cleveland,
2016). Recently, it was found that eIF5A2 promotes
doxorubicin resistance of colon cancer cells by regulating
EMT, suggesting that inhibition of eIF5A2 can be used as a
way to reverse the drug resistance of colorectal cancer (Figure 9)
(Bao et al., 2015). An early study suggested that eIF5A2 may aid
tumorigenesis via promoting the translation of somemRNAs that
boost DNA replication and provoke excessive proliferation of
tumor cells (Hanauske-Abel et al., 1995). Nevertheless, more in-
depth studies on the function andmolecular mechanism of eIF5A
and its hypusination modification in tumors are needed.

CONCLUDING REMARKS

The elongation phase of translation is an important regulatory
node in health and disease. Dysregulation of this process is often
related to various disorders including tumors, neurodegenerative
diseases and cardiovascular diseases. The close link between
translational factors and human diseases are well coincident
with the concept that gene expression is accurately regulated
at the translational level (Dever et al., 2018). There are multiple
levels at which protein translation can be regulated to hinder
disease progression. Clarifying how post-translational
modifications control the activity of translational factors in
tumors is helpful to reveal the regulation mechanism in
tumorigenesis, and provides a rationale for the new
interventional treatment (Xu and Ruggero, 2020). There are
still many questions about translation elongation that need to
be resolved: 1) The exact physiological function of
phosphorylated EF-G and EF-Tu; 2) The molecular
mechanism of how ADP-ribosylation impairs the function of
eEF2; 3) The molecular mechanism of EF4 in protein translation
under stress conditions; 4) The unique requirement of eEF3 in
fungal and its action mechanism in translation elongation; 5) The
feasibility of eEF2K as a tumor therapeutic target; 6) The
molecular mechanism of eIF5A and its hypusine modification
in protein translation and tumorigenesis.
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